Double Youden rectangles an update with examples of size 5×11

D.A. Preece
Institute of Mathematics and Statistics, Cornwallis Building, The University, Canterbury, Kent CT2 7NF, UK

Received 12 July 1991
Revised 25 October 1991

Abstract

The literature of double Youden rectangles (DYRs) is reviewed, to indicate what is known about their existence and construction. The discovery is reported of some 5×11 DYRs and of some similarly generated 6×11 DYRs.

1. Introduction

As defined by Bailey [1, p. 407, a double Youden rectangle (DYR) of size $k \times v$ is an arrangement of $k v$ ordered pairs x, y in k rows and v columns $(k<v)$ such that:
(i) each value x is drawn from a set S of v elements,
(ii) each value y is drawn from a set T of k elements,
(iii) each element from S occurs exactly once in each row and no more than once per column,
(iv) each element from T occurs exactly once in each column and either n or $n+1$ times in each row, where n is the integral part of v / k,
(v) each element from S is paired exactly once with each element from T,
(vi) each pair of elements from S occurs together in exactly λ columns, where $\lambda=k(k-1) /(v-1)$, i.e. the sets of elements of S in the columns are the blocks of a symmetric balanced incomplete block design (SBIBD, also commonly known as a symmetric 2-design) with parameters $\{v, k, \lambda\}$,
(vii) if n occurrences of each element from T are removed from each row, leaving $m=v-n k$ elements from T in each row, then (a) the remaining sets of m elements of

[^0]T in the rows are the blocks of a SBIBD with parameters $\{k, m, \mu\}$ where $\mu=m(m-1) /(k-1)$, or else (b) $m=1$.

If the elements of T are omitted from a DYR, the remaining rectangular arrangement of elements from S is what is commonly but mislcadingly called a 'Youden square' (see e.g. [15]). The elements within the blocks of any SBIBD can be reordered to produce a Youden square [20].

There are well-known tight restrictions on the pairs of values v, k for which an SBIBD can exist. The restrictions are perforce even tighter for the existence of DYRs. For example, there are 3 SBIBDs with $v=16, k=6$; however, with $n=$ (integral part of $v / k)=2$ and $m=v-n k=4$, the ratio $\mu=m(m-1) /(k-1)$ is not equal to an integer, so condition (vii) above cannot be met for $v=16, k=6$. Even for parameter-sets $\{v, k, \lambda, \mu\}$ for which SBIBDs with parameters $\{v, k, \lambda\}$ and $\{k, m, \mu\}$ are known to exist, no DYR may yet have been found. Indeed, notwithstanding the merit of DYRs as experimental designs with a particularly simple form of statistical analysis, and notwithstanding their merit for constructing other valuable experimental designs [2], their discovery and enumeration have proceeded slowly since Clarke [4] gave the first DYRs in 1963. The present paper reviews progress to date, and reports the finding of DYRs of size 5×11. First, however, the concepts of 'transformation set' and 'species' of DYRs must be introduced.

2. Transformation sets and species of DYRs

Consider the 4×5 DYR (2.1), where $S=\{A, B, C, D, E\}$ and $T=\{1,2,3,4\}$ and where element i from T is duplicated in row i :

$E 1$	$C 3$	$D 4$	$B 2$	$A 1$
$B 3$	$D 1$	$E 2$	$A 4$	$C 2$
$C 4$	$A 2$	$B 1$	$E 3$	$D 3$
$D 2$	$E 4$	$A 3$	$C 1$	$B 4$

This DYR can be rewritten as (2.2), as follows:

$$
\left[\begin{array}{ccccc}
- & 32 & 43 & 24 & 11 \tag{2.2}\\
23 & - & 31 & 12 & 44 \\
34 & 13 & - & 41 & 22 \\
42 & 21 & 14 & - & 33 \\
11 & 44 & 22 & 33 & -
\end{array}\right]
$$

To obtain (2.2) from (2.1), replace each entry from column $j(=1,2,3,4,5)$ of (2.1) by an entry in column j of (2.2) as follows: replace each entry containing A by an entry in row 1 of (2.2), each entry containing B by an entry in row 2 , and so on; when each replacement is made, replace the letter from the original entry by the number ($=1,2,3$ or 4) of the row containing the original entry. The array (2.2) is simply the incidence
matrix of the SBIBD from condition (vi) for a DYR with $k=4$ and $v=5$, except that each entry 1 from the incidence matrix has been replaced by an ordered pair z, y where each value z or y is drawn from a set of $k=4$ elements. An array similar to (2.2) can be obtained similarly for any DYR, and will be called the 'square incidence array' of the DYR.

The sets of rows and of columns of a DYR can be denoted by P and Q, respectively. Then P, Q, S and T can be described as the four 'constraints' (or 'factors') of the DYR. The v rows and v columns of square incidence arrays such as (2.2) pertain to constraints S and Q, respectively, whereas the entries z and y pertain to P and T, respectively. The four constraints of a DYR are analogous to the three constraints R (rows), C (columns) and L (letters) of a Latin square [10].

The properties of a SBIBD clearly imply that, if W is the square incidence array for a DYR X, then
(i) the transpose of W about its main diagonal is the square incidence array for a DYR ${ }^{*} X$, and
(ii) changing the order of all the ordered pairs z, y in W gives the square incidence array for a DYR X^{*}.
Thus, given a DYR X, we have four 'adjugate' DYRs to consider, namely $X,{ }^{*} X, X^{*}$ and ${ }^{*} X^{*}={ }^{*}\left(X^{*}\right)=\left({ }^{*} X\right)^{*}$. Here, ${ }^{*} X$ is obtained from X by interchanging the roles of the constraints S and Q, whereas X^{*} is obtained by interchanging the roles of P and T. Thus, the relationship of adjugacy here is like that for Latin squares [10, p. 272], the difference being that, for a Latin square, the roles of any two of the constraints R, C and L can be interchanged to give six Latin squares that are adjugate to one another.

By analogy with a classic definition for Latin squares (see [6] and [10, p. 272]), two DYRs may be said to belong to the same 'transformation set' (or 'isotopy class') if one can be obtained from the other by a combination of some or all of the following operations:
(i) permuting the rows P,
(ii) permuting the columns Q,
(iii) permuting the elements of S.
(iv) permuting the elements of T.

If two DYRs X and Y come from the same transformation set, we shall describe them as 'equivalent' and we shall write $X \sim Y$. The transformation set containing a DYR X may or may not contain ${ }^{*} X, X^{*}$, or ${ }^{*} X^{*}$; indeed, prima facie, we may have any of the following situations:
(a) $X \sim^{*} X \sim X^{*} \sim^{*} X^{*}$;
(b) $X \sim^{*} X$ and $X^{*} \sim^{*} X^{*}$, but X not equivalent to X^{*};
(c) $X \sim X^{*}$ and ${ }^{*} X \sim^{*} X^{*}$, but X not equivalent to ${ }^{*} X$;
(d) $X \sim^{*} X^{*}$ and ${ }^{*} X \sim X^{*}$, but X not equivalent to ${ }^{*} X$;
(e) no two of $X, * X, X^{*}$ and ${ }^{*} X^{*}$ equivalent.

Thus, the four DYRs $X,{ }^{*} X, X^{*}$ and ${ }^{*} X^{*}$ may be comprised within 1,2 or 4 transformation sets. Again by analogy with a definition for Latin squares [10, p. 272], these

1,2 or 4 transformation sets may be said to constitute a 'species' (or 'main class') of DYRs.

If X is the DYR (2.1), its square incidence array (2.2) shows at once that $X={ }^{*} X^{*}$ and * $X=X^{*}$. To show further that $X \sim X^{*}$, change the order of all the ordered pairs in (2.2) and then, in the resultant square incidence array,
(i) interchange rows 3 and 4,
(ii) interchange columns 3 and 4,
(iii) interchange the values 2 and 3 of z in the entries z, y,
(iv) interchange the values 2 and 3 of y in the entries z, y.

Thus, the DYR (2.1) belongs to a species of DYRs that comprises just a single transformation set.

3. Review of known DYRs

In 1963, Clarke [4, p. 98] gave a 5×6 DYR obtained by trial and error for use as the design of an orchard experiment. He also showed [4, p. 99] that there is no 2×3 or 3×4 DYR, and he gave a general method [4, Section 2] for obtaining a $k \times(k+1)$ DYR for any value of k such that there are at least three mutually orthogonal $k \times k$ Latin squares. Preece [11, Section 4.1] gave further 4×5 and 5×6 DYRs. Hedayat et al. [8] constructed $k \times(k+1)$ DYRs for any $k>3$ for which there is a $k \times k$ Graeco-Latin square. The gap remaining at $k=6$ was filled by Preece [12] with a 6×7 DYR that is implicit in work by Freeman [7]. Christofi [3] has enumerated $k \times(k+1)$ DYRs for $k=4$ and 5 and has classified them into transformation sets and species.

In 1982, Preece [14] gave a 4×13 DYR. Its square incidence array can be written as in Fig. 1, where each of its sets P and T is $\{0,1,2,3\}$ and where each element of P occurs 4 times with the corresponding element of T and 3 times with each other element from T. (The rows and columns in Fig. 1 are ordered more helpfully than in the original paper.) Within each 1×3 or 3×1 subarray bounded by horizontal and vertical lines in Fig. 1, each pair z, y is obtained from the previous pair by use of the cyclic permutation (123); within each 3×3 subarray, this permutation is used similarly on the diagonal and on broken diagonals parallel to it, the elements 0 from P and T being invariant. With the 4×13 DYR denoted by X, Fig. 1 shows at once that $X={ }^{*} X^{*}$ and ${ }^{*} X=X^{*}$; however, X^{*} is not equivalent to X, so X comes from a species containing two transformation sets.

All other known DYRs are of sizes $p \times(2 p+1)$ and $(p+1) \times(2 p+1)$ where p is an odd prime. In 1966, Preece [11, Section 4.2] showed that 3×7 DYRs do not exist. But in 1967, Clarke [5] produced some 4×7 DYRs that belong to more than one species. (Clarke himself used the term 'species' for Youden squares, not DYRs.)

In 1971, Preece [12] published some 7×15 DYRs and indicated that similar $p \times(2 p+1)$ DYRs can be generated using cycles of degree p (just as the above $4 \times 13 \mathrm{DYR}$ is generated using cycles of degree 3) for all prime p of the form $4 q-1$ where q is an integer >2. However, the formal general methods of construction

Fig. 1. Square incidence array for 4×13 double Youden rectangle.
have only now been supplied by Vowden [21]. For each value of p, there are Vowden-Preece designs based on each of three different (i..e. nonisomorphic) SBIBDs with parameters $\{2 p+1, p,(p-1) / 2\}$; one of these three is self-dual and the other two are the duals of one another. Clearly, if X is a $k \times v$ DYR based on a non-self-dual SBIBD with v blocks and k elements per block, X cannot be equivalent to ${ }^{*} X$, and so X must come from a species containing 2 or 4 transformation sets of DYRs.

Very many species of 7×15 DYRs based on the self-dual SBIBD with parameters $\{15,7,3\}$ can be generated using cycles of degree 7 [17]. A species containing 4 transformation sets of 8×15 DYRs has also been found, by trial and error [18]; again the designs can be generated using cycles of degree 7 , but no generalisation of the construction suggests itself for larger DYRs of size $(p+1) \times(2 p+1)$.

DYRs of sizes $p \times(2 p+1)$ and $(p+1) \times(2 p+1)$, with p of the form $4 q+1$ where q is a positive integer, are known only for $p=5$. Very many 6×11 DYRs can be generated using cycles of degree 5 [19]; an example was given by Preece [16] in 1991. However, Preece [13] reported in 1976 that no 5×11 DYRs can be generated using cycles of degree 5. This left no obvious method - other than trial and error - for generating a 5×11 DYR. But further consideration of the automorphisms of the SBIBD with parameters $\{11,5,2\}$ has now yielded some 5×11 DYRs, of which (3.1) is an example (the primes in which will be explained later):

$B 1$	$' C 1$	$' F 2$	$H 5$	$J 2$	$\prime I 1$	$K 3$	$A 4$	$G 4$	$D 5$	$E 3$
$D 2$	$K 2$	$H 4$	$G 1$	$F 3$	$J 5$	$E 1$	$B 3$	$A 2$	$C 4$	$I 5$
$J 3$	$G 3$	$D 1$	$E 2$	$I 4$	$K 4$	$A 5$	$F 1$	$B 5$	$H 3$	$C 2$
$E 5$	$' F 5$	$' A 3$	$B 4$	$H 1$	$' G 2$	$J 4$	$' I 2$	$C 3$	$K 1$	$D 4$
$F 4$	$E 4$	$G 5$	$I 3$	$C 5$	$D 3$	$H 2$	$K 5$	$J 1$	$B 2$	$A 1$
a	b	c	d	e	f	g	h	i	j	k

Fig. 2. Square incidence array for the 5×11 double Youden rectangle (3.1), but with the elements of Q and S reordered as indicated.

Fig. 3. Square incidence array for a 6×11 double Youden rectangle.

In (3.1), the columns a, b, \ldots, k have been ordered so that the set of capital letters in any column can be obtained from the set in the previous column by using the cyclic permutation (ABCDEFGHIJK) of degree 11. But (3.1) is based on cycles of degree 3, as its square incidence array shows in Fig. 2, where each of the sets P and T is taken as $\{1,2,3,4,5\}$, where each element of P occurs 3 times with the corresponding element of T and twice with each other member from T, and where the cyclic permutation (123) can be used as in Fig. 1.

If X_{1} denotes the DYR (3.1), then a DYR X_{2} from a different 5×11 species can be obtained by swapping E and F in the bottom left-hand 2×2 corner of (3.1) to give (3.2)
as follows:

$B 1$	$' C 1$	$' F 2$	$H 5$	$' J 2$	$I 1$	$K 3$	$A 4$	$' G 4$	$D 5$	$E 3$
$D 2$	$K 2$	$H 4$	$G 1$	$F 3$	$J 5$	$E 1$	$B 3$	$A 2$	$C 4$	$I 5$
$J 3$	$G 3$	$D 1$	$E 2$	$I 4$	$K 4$	$A 5$	$F 1$	$B 5$	$H 3$	$C 2$
$F 5$	$E 5$	$A 3$	$B 4$	$H 1$	$G 2$	$J 4$	$I 2$	$C 3$	$K 1$	$D 4$
$E 4$	$' F 4$	$' G 5$	$I 3$	$' C 5$	$D 3$	$H 2$	$K 5$	$' J 1$	$B 2$	$A 1$

X_{i} is not equivalent to ${ }^{*} X_{i}(i=1,2)$, but $X_{i} \sim X_{i}^{*}$ and ${ }^{*} X_{i} \sim^{*} X_{i}{ }^{*}$, so each of the two species in question comprises two transformation sets. The salient distinction

Table 1
The extent of present knowledge of DYRs with $k<v-1$ and $k<13$ (Nd denotes the number of nonisomorphic SBIBDs with parameters $\{v, k, \lambda\}$).

$k \times v$	λ	Nd	Whether μ is integral	Whether DYRs exist; references
3×7	1	1	Yes	No; [11]
4×13	1	1	Yes	Yes; [14]
4×7	2	1	Yes	Yes; [5, 16]
5×21	1	1	Yes	?
5×11	2	1	Yes	Yes; Section 3 of present paper
6×31	1	1	Yes	?
6×16	2	3	No	No
6×11	3	1	Yes	Yes; [16,19] and Section 3 above
7×43	1	0	Yes	No
7×22	2	0	Yes	No
7×15	3	5	Yes	Yes; [12, 17, 21]
8×57	1	1	Yes	?
8×29	2	0	No	No
8×15	4	5	Yes	Yes; [18]
9×73	1	1	Yes	?
9×37	2	4	Yes	?
9×25	3	78	No	No
9×19	4	6	Yes	?
9×13	6	1	No	No
10×91	1	4	Yes	?
10×46	2	0	No	No
10×31	3	$\geqslant 38$	Yes	?
10×19	5	6	Yes	?
10×16	6	3	No	No
11×111	1	0	Yes	No
11×56	2	$\geqslant 5$	Yes	?
11×23	5	1103	Yes	Yes; [12, 21]
12×133	1	$\geqslant 1$	Yes	?
12×67	2	0	No	No
12×45	3	$\geqslant 2649$	No	No
12×34	4	0	No	No
12×23	6	1103	Yes	?

between the two species is that a member of the first contains three 2×5 Latin rectangles in the Youden square, whereas a member of the second contains three 2×4 Latin rectangles in the Youden square; in each of the DYRs (3.1) and (3.2), the position of one such Latin rectangle is indicated by the primes.

Discovery of these 5×11 DYRs with cycles of degree 3 soon led to the discovery of 6×11 DYRs with cycles of degree 3 . The square incidence array of one of these DYRs is in Fig. 3, where each of the sets P and T is taken as $\{1,2,3,4,5,6\}$, where each element of P occurs once with the corresponding element of T and twice with each other member from T, and where the cycles use the permutation (123)(456). The species containing this 6×11 DYR comprises four transformation sets.

Present knowledge of $k \times v$ DYRs with $k<v-1$ and $k<13$ is summarized in Table 1, which draws attention to 12 parameter-sets for which the existence of DYRs has been neither disproved nor established. Subject to the restriction $k<\min \{v-1,13\}$, Table 1 covers all parameter-sets $\{v, k, \lambda\}$ for which λ is an integer; the parameter sets thus include some for which there is known to be no SBIBD with parameters $\{v, k, \lambda\}$. For Table 1, the values of Nd , the number of non-isomorphic SBIBDs with parameters $\{v, k, \lambda\}$, were taken from Mathon and Rosa [9].

All known DYRs have $m=1$ or $m=k-1$. We know of no parameter-set $\{v, k, \lambda\}$ for which a $k \times v$ double Youden rectangle could exist that had $m \neq 1$ or $k-1$.

References

[1] R.A. Bailey, Designs: mappings between structured sets, in: J. Siemons, ed., Surveys in Combinatorics (Cambridge Univ. Press, Cambridge, 1989) 22-51.
[2] R.A. Bailey and H.D. Patterson, A note on the construction of row-and-column designs with two replicates, J. Roy. Statist. Soc. B 53 (1991) 645-648.
「31 C. Christofi, Enumerating non-isomorphic 4×5 and 5×6 double Youden rectangles, Discrete Math. 125 (this Vol.) (1994) 129-135.
[4] G.M. Clarke, A second set of treatments in a Youden square design, Biometrics 19 (1963) 98-104.
[5] G.M. Clarke, Four-way balanced designs based on Youden squares with 5, 6 or 7 treatments, Biometrics 23 (1967) 803-812.
[6] R.A. Fisher and F. Yates, The 6×6 Latin squares, Proc. Cambridge Philosoph. Soc. 30 (1934) 492-507.
[7] G.H. Freeman, Some non-orthogonal partitions of $4 \times 4,5 \times 5$ and 6×6 Latin squares, Ann. Math. Statist. 37 (1966) 666-681.
[8] A. Hedayat, E.T. Parker and W.T. Federer, The existence and construction of two families of designs for two successive treatments, Biometrika 57 (1970) 351-355.
[9] R. Mathon and A. Rosa, Tables of parameters of BIBDs with $r \leqslant 41$ including existence, enumeration and resolvability results: an update, Ars Combin. 30 (1990) 65-96.
[10] H.W. Norton. The 7×7 squares, Ann. Eugenics 9 (1939) 269-307.
[11] D.A. Preece, Some row and column designs for two sets of treatments, Biometrics 22 (1966) 1-25.
[12] D.A. Preece, Some new balanced row-and-column designs for two non-interacting sets of treatments, Biometrics 27 (1971) 426-430.
[13] D.A. Preece, Some designs based on 11×5 Youden 'squares', Utilitas Math. 9 (1976) 139-146.
[14] D.A. Preece, Some partly cyclic 13×4 Youden 'squares' and a balanced arrangment for a pack of cards, Utilitas Math. 22 (1982) 255-263.
[15] D.A. Preece, Fifty years of Youden squares: a review, Bull. IMA 26 (1990) 65-75.
[16] D.A. Preece, Double Youden rectangles of size 6×11, Math. Sci. 16 (1991) 41-45.
[17] D.A. Preece, Enumeration of some 7×15 Youden squares and construction of some 7×15 double Youden rectangles, Utilitas Math. 41 (1992) 51-62.
[18] D.A. Preece, A set of double Youden rectangles of size 8×15, Ars Combin., to appear.
[19] D.A. Preece, Some 6×11 Youden squares and some 6×11 double Youden rectangles, unpublished.
[20] C.A.B. Smith and H.O. Hartley, The construction of Youden squares, J. Roy. Statist. Soc. B 10 (1948) 262-263.
[21] B.J. Vowden, Infinite series of double Youden rectangles, Discrete Math. 125 (this Vol.) (1994) 385-391.

[^0]: Correspondence to: D.A. Preece, Institute of Mathematics and Statistics, Cornwallis Building, The University, Canterbury, Kent CT2 7NF, UK.

