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SUMMARY

The polycystic TRP subfamily member PKD2-L1, in
complex with PKD1-L3, is involved in physiological
responses to diverse stimuli. A major challenge to
understanding whether and how PKD2-L1/PKD1-L3
acts as a bona fide molecular transducer is that re-
combinant channels usually respond with small or
undetectable currents. Here, we discover a type of
Ca2+ influx-operated Ca2+ entry (ICE) that generates
pronounced Ca2+ spikes. Triggered by rapid onset/
offset of Ca2+, voltage, or acid stimuli, Ca2+-depen-
dent activation amplifies a small Ca2+ influx via the
channel. Ca2+ concurrently drives a self-limiting
negative feedback (Ca2+-dependent inactivation)
that is regulated by the Ca2+-binding EF hands of
PKD2-L1. Our results suggest a biphasic ICE with
opposite Ca2+ feedback regulation that facilitates
sensory responses to multimodal transient stimuli.
We suggest that such a mechanism may also
occur for other sensory modalities and other Ca2+

channels.

INTRODUCTION

The polycystin subfamily of TRP (TRPP) genes encodes a class

of Ca2+-permeable non-selective cation channels (Gees et al.,

2010). TRPPs are named after the disease-causing genes

TRPP2 (PKD2) and PKD1, mutations in which are responsible

for autosomal dominant polycystic kidney disease (ADPKD)

(Zhou, 2009). TRPP3 (PKD2-L1) has been linked to various as-

pects of transmembrane signaling, including sour taste percep-

tion and proton-mediated pain (Huang et al., 2006; Huque et al.,

2009; Orts-Del’Immagine et al., 2014, 2015), Ca2+ homeostasis

and sonic hedgehog signaling in primary cilia (DeCaen et al.,

2013; Delling et al., 2013), cystic disorders in Krd (kidney and

retinal defects) mice (Keller et al., 1994), and an aversive

response to high salt (Oka et al., 2013). It has been speculated
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that PKD2-L1/PKD1-L3 channels may act as the sought-after

molecular transducers of voltage, Ca2+, pH, heat, and mechan-

ical stress (Chen et al., 1999; Higuchi et al., 2014; Murakami

et al., 2005; Shimizu et al., 2009). However, in contrast to prom-

inent Ca2+ signals observed in native settings, currents of recom-

binant PKD2-L1/PKD1-L3 channels inmammalian cells are often

very small or undetectable, raising fundamental questions as to

whether PKD2-L1 channel complexes indeed function as bona

fide transducers to mediate sensory functions in vivo. For

example, while data from native preparations support that

PKD2-L1 and PKD1-L (PKD1-L1 or PKD1-L3) are involved inme-

chanosensation of primary cilia (Delling et al., 2013; Murakami

et al., 2005; Nauli et al., 2003) and in acid sensing of sour taste

(Huang et al., 2006; Kawaguchi et al., 2010), recombinant hetero-

meric PKD2-L1 channel complexes exhibit little activation in

response to physiologically relevant mechanical stress

(60 mm Hg or lower) or acid stimuli (pH of 3 or higher) (DeCaen

et al., 2013; Inada et al., 2008; Shimizu et al., 2009). Furthermore,

PKD2-L1 sensitivity to transmembrane potentials (Vm) is poor as

inward currents are small and have weak voltage dependence

(Ishimaru et al., 2006), arguing against an important role in action

potential-related Ca2+ signaling (Orts-Del’Immagine et al., 2014,

2015; Wu et al., 1998). Another signal, extracellular Ca2+, might

also act as the stimulus that activates PKD2-L1 in taste cells or

primary cilia as postulated (Delling et al., 2013; Tordoff, 2001).

Indeed, exposure to high concentrations of extracellular Ca2+

([Ca2+]o) was reported to activate homomeric PKD2-L1 channels

reconstituted in Xenopus oocytes, giving rise to an inward Ca2+

current that displayed inactivation (Chen et al., 1999; Zheng

et al., 2015). Unfortunately, such Ca2+-activated Ca2+ current

(ICa) responses have not been observed for either homomeric

or heteromeric PKD2-L1 channels overexpressed in mammalian

cells (DeCaen et al., 2013).

Here, we examine activities of recombinant PKD2-L1/PKD1-

L3 channels in HEK293 cells in response to transient Ca2+, Vm,

or acid stimuli. We report the discovery and analyses of a type

of Ca2+ spike that is autonomously controlled by Ca2+ influx

through the channel (influx-operated Ca2+ entry or ICE). We sug-

gest that ICE may occur in other sensory contexts and other

physiological functions.
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Figure 1. Ca2+ Spikes from PKD2-L1/PKD1-L3 Channels Are Induced by Ca2+ Exposure

(A) Ca2+ spikes from PKD2-L1/PKD1-L3. Representative whole-cell recording of ICa with or without Ca2+ spikes when [Ca2+]o was quickly switched from 0 to

100mM, with�100ms to completely switch the solutions. Peak currents (Ip) of Ca
2+ spike (2.6 ± 0.2 nA, n = 47) and the gain (GCa = Ip/Isub) for rapid Ca2+ exposure

protocol (7.3 ± 0.6, n = 46) were estimated (mean ± SEM) under standard experimental conditions: Vm = �60 mV, 100 mM [Ca2+]o exposure, and 0.5 mM EGTA

included in pipettes, unless otherwise indicated.

(legend continued on next page)
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RESULTS

Induction of Ca2+ Spikes by Rapid Ca2+ Exposure
PKD2-L1 and PKD1-L3 were co-expressed in mammalian cell

lines to test whether high Ca2+ stimuli could produce a similar

response to pronounced ICa from homomeric PKD2-L1 channels

in oocytes (Chen et al., 1999). In initial trials, only a very small

response was elicited by 100 mM Ca2+ via a regular (slow)

bath perfusion system (Figure S1A). Surprisingly, upon a much

faster Ca2+ exposure, i.e., a 100-mM step by rapid solution

exchanger, we recorded nA-sized ICa (2.6 ± 0.2 nA, n = 47) in

45% of patched HEK293 cells (Figure 1A), and similarly in Chi-

nese hamster ovary (CHO) cells (Figure S2B). In most traces,

following an initial brief suppression and a subsequent gradual

deflection, an inward current got accelerated at some threshold,

rapidly peaked, and then inactivated, altogether forming a Ca2+

spike-like response (Figure 1A). Such ICa with Ca2+ spike essen-

tially facilitates responses to external stimuli: the small response

of early subthreshold phase is dramatically amplified into a Ca2+

spike. To quantify this amplification, we define a gain factor (GCa)

as the ratio of the peak of the Ca2+ spike to the amplitude of the

subthreshold current (GCa = 7.3 ± 0.6, n = 46).

Ca2+ entry during the Ca2+ spike was confirmed by patch

recording and simultaneous Ca2+ imaging with GCaMP3, a

genetically encoded Ca2+ sensor (Figures S2I and S2J). The

reversal potential (Vrev) during the Ca2+ spike was positively

shifted, consistent with an increase of Ca2+ conductance (Fig-

ures 1B and S3). The relative permeability of Ca2+ versus Na+

was estimated (PCa/PNa = 5.3 ± 0.7, n = 10) by switching Ca2+ so-

lution to Na+ solution during Ca2+ spikes (Figure S3), consistent

with the documented values (about 4–11) (Chen et al., 1999;

DeCaen et al., 2013; Inada et al., 2008).

Ca2+ spikes appear to be specific to PKD2-L1/PKD1-L3, as no

spikes were observed from either PKD2-L1 expressed alone in

HEK293 cells or any other cDNA combinations that we tested

(Figure S2F). When the N terminus of PKD1-L3 was truncated,

Ca2+ spikes also became absent (Figure S4). To further confirm

that PKD2-L1/PKD1-L3 mediates ICa spikes, we added 100 mM

capsaicin, a known antagonist of the channel complex (Ishii

et al., 2012), which reversibly blocked the Ca2+ spike (Figure 1C).

We examined the potential role of stimulus strength [Ca2+]o (Ishii

et al., 2012), membrane potential Vm (Ishimaru et al., 2006), intra-

cellular buffers, and the speed of transient stimuli D[Ca2+]o/DT.

ICa spikes were clearly identified for [Ca2+]o R 10 mM, suggest-

ing a mechanism of Ca2+-dependent activation (CDA) (Fig-

ure 1D). Ca2+ spikes could be induced at Vm % �20 mV but
(B) Reversal potentials measured at different ICa phases. I-V curves were obtained

intervals, by which Vrev values were determined (n = 6 cells): pre-exposure phas

phase ‘‘2,’’ 11.1 ± 3.1 mV; and inactivation phase ‘‘3,’’ �33.6 ± 6.6 mV (mean ± S

(C) Blockage of Ca2+ spikes by compounds. 100 mMcapsaicin blocked Ca2+ spike

CdCl2 all failed to block.

(D) ICa with different [Ca2+]o. 10 mM or higher [Ca2+]o triggered ICa spikes (3.3 ± 0

responses without major characteristics of Ca2+ spike.

(E) Tests with different holding Vm. ICa traces with Ca2+ spikes when Vmwas held at

± SEM). In contrast, when Vm R �10 mV, ICa spikes failed to get triggered (totall

(F) Tests with different intracellular Ca2+ buffers. For intracellular buffers of 5 mM E

spikes: 0.5 mM EGTA (2.6 ± 0.2 nA, n = 47), 5 mM EGTA (2.3 ± 0.7 nA, n = 10), a

See also Figure S2.
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were absent at Vm R �10 mV, exhibiting apparent inward recti-

fication (Figure 1E). Notably, ICa spikes recorded with 0.5 mM

EGTA, 5 mM EGTA, or 10 mM BAPTA are indistinguishable (Fig-

ure 1F). This contrasts with eliminated Ca2+ response from ho-

momeric PKD2-L1 in oocytes by EGTA at mM concentrations

(Chen et al., 1999). This difference might be due to active partic-

ipation of PKD1-L3 in pore formation and ion permeation of the

channel complex (Yu et al., 2012). Such buffer insensitivity of

PKD2-L1/PKD1-L3 suggests that Ca2+ spikes are likely not trig-

gered by an increase of bulk cytosolic Ca2+. Consistent with this,

Ca2+ spikes could not be induced by intracellular Ca2+ ([Ca2+]i)

elevations achieved via either store depletion or pipette delivery

(Figure S5). The probability of eliciting a Ca2+ spike varied ac-

cording to the speed of Ca2+ exposure: the slower the rate of

change (or the longer transient time DT), the less likely it became

to trigger Ca2+ spikes. At the slowest speed to achieve D[Ca2+]o
by bath perfusion (DT R 120 s), no spikes were elicited (Fig-

ure 2A). The dependence of spike generation on the time rate

of Ca2+ stimuli (D[Ca2+]o/DT) rather than just [Ca2+]o or D[Ca
2+]o

is inconsistent with a simple extracellular mechanism of CDA.

Induction of Ca2+ Spikes by Vm Repolarization
We devised a voltage protocol, mimicking action potentials,

where the time rate ofVm repolarizationwas varied using different

ramping speeds (Figure 2B). Vm repolarization produced pro-

nounced Ca2+ spikes, resembling those obtained with fast Ca2+

exposure. However, Ca2+ spikes were absent when the speed

of repolarization was substantially slowed down (DT R 120 s

for DVm = 80 mV). In the case of high [Ca2+]o built up by slow

bath perfusion, which itself was unable to trigger spikes (Fig-

ure S1A), an instantaneous Vm drop induced Ca2+ spikes (Fig-

ure 2C). These results suggest that the kinetics of Ca2+ influx or

the speed of Ca2+ entry is critical to trigger Ca2+ spikes. If so,

Ca2+ exposure and Vm repolarization essentially may share a

similar mechanism of action for triggering Ca2+ spikes.

The notion of common mechanism is further supported by the

fact that the latency to induce spikes (Tp, defined in Figure S2A)

for either rapid DVm or D[Ca2+]o was comparable (�12 s). Similar

toGCa, a gain factor ofGVm can be defined and estimated (14.3 ±

5.5, n = 8) to quantify the amplification by repolarization-induced

Ca2+ spikes. The value of the conditioning voltage step preced-

ing repolarization (pre-drop Vm) strongly influenced the induction

of Ca2+ spike. An instantaneous repolarization (DVm = 80 mV)

failed to trigger Ca2+ spikes when the conditioning voltage step

was set to �60 or �30 mV (Figure 2D). Ca2+ influx through

the channel during the conditioning step could lead to
from voltage ramps (from �60 mV to +50 mV of 100-ms durations) at 500-ms

e ‘‘0,’’ �48.6 ± 3.8 mV; subthreshold phase ‘‘1,’’ �18.1 ± 9.6 mV; Ca2+-spike

EM). More details are available in Figure S3.

s, which was subsequently washed off (n = 3). 100 mMof phenamil, GdCl3, and

.7 nA, n = 12) (mean ± SEM), whereas 2 mM [Ca2+]o only produced rather mild

�40mV (upper, 2.0 ± 0.5 nA, n = 5) or�20mV (lower, 1.5 ± 0.4 nA, n = 6) (mean

y 24 cells).

GTA (upper) or 10 mMBAPTA (lower), instead of 0.5 mM EGTA as in (A)–(F), ICa
nd 10 mM BAPTA (2.8 ± 0.3 nA, n = 31) (mean ± SEM).
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Figure 2. Vm Repolarization Triggers Ca2+ Spikes

(A) Speed dependence of Ca2+ exposure. ICa spikes could be triggered by rapid D[Ca2+]o of 100 mM (transient time DT % 800 ms achieved by rapid solution

exchanger) but not by slower Ca2+ perfusion (DT = 2–4 min via chamber perfusion).

(B) Speed dependence of Vm repolarization. Vm was held at a positive level of +20 mV before 100 mM Ca2+ perfusion. If subsequent Vm drop (DVm = 80 mV) was

fast enough (DT % 90 s), Ca2+ spikes were inducible, as compared with slower Vm drop (DT R 120 s), which failed to trigger spikes.

(C) Signal amplification revealed by Vm drop. Slow (bath) perfusion of 100mMCa2+ was applied when Vmwas held at +20mV. Ca2+ spikes were induced following

DVm of 80mV (eight out of 16 cells in total). Tp time here byDVmwas comparable to that byD[Ca2+]o in Figure 1A (p > 0.9). Gain factor ofGVmwas estimated (14.3 ±

5.5, n = 8) (mean ± SEM).

(D) Pre-drop Vm and Ca2+ spikes. For the same Vm drop (DVm = 80mV), pre-drop Vm of +20mVwas able to trigger ICa spikes as in (C), but no spike was observable

when pre-drop Vm was set to �60 mV or �30 mV.
Ca2+-dependent inactivation (CDI) (Chen et al., 2015; Inada et al.,

2008), which would be expected to impair CDA and prevent

spikes. Conditioning voltage steps above the reversal potential

would avoid such unfavorable Ca2+ influx and be permissive

for CDA and spikes. Rapid Ca2+ influx across plasmamembrane

implemented by voltage-gated Ca2+ channels (CaV) or light-sen-
C

sitive Ca2+ permeable channels (CatCh) did not induce ICa
spikes, nor did direct delivery of high [Ca2+]i (up to 2mM) through

recording pipettes (Figure S5). These results argue that the

determinant of spike induction is Ca2+ either passing through

or exiting from the pore of PKD2-L1/PKD1-L3 channels and

cannot be achieved by other sources of Ca2+.
ell Reports 13, 798–811, October 27, 2015 ª2015 The Authors 801
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Figure 3. Ca2+ Influx Underlies Ca2+ Spikes

(A) Sequence alignment of selectivity filters with the two pore mutations of PKD2-L1 indicated. The critical residues for Ca2+ selectivity are in dark- or light-green

shades.

(B) Simultaneous monitoring of current and Ca2+ for IpH. GCaMP3 fluorescence intensity (a.u.) was examined in HEK cells expressing WT PKD2-L1 or pore

mutants with D523N and/or D525N. Ca2+ dynamics was indicated by fluorescence changes following the initial decrease due to proton quenching (Figure S2I).

Red bar represents the application of acid stimuli at a pH of 2.5. Experimental conditions: Vm = �60 mV, 2 mM [Ca2+]o and 5 mM intracellular EGTA.

(C) Summary of Ca2+ fluorescence associated with IpH. [Ca
2+]i was quantified by ratio of fluorescence change. Acid applications directly caused fluorescence

inhibitions, indistinguishable among all cases. Fluorescence increases reflect Ca2+ influx via IpH : HEK control (1.08 ± 0.03, n = 4), WT PKD2-L1/PKD1-L3 in 0mM

[Ca2+]o (1.18 ± 0.03, n = 4); WT (3.53 ± 0.03, n = 6), D523N (1.05 ± 0.01, n = 10), D525N (1.41 ± 0.10, n = 9), and D523N-D525N (1.10 ± 0.02, n = 17) in 2 mM [Ca2+]o
(in ratio, mean ± SEM, ***p < 0.001).

(D) Effects of pore mutation. Mutations of D523N and D523N-D525N did not produce Ca2+ spikes, but D525N with residue Ca2+ permeability as shown in (C) did

generate ICa spikes.

(E and F) Summary of IpH and ICa recordings. All pore domain mutants similarly produced IpH : WT PKD2-L1/PKD1-L3 (5.9 ± 0.3 nA, n = 67), D523N (4.1 ± 0.3 nA,

n = 31), D525N (4.9 ± 0.7 nA, n = 20), and D523N-D525N (3.5 ± 0.3 nA, n = 79). Only WT (2.6 ± 0.2 nA, n = 47) and D525N (1.8 ± 0.4 nA, n = 7) were able to produce

ICa spikes (mean ± SEM).

See also Figure S5.
Ca2+ Influx Autonomously Triggers Ca2+ Spikes
To test the notion that Ca2+ influx through the PKD2-L1/PKD1-L3

channel is required to induce Ca2+ spikes, we mutated the two

aspartate residues in the pore (D523N and D525N) that are crit-
802 Cell Reports 13, 798–811, October 27, 2015 ª2015 The Authors
ical for Ca2+ permeability (Fujimoto et al., 2011; Tang et al., 2014;

Yu et al., 2012) (Figure 3A). First, we performed GCaMP-based

Ca2+ imaging to validate the pore mutations (Figure 3B). In

response to strong acid (pH 2.5), PKD2-L1/PKD1-L3 channels



would not produce much onset current; however, as soon as the

acid was withdrawn, a pronounced inward current was triggered

by the rapid change (offset) of pH, known as off response (IpH)

(Inada et al., 2008). GCaMP fluorescence associated with IpH
of D523N or D523N-D525Nmutants exhibited nearly no change.

Ca2+ fluorescence from D525N, though impaired, was signifi-

cantly higher than other mutants, indicating incomplete

blockage of Ca2+ influx (Figure 3C). All mutant channels are func-

tional as confirmed by their IpH (Figure 3E), but with different

abilities to produce ICa spikes that positively correlate with their

relative Ca2+ permeabilities (Figures 3D and 3F). Hence, sub-

stantial Ca2+ influx via the channel is both necessary and suffi-

cient for spike induction, which represents a unique form of

autonomous CDA.

EF Hands of PKD2-L1 Profoundly Affect Ca2+ Spikes
The importance of Ca2+ in channel activation was further demon-

strated by the rising speed (tr) of ICa spikes (Figure S2A). With

weak intracellular buffer of 0.5 mM EGTA, ICa spikes induced

by 100 mM Ca2+ exhibited much faster tr compared with those

elicited with 10 mM Ca2+ (Figure 4A). Putative Ca2+ binding sites

might lie in EF hands at the carboxyl terminus of PKD2-L1. A

structural model of EF-hand motifs of PKD2-L1 was computa-

tionally achieved based on the homology to EF hands of PKD2

(Petri et al., 2010) and canonical EF hands of calmodulin (CaM)

(Figure 4B). In addition to a highly conserved EF2 domain, EF1

domain of PKD2-L1 might also participate in channel regulations

by Ca2+. Indeed, mutants featuring deletion of EF1, EF2, or both

turned into faster channels (Figure 4C). Such a facilitatory role of

EF hands in CDAwas mademore evident by 2mM [Ca2+]o expo-

sure: wild-type (WT) channels (mPKD2-L1/PKD1-L3) failed to

produce any definitive Ca2+ spike (Figure 4D); in contrast, the

same protocol readily triggered Ca2+ spikes from mutant chan-

nels with EF-hand deletions.

Channel Inactivation Is Fully Ca2+ Dependent
Homomeric PKD2-L1 channels are subject to CDI subsequent

to channel activation (Chen et al., 1999). Similar CDI has also

been observed in acid-evoked IpH of PKD2-L1/PKD1-L3

(Chen et al., 2015; Inada et al., 2008). Our data demonstrated

that the decay time (td, Figure S2A) of ICa was significantly

faster with high [Ca2+]o 100 mM (Figure 5A). To avoid complica-

tions arising from the opposite effects of CDI and CDA, we

focused instead on inactivation of IpH provided that ICa and

IpH undergo similar CDI. Inactivation of IpH was confirmed to

be highly regulated by [Ca2+]o in the range from 0 to 100 mM

(Figure 5B) and sensitive to intracellular Ca2+ buffers of different

strength (Figure 5C). To examine the dependence of inactiva-

tion on Ca2+, we used a combination of strongly buffered

[Ca2+]i (10 mM BAPTA) and 0 [Ca2+]o, which completely abol-

ished the inactivation in 12 out of 27 cells, converting the decay

into a ‘‘flat’’ phase (Figure 5E). Such elimination of inactivation

suggests a completely Ca2+-dependent phenomenon and also

firmly excludes an extracellular contribution to the CDI. Dual

mutations of D523N and D525N in the pore domain uncovered

the full Ca2+ dependence of IpH inactivation (summarized in Fig-

ure 5G). Even with 2 mM [Ca2+]o present, a number of IpH traces

(10 out of 33, Figure 5F) of the mutant channel exhibited ultra-
C

slow inactivation, similar to that observed under Ca2+-free con-

ditions (Figure 5E).

Collectively, strong intracellular buffers can attenuate but not

eliminate CDI, unless Ca2+ influx through the channel is also

knocked out. Key sites underlying CDI may include residues

along permeation pathway and/or of the cytosolic motifs. Within

such CDI scheme, we analyzed putative Ca2+-binding motifs on

PKD2-L1 (Figure 4B). Mutagenesis suggested that EF hands are

directly linked to CDI (Figure 5H) by binding Ca2+, as CDI can be

substantially attenuated by point mutations of E613A in EF1,

D643A in EF2, dual mutations of ED/AA, and by deletions of

DEF1 or DEF2. All these mutants are functionally capable of pro-

ducing ICa and IpH with indistinguishable amplitudes (Figure S6).

Further Manifestations of ICE with Channel Variants
and Acid Sensing
As unveiled by our data and analyses, Ca2+ spikes are essentially

operated by CDA and CDI, both of which are tightly controlled by

Ca2+ influx through the channel; therefore, we also termed this

phenomena as ICE. Most experiments along the way to discover

ICE were conducted with mPKD2-L1, originally cloned from

mouse taste receptor cells (TRC) (Ishimaru et al., 2006). How-

ever, PKD2-L1 is widely expressed in a variety of tissues and or-

gans, encoded by differential splice variants. Human PKD2-L1

(hPKD2-L1) reportedly has at least three other splice variants,

cloned from kidney, liver, or testis, respectively (Li et al., 2002).

We examined whether the key aspects of ICE revealed from

mPKD2-L1 would be applicable to hPKD2-L1 variants.

Sequence alignments indicate that these genes share high ho-

mology (Figure S7), except for a few discrepancies, e.g.,

hPKD2-L1_Liver lacks EF2. In spite of sequence differences,

all four isoforms similarly produced pronounced responses

upon Ca2+ exposure or acid withdrawal (Figure S7), except

that hPKD2-L1_Liver exhibited weaker CDI (slower decay in

IpH) than hPKD2-L1_Kidney (Figure 6A). The critical role of EF2

motif in ICE also manifested itself with hPKD2-L1 variants;

when exposed to 10 mM [Ca2+]o, the liver variant produced

ICE spikes, whereas the kidney variant did not (Figure 6B).

One major concern relating to recombinant PKD2-L1/PKD1-

L3 channels is that the sensing threshold is very acidic (very

small IpH for pH = 3), in comparison with native responses (Fig-

ure S1C). We found that when the balance between CDA and

CDI was appropriately tuned, even though the initial acid

response (the first peak) might be small, the subsequent ICE

and resulted spikes (the second peak) could offer substantial

signal amplifications (gain factor of GpH: 13.9 ± 2.6, n = 12) (Fig-

ure 6C). Ca2+ spikes here should be directly triggered by Ca2+

influx via IpH other than prior Ca2+ exposure, since Tp latency

associated with DpH was significantly shorter (p < 0.001) than

that with D[Ca2+]o. ICE amplification can make striking differ-

ences in acid sensitivity for the same channel as demonstrated

by mPKD2-L1_DEF1-EF2 (Figure 6D). Upon acid (pH = 3) with-

drawal in 0 [Ca2+]o, only small IpH can be observed from the

mutant channel, similar to WT mPKD2-L1; in contrast, under

the same conditions except for [Ca2+]o changed to 2 mM, sur-

prisingly large IpH responses were elicited through ICE-mediated

Ca2+ spikes, more clearly evidenced as the second peaks in

some traces. Ca2+ sensitized channels (but not the mutant of
ell Reports 13, 798–811, October 27, 2015 ª2015 The Authors 803
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Figure 4. EF Hands Affect CDA of Ca2+

Spikes

(A) Speed of rising phase with different [Ca2+]o. ICa
traces were normalized and compared for 100 and

10 mM [Ca2+]o exposure (left). Statistical summary

(right): trwith 100mM [Ca2+]o (0.53 ± 0.03 s, n = 49),

significantly different from tr with 10 mM [Ca2+]o
(1.43 ± 0.18 s, n = 12) (mean ± SEM, ***p < 0.001).

(B) Homology modeling for EF hands of PKD2-L1.

The homology structure was predicated by

computational modeling, based on the alignment

of EF-hand sequences from CaM, PKD2, and

PKD2-L1 of mouse and/or human. The EF hands

between two a-helixes are putative Ca2+-binding

loops.

(C) EF-hand deletions slowed down tr. ICa traces

from EF-hand mutants were normalized and

compared. Statistical summary of tr values for

channel complexes: WT (1.43 ± 0.18 s, n = 12),

DEF1 (0.91 ± 0.08 s, n = 10), DEF2 (0.85 ± 0.13 s,

n = 11), and DEF1-EF2 (0.66 ± 0.10 s, n = 11)

(mean ± SEM, *p < 0.05, **p < 0.005). Experimental

conditions: Vm = �60 mV, 0.5 mM EGTA, and

10 mM [Ca2+]o.

(D) EF-hand deletions and Ca2+-spike induction.

EF-hand deletions unveiled ICa spikes with 2 mM

[Ca2+]o (lower left, DEF1-EF2 mutant), but no spike

with WT PKD2-L1/PKD1-L3 (upper left). Statistical

summary (right): DEF2 mutant (3.3 ± 1.2 nA, n = 6)

and DEF1-EF2 mutant (3.0 ± 1.2 nA, n = 5) (mean ±

SEM); in contrast, WT channels failed to elicit ICa
spikes (n = 24).

See also Figure S6.
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Figure 5. Ca2+ Dependence of Inactivation and Regulatory Roles of EF Hands

(A) Decay speed for Ca2+ spikes with different [Ca2+]o. ICa traces were normalized for comparisons: td for 100mM [Ca2+]o (0.66 ± 0.05 s, n = 49) and 10mM [Ca2+]o
(1.17 ± 0.15 s, n = 12) (mean ± SEM, **p < 0.005).

(B) Decay speed of IpH in different [Ca2+]o. Normalized IpH traces were compared by their td values: 100 mM [Ca2+]o (0.48 ± 0.07 s, n = 8), 2 mM [Ca2+]o (0.84 ±

0.09 s, n = 19), and 0 [Ca2+]o (5.56 ± 0.77 s, n = 21) (mean ± SEM, *p < 0.05).

(C) Decay speed of IpHwith different intracellular Ca2+ buffers. IpH traces with 0.5mMEGTA, 5mMEGTA, and 10mMBAPTA included in pipettes were compared,

all with 2 mM [Ca2+]o in the bath. Statistical summary of td values: 0.5 mM EGTA (0.84 ± 0.09 s, n = 19), 5 mM EGTA (1.95 ± 0.12 s, n = 86), and 10 mM BAPTA

(4.90 ± 1.04 s, n = 12) (mean ± SEM, ***p < 0.001).

(D–G) Inactivation when eliminating intra- and/or extra-cellular Ca2+. With 10 mM intracellular BAPTA, representative (left) and averaged (right) IpH from WT and

mutant channels, in 0 or 2 mM [Ca2+]o. In (E) and (F), channel inactivation was completely abolished for WT in 0 [Ca2+]o (12 out of 27 cells) and for D523-N525N

mutant in 2 mM [Ca2+]o (ten out of 33 cells). Averaged traces of (D)–(F) are summarized and compared in (G).

(H) EF-hand mutations modulated IpH decay. Normalized IpH traces (left) and statistical summary of td (right): WT (0.84 ± 0.09 s, n = 19), E613A (1.40 ± 0.31 s, n =

11), D643A (1.96 ± 0.14 s, n = 13), E613A-D643A or ED/AA (3.26 ± 0.84 s, n = 7),DEF1 (2.90 ± 0.67 s, n = 7), andDEF2 (3.01 ± 0.69 s, n = 5) (mean ±SEM, *p < 0.05,

***p < 0.001).

See also Figure S6.
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Figure 6. Manifestations of ICE with PKD2-L1 Variants and Acid Sensing

(A) Comparison for hPKD2-L1 splice variants by td values of IpH: hPKD2-L1_Kidney (0.62 ± 0.18 s, n = 11) versus hPKD2-L1_Liver (2.02 ± 0.49 s, n = 10) (mean ±

SEM, *p < 0.05). Other conditions: Vm = –60 mV, 2 mM [Ca2+]o and 0.5 mM EGTA.

(B) Upon 10 mM [Ca2+]o exposure, ICE spikes were evidenced from hPKD2-L1_Liver (7.2 ± 1.0 nA, n = 10) (mean ± SEM) but not from hPKD2-L1_Kidney (n = 38).

(C) ICE amplification of acid sensing with hPKD2-L1_Liver. For weak IpH (pH = 3), substantial amplifications with gain factor (GpH) of 13.9 ± 2.6 (n = 12) were

achieved by Ca2+ spikes subsequent to weak IpH. Tp associated with acid withdrawal was significantly shorter than that with standard ICa spikes (mean ± SEM,

***p < 0.001).

(D) ICE amplification of acid sensing with DEF1-EF2 mutant of mPKD2-L1.With 0 [Ca2+]o, weak acid of pH 3 barely produced recognizable IpH (0.59 ± 0.16 nA, n =

16), in contrast to pronounced IpH with 2 mM [Ca2+]o (5.8 ± 1.3 nA, n = 17) (mean ± SEM, ***p < 0.001).

See also Figure S7.
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B

Figure 7. Scheme of ICE: Ca2+ Feedback Regulations and Transient Signal Facilitations

(A) Foundational scheme of ICE. Besides other sources in the cell (e.g., bulk Ca2+ and Ca2+ via other channels), Ca2+ nanodomain as seen by the channel is mainly

created by Ca2+ influx through the pore of the channel and can be divided into twomajor subdomains (left): the inner core and the outer core. The inner core of the

Ca2+ nanodomain associated with ICE is composed of the pore and the immediate vicinity to inner mouth of the channel. This inner core nanodomain is featured

with ultrafast Ca2+ transients in ultrahigh concentrations and is resistant to Ca2+ buffers, even to a high dose of BAPTA. Ca2+ from the inner core is sufficient and

necessary for CDA, the positive feedbackwith relatively fast on rate. Beyond the core, theCa2+-buffer (EGTA/BAPTA) -sensitive outer core is dynamically affected

by core Ca2+ and other Ca2+ sources in the cell. Apparently opposed to CDA, Ca2+ also negatively regulates channels (CDI) with slower on rate than CDA. CDI is

evidently mediated by Ca2+ core and also regulated by other sources of Ca2+ in the cell. EF hands of PKD2-L1 could facilitate ICE spikes once the EF hands are

impaired. For channels of transduction-only mode, only small and sometimes obscure responses are produced (Figure S1); in contrast, for channels with CDI and

CDA appropriately tuned, stimuli at fast rate of change (D[Ca2+]o/DT,DVm/DT orDpH/DT) could be amplified (7- to 14-fold) and reshaped by ICE local to individual

channels.

(B) ICE spikes with putative mPKD2-L1_Liver channels. Rapid transient stimuli with physiological constraints were applied: D[Ca2+]o (from 0 to 2 mM), DVm (with

2 mM [Ca2+]o constantly present), and DpH (acid withdrawal from a pH of 3). mPKD2-L1_DEF2 channels (in complex with PKD1-L3) were capable of ICE spikes:

5.5 ± 1.7 nA (n = 5), 4. 4 ± 0.9 nA (n = 4), and 7. 7 ± 2.1 nA (n = 8), respectively (mean ± SEM).
D523N-D525N impermeable to Ca2+) to acid withdrawal (aver-

aged GpH: 9.85 in response to DpH). Similar augmentations for

stronger stimuli (pH = 2.5) were evidenced as double peaks

from hPKD2-L1_Liver or mPKD2-L1_D643A (Figure S7).

DISCUSSION

The results suggest a scheme for how ICE emerges in the

context of gating and signaling of the PKD2-L1/PKD1-L3

complex (Figure 7A). Ca2+ passing through the pore and

Ca2+ in the immediate vicinity of the cytosolic mouth of the
C

channel constitutes the inner core of a Ca2+ nanodomain

sensed by the channel. Ca2+ in the inner core, which is pre-

sent at mM concentrations (Tadross et al., 2013), is sufficient

and necessary for autonomous activation (CDA). Ca2+ influx

via neighboring CaV or CatCh (Figure S5) was unable to

trigger CDA of PKD2-L1/PKD1-L3, suggesting the Ca2+

sensor for this process could be deeply buried within the

pore structure and may not be accessible by Ca2+ diffusion

from other channels. It is imperative for future investigations

to look into molecular details regarding how Ca2+ in the

core activates the channel.
ell Reports 13, 798–811, October 27, 2015 ª2015 The Authors 807



PKD2-L1/PKD1-L3 is also subject to the negative feedback of

CDI, by global (outer core) and/or local (inner core) Ca2+ (Fig-

ure 7A). Other cytosolic Ca2+ sources such as integrated bulk

Ca2+ or intracellular channels potentially including PKD2-L1 itself

(Sharif-Naeini et al., 2009) also contribute to CDI. CDI is a com-

mon gating feature, shared by almost all TRP channels that

permeate Ca2+, that acts as a self-limiting mechanism to adjust

Ca2+ influx and Ca2+ homeostasis for the cell (Gordon-Shaag

et al., 2008). Mechanisms underlying local and global CDI are

of great interest, e.g., CaM-mediated CDI of voltage-gated

Ca2+ channels (Dick et al., 2008). We report here that PKD2-

L1/PKD1-L3 channels also exhibit both local and global forms

of CDI, although they are unlikely mediated by CaM (Figure S6).

EF hands participate at least in global CDI, and local CDI can be

eliminated only when Ca2+ influx is knocked out. Further molec-

ular details of CDI, especially of influx-operated CDI, await future

investigations.

Our data suggest that CDA should require higher [Ca2+] than

CDI, because CDI overwhelmingly persists under almost all

test conditions, whereas CDA often becomes absent once

Ca2+ or Ca2+ influx is reduced or impaired (e.g., Figures 2A,

3D, and 4D). Moreover, bulk cytosolic Ca2+ even at the resting

level causes CDI; in contrast, delivery of substantial amount of

Ca2+ to the channel by various ways, other than through Ca2+

influx of its own, does not trigger CDA. Meanwhile, considering

the critical time period right before spike induction, CDI has

slow td of about 5 s ormore (Figure 5B), in contrast tomuch faster

rising phase (CDA dominant) in Ca2+ spikes. Although future ef-

forts are needed to quantify the detailed gating kinetics, hints

from our data suggest a relatively faster transition to open states

via CDA and a slower on rate for CDI, together providing the time

window for Ca2+ spikes to possibly happen.

ICE is uniquely different from responses of other Ca2+-acti-

vated TRP channels (Hofmann et al., 2003; Launay et al., 2002;

Prawitt et al., 2003; Sura et al., 2012; Wang et al., 2008; Zurborg

et al., 2007) in biophysical profiles. First, ICE activation is strictly

local (Figures 1 and 3). ICE is still readily inducible when intracel-

lular Ca2+ is strongly buffered (Figure 1) and, using alternative

routes to deliver Ca2+ into the cell, is unable to reproduce ICE

(Figure S5). Second, ICE exhibits inward rectification (Figures 1

and 2). Third, the profile of ICE blockage is unconventional as

many known blockers of PKD2-L1 including Gd3+ and amiloride

derivatives (Ishimaru et al., 2006) all failed to block ICE spikes

(Figures 1 and S2). Fourth, PKD2-L1/PKD1-L3 inactivation is fully

dependent on Ca2+, as a rigorous form of CDI (Figure 5). Finally,

EF-hand motifs play significant roles in ICE (Figures 4 and 5). It

has been speculated that EF hands could mediate activation of

PKD (Petri et al., 2010) or PKD2-L1 channels (Ishimaru et al.,

2006; Li et al., 2002). Our data clearly demonstrate that EF hands

indirectly and negatively regulate CDA by way of CDI mediated

by EF hands.

Ca2+ influx via the pore of PKD2-L1/PKD1-L3 channels is

necessary and sufficient for CDA, and also important for full-

strength CDI. The importance of Ca2+ influx to PKD2-L1/PKD1-

L3 gating is a hallmark of ICE. Considering physiological stimuli

normally only induce limited Ca2+ entry, autonomous sensitiza-

tion to gain signal amplification would be a simple and efficient

strategy; localization of the CDA machinery to the inner core en-
808 Cell Reports 13, 798–811, October 27, 2015 ª2015 The Authors
sures high specificity of information encoding in space, modality,

and time. Meanwhile, the decay of ICE is dominated by the pro-

cess of CDI, highly sensitive to both Ca2+ influx and bulk Ca2+ in

the cell, to acquire maximum speed and strength to inactivate

channel activities, serving as a form of desensitization to stimuli.

Thus, ICE could serve as potential mechanisms for sensory

adaptation, a key physiological feature universal to diverse sen-

sory receptors or systems (Fain, 2003).

ICE spikes essentially turn PKD2-L1/PKD1-L3 channels into a

unique type of molecular transducers specific to transient

sensing/amplification, i.e., particularly sensitive to the onset/

offset of the stimuli (Figure 7A). Restrictions of stimuli in the

time rate of change (DStimuli/DT) have been evidenced from

multiple modalities: [Ca2+]o (Figure 2A), Vm (Figure 2B), and pH

(Inada et al., 2008). Physiological stimuli, which might be weaker

or slower than experimental conditions, would sequentially act

on a certain number of channels and locally induce Ca2+ entries,

leading to ICE events at the level of individual channels. Depend-

ing on various factors including Ca2+ conditions and functional

expression, such temporally isolated ICE might or might not

exhibit Ca2+ spike as we observed from ‘‘synchronized’’

ensemble channels at the whole-cell level, but the mechanisms

of action and physiological significance should stay true regard-

less of spike induction. Each channel could still autonomously

facilitate its own signaling with similar gain factors of GCa, GVm,

and GpH (about 7–14, Figures 1A, 2C, and 6C). ICE synchroniza-

tion and spike induction is mainly determined by the balance be-

tween CDI and CDA of the channels. The ‘‘speed dependence’’

of polymodal stimuli essentially constrains the kinetics of Ca2+

influx to ensure that CDA would win over CDI. Sensitivity to tran-

sient rather than steady-state signals/stimuli is a prominent

feature intrinsic to many sensory processes. We here present

an exemplar of such transient-signal amplification and also pro-

videmechanistic insights within the context of ‘‘timewindow’’ for

Ca2+ spikes. To consolidate above notions, we examined

putative natural splice variant of mPKD2-L1_Liver with physio-

logically relevant stimuli, and all exhibited Ca2+ spikes and signal

amplification, even under stringent conditions, e.g., 2 mM

[Ca2+]o (Figure 7B).

PKD2-L1/PKD1-L channel complexes are capable of sensing

polymodal stimuli, a common feature to TRP family (Voets et al.,

2005). ICE discovered herein highlights the notion that the re-

combinant system with overexpression under appropriate con-

ditions (e.g., Ca2+) should be an advantageous strategy to eluci-

date sensory transduction of candidate channels, many of which

still remain unidentified. Exciting directions include the putative

mechanosensitivity of cilia to the fluid flow (Delling et al., 2013;

Murakami et al., 2005; Nauli et al., 2003), the unidentifiedmecha-

noelectrical transducer in hair cells (Fettiplace, 2009), the high-

salt sensation in aversive taste (Oka et al., 2013), the potential

involvement in calcium taste (Tordoff, 2001), and the unexplored

role in Ca2+ signaling coupled with action potentials in cardiac

myocytes or neurons (Li et al., 2007; Orts Del’Immagine et al.,

2015). ICE might also involve in Ca2+ regulations and Ca2+

signaling related to PKD2-L1 pathophysiology (Barretto et al.,

2015; DeCaen et al., 2013; Delling et al., 2013; Desimone et al.,

2012; Djenoune et al., 2014; Huang et al., 2006; Orts-Del’Imma-

gine et al., 2014, 2015). PKD2-L1/PKD1-L3 with ICE could



segregate its Ca2+ signaling into divergent biological tasks by

active or transduction-amplification mode versus passive or

transduction-only mode (Figure 7A). Our work invites future in-

vestigations on whether and how ICE dysfunction would affect

Ca2+ signaling related to sensory functions and neural develop-

ment in PKD2-L1 expressing neurons, or Ca2+ homeostasis and

hedgehog signaling in primary cilia.

Dysregulated PKD channels with impaired Ca2+ signaling

would cause serious consequences as in ADPKD (Vassilev

et al., 2001), or left-right determination (Yoshiba et al., 2012).

TRPPs including PKD and PKD2-L1 share high homology in

sequence, structure, assembly, and functionality. PKD activities

exhibit a bell-shaped Ca2+ dependence (Cai et al., 2004; �Celi�c

et al., 2012; Koulen et al., 2002; Yoshiba et al., 2012), resembling

the dual Ca2+-dependent processes unveiled in ICE (both CDA

and CDI). It is thus attractive to speculate that PKD complex

might also utilize ICE-like mechanism to facilitate its transmem-

brane signaling. If proved, this would not only elucidate unre-

solved mechanisms underlying key functions of PKD, but also

promise cellularly robust, physiologically relevant, and drug-

screening-compatible assays aimed at potential therapeutics

for this prevalent but unconquered channelopathy (Zhou, 2009).

We present here a type of Ca2+ influx-operated Ca2+ spike-like

response or ICE from PKD2-L1/PKD1-L3 channel complex,

which serves to augment and reshape its transmembrane

signaling. ICE opens up promising avenues to understand the

gating, signaling, and pathophysiology of PKD2-L1/PKD1-L3;

meanwhile, as a mode of action, such autonomous ICE is ex-

pected to expand onto other channels and other modalities (Del-

mas, 2005; Yu and Catterall, 2004).

EXPERIMENTAL PROCEDURES

Molecular Biology

TRPP3 and PKD1-L3 of Mus musculus (mPKD2-L1 [GenBank: A2A259];

mPKD1-L3 [GenBank: AY164486]) were provided by Dr. H. Matsunami

(Duke University). TRPP3 of Homo sapiens (hPKD2-L1 [GenBank:

NM_016112]) were from Drs. Yong Yu (St. John’s University) and Dominic

Norris (Medical Research Council). CatCh was subcloned from ChR2

(Dr. Karl Deisseroth, Stanford University). Point mutations related to the pore

domain or EF hands were achieved by QuikChange Lightning Site-Directed

Mutagenesis Kit (Agilent Technologies). All segments subject to PCR or Quik-

Change were verified by sequencing. Details about cDNA constructs and mo-

lecular biology are provided in Supplemental Experimental Procedures.

Transfection of cDNA Constructs

HEK293 or CHO cells with recombinant channels were prepared according to

established protocols (Liu et al., 2010). Additional cDNA constructs were

applied when necessary, including GCaMP3 (from Drs. Minmin Luo and Sen

Song, Tsinghua University), CaV2.2 and CaM or CaM1234 (from Dr. David

Yue, Johns Hopkins University), and CatCh. PKD2 and PKD1 of Homo sapiens

were generous gifts from Dr. Terry Watnick (Johns Hopkins University). PKD1-

L1 ofMusmusculus (mPKD1-L1 [GenBank: XM_126005]) were from Drs. Yong

Yu (St. John’s University) and Dominic Norris (Medical Research Council).

Patch-Clamp Electrophysiology

Electrodes were pulled and heat-polished, resulting in 1- to 3-MU resistances.

Whole-cell signals were acquired and analyzed by an Axopatch 200B amplifier

and the pCLAMP system (Molecular Devices). The rapid solution changer

RSC-200 (Bio-Logic) was used for brief applications of acid stimulus or rapid

exposure of high Ca2+. Bath solutions were perfused into a recording chamber

with Valve Commander ALA-VM4 (ALA Scientific Instruments). Relative
C

permeability of Ca2+ versus Na+ can be calculated from estimated reversal po-

tentials (Vrev, Ca and Vrev, Na) in extracellular solutions of Ca2+-based (Na+ free)

or Na+-based (Ca2+ free) during the spike phase (Hille, 2001; Yu et al., 2012):

PCa=PNa =
½Na+ �o
4½Ca2+ �o

e
F
RT ðVrev; Ca ­Vrev; NaÞ�e F

RT
Vrev;Ca + 1

�
:

Details about solutions and calculations are provided in Supplemental

Experimental Procedures.

Chemicals and Reagents

Chemical compounds including phenamil, capsaicin, GdCl3, and thapsigargin

were all purchased from Sigma-Aldrich. These compounds were dissolved in

DMSO or water at stock concentration (phenamil, capsaicin, and GdCl3:

10 mM; thapsigargin: 1 mM) and then diluted by bath/electrode solutions to

final working concentrations.

Fluorescence Ca2+ Imaging

Experiments were carried out in HEK293 cells expressing PKD1-L3, PKD2-L1

or their mutants, along with GCaMP3. Fluorescence images were acquired

with a Nikon Ti-S inverted microscope with Neo sCMOS CCD at a frame inter-

val of 1–5 s and analyzed with iQ2 software (Andor Technology).

Structure Modeling

For structure homologymodeling of EF hands frommPKD2-L1, we used online

website Swissmodeler (http://swissmodel.expasy.org/) and took the structure

of the EF-hand domain of hPKD2 from Protein Data Bank (PDB: 2Y4Q) as the

template. PyMOL was used for superimposition and inspection of the struc-

tures (DeLano Scientific).

Data Analysis and Statistics

Data were analyzed in Clampfit (Molecular Devices), Origin software (Origin-

Lab), and Excel (Microsoft). SEM andStudent’s t test (two-tailed, criteria of sig-

nificance: *p<0.05; **p<0.01; or ***p<0.001)werecalculatedwhenapplicable.
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