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a b s t r a c t

Tight-spans ofmetrics were first introduced by Isbell in 1964 and rediscovered and studied
by others, most notably by Dress in 1984, who gave them this name. Subsequently, it
has been found that tight-spans can be defined for more general maps, such as directed
metrics and distances, and more recently for diversities. In this paper, we show that all of
these tight-spans, as well as some related constructions, can be defined in terms of point
configurations. This provides a useful way in which to study these objects in a unified
and systematic way. We also show that by using point configurations we can recover
results concerning one-dimensional tight-spans for all of the maps we consider, as well as
extending these and other results tomore generalmaps such as symmetric and asymmetric
maps.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let V be a real vector space with some fixed basis B, and ⟨·, ·⟩ denote the standard scalar product with respect to B
(i.e., ⟨v, w⟩ =


b∈B λbµb if v =


b∈B λbb, w =


b∈B µbb). A point configuration A in V is a finite subset of V ; for

technical reasons we shall always assume that the affine hull of any such configuration has codimension 1. Given a function
w : A → R, we define the envelope of A with respect to w to be the polyhedron

Ew(A) = {x ∈ V : ⟨a, x⟩ ≥ −w for all a ∈ A} ,

and the tight-span Tw(A) of A to be the union of the bounded faces of Ew(A). Tight-spans of point configurations were
introduced in [15] for vertex sets of polytopes, as a tool for studying subdivisions of polytopes. Even so, they first appeared
several years ago in a somewhat different guise.

More specifically, let X be a finite set, V = RX be the vector space of functions X → R and, for x ∈ X , let ex denote the
elementary function assigning 1 to x and 0 to all other y ∈ X . In addition, let D be a metric on X , that is, a symmetric map on
X × X that vanishes on the diagonal and satisfies the triangle inequality. Then, as first remarked by Sturmfels and Yu [24],
by setting w(ex + ey) = −D(x, y), the tight-span Tw(Ā(X)) of Ā(X) = {ex + ey: x, y ∈ X, x ≠ y} is nothing other than the
injective hull of D that was first introduced by Isbell [20]. This object was subsequently rediscovered by Dress [8], who called
it the tight-span of D, as well as by Chrobak and Larmore [4,5].

Since its discovery, the tight-span of a metric on a finite set has been intensively studied (see, e.g., [10,12] for
overviews) and various related constructions have been introduced. These include tight-spans of directedmetrics and directed
distances [19], tight-spans of polytopes [15] andmore recently the tight-span of a so-called diversity [3]. Note that, in contrast
to the tight-span of a metric, it is not known whether or not all of these constructions are necessarily injective hulls
(i.e., injective objects in some appropriate category), but for simplicity we shall still refer to them as tight-spans. Here we
shall show that, as with metrics on finite sets, tight-spans of directed distances, diversities and some related maps can also
all be described in terms of point configurations. This provides a useful way to systematically study these objects.
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More specifically, after presenting some preliminary results concerning point configurations in Sections 2 and 3, in
Section 4 we shall show that the tight-span of a distance on X can be defined in terms of the configuration A(X) =

Ā(X) ∪ {2ex: x ∈ X} = {ex + ey: x, y ∈ X} (Proposition 4.1). For Y a finite set with X ∩ Y = ∅, let B̄(X, Y ) ⊆ RX∪Y

be the configuration of all points ex + ey with x ∈ X, y ∈ Y and B(X, Y ) = B̄(X, Y ) ∪ {2ex: x ∈ X ∪ Y }. We also show
that the tight-span of a directed metric (distance) can be defined in terms of B̄(X) = B̄(X, Y ) or B(X) = B(X, Y ) if Y is
considered to be a disjoint copy of X (Proposition 5.1). Using these point configurations, we will also extend this analysis to
include arbitrary symmetric and even asymmetric maps (Section 5).

In Sections 6 and 7we shall consider tight-spans of diversities, whichwere recently introduced in [3]. Using a relationship
that we shall derive between metrics and diversities, in Section 7 we show that the tight-span of a diversity on X can be
expressed in terms of the point configuration C(X) = {


i∈A ei: A ∈ P (X)} (the vertices of a cube). Intriguingly, we also

show that a very closely related object can also be associated with a diversity on X by considering the point configuration
A(P (X) \ {∅}) and that, for a special class of diversities (split system diversities) this object and the tight-span are in fact
the same (Theorem 7.4).

In addition to providing some new insights on tight-spans using point configurations, we shall also pay special attention
to one-dimensional tight-spans. These are important since, for example, they provide ways to generate phylogenetic trees
and, more generally, phylogenetic networks (see, e.g., [9,11]). Indeed, a one-dimensional tight-span associated with a point
configuration A and weight function w can also be regarded as a graph, with vertex set equal to that of Ew(A) and edge set
consisting of precisely those pairs of vertices that both lie in a one-dimensional face of Ew(A). Since the union of bounded
faces of an unbounded polyhedron is contractible (see, e.g., [18, Lemma 4.5]) it follows that a one-dimensional tight-span
considered as a graph is, in fact, a tree.

The archetypal characterisation for one-dimensional tight-spans was first observed by Dress for metrics [8]:

Theorem 1.1 (Tree Metric Theorem). The tight-span of a metric D on a finite set X is a tree if and only if D satisfies

D(x, y) + D(u, v) ≤ max{D(x, u) + D(y, v),D(x, v) + D(y, u)}

for any x, y, u, v ∈ X.

In this paper we will use point configurations to give various conditions for when tight-spans are trees in more general
settings (Theorems 4.5, 5.5 and 7.3). This allows us to recover and extend various theorems connecting tight-spans and trees
that arise in the literature. We conclude in Section 8 with a discussion on some possible future directions.

2. Tight-spans and splits of point configurations

In this section we shall recall some definitions and results concerning tight-spans and splits of general point
configurations, as well as giving some elementary properties of these objects that we shall use later. For details, we refer
the reader to [15] and [14, Section 2]. First we present a characterisation of the tight-span as the set of minimal elements
of the envelope of a configuration for configurations that satisfy certain conditions. These conditions are fulfilled by all of
the configurations that we shall consider. When tight-spans (of metric spaces, but also of diversities) are considered and
thought of in a non-polyhedral way, this characterisation is normally used as a definition instead.

Now, as in the introduction, let V be a finite-dimensional vector space with a fixed basis B. An element of v ∈ V is called
positive (with respect to B) if in its representation v =


b∈B λv

bbwith respect to B one has λv
b ≥ 0 for all b ∈ B. In particular,

we have a partial order ≼ on V defined by v ≼ v′ if and only if λv
b ≤ λv′

b for all b ∈ B (or, equivalently, v′
− v is positive).

For a subset A ⊆ V an element a ∈ A is calledminimal if a ≼ a′ implies a = a′ for all a′
∈ A. The set A is called bounded from

below if there exists someM ∈ R such that λv
b ≥ M for all b ∈ B and v ∈ A.

Let now e ∈ N and ϕ : V → Re be a linear map and b ∈ Re. In general, for a polyhedron P = {x ∈ V : ϕ(x) ≥ b}, an
element x ∈ P is contained in a bounded face of P if and only if there does not exist some (non-trivial) r ∈ {x ∈ V : ϕ(x) ≥ 0}
(a ray of P) and some λ ∈ R>0 with x − λr ∈ P . Note that P is bounded from below if and only if all rays of P are positive.
We now give a characterisation of tight-spans using these concepts.

Lemma 2.1. Let A ⊆ V be a configuration of positive points. Then Tw(A) is a subset of the set of minimal elements of Ew(A).
If, additionally, Ew(A) is bounded from below, then Tw(A) equals the set of minimal elements of Ew(A).

Proof. Let x ∈ Tw(A) be non-minimal, that is, there exist b ∈ B and λ ∈ R>0 such that x − λb ∈ P . By positivity, we have
⟨a, b⟩ ≥ 0 for all a ∈ A and hence b is a ray of Ew(A) contradicting the assumption x ∈ Tw(A).

Conversely, let x ∈ Ew(A) \ Tw(A), r be a ray of Ew(A) and λ ∈ R>0 be such that x − λr ∈ Ew(A). Since Ew(A) is
bounded from below, r is positive and hence x − λr ≼ x, so x is not minimal. However, then we have x − λr

bb ∈ P which
implies that x is not minimal. �

Another simple but useful observation is the following:

Lemma 2.2. Let A ⊆ V be a point configuration, w : A → R a weight function, v ∈ V , and w′
= w + ⟨·, v⟩. Then

Tw(A) = Tw′(A) + v.
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Fig. 2.1. Two collections of subconfigurations of the five points {1, 2, 3, 4, 5}, as indicated by the triangles. The collection of subconfigurations on the left
is not a subdivision, as it violates (SD3): The intersection of the interior of convex hull of the edge {2, 4} (which is a face of the triangle A = {1, 2, 4}) and
the convex hull of the edge {4, 5} is non-empty. In contrast, the collection of subconfigurations on the right is a subdivision of {1, 2, 3, 4, 5}. It contains
four maximal faces (triangles) of cardinality 3 and eight edges of cardinality 2.

Proof. For all x ∈ V , we have

⟨a, x⟩ ≥ −w′(a) = −(w(a) + ⟨a, v⟩) ⇔ ⟨a, x + v⟩ ≥ −w for all a ∈ A.

Hence

Ew′(A) = {x ∈ V : ⟨a, x + v⟩ ≥ −w for all a ∈ A}

= {y − v ∈ V : ⟨a, y⟩ ≥ −w for all a ∈ A} = Ew(A) − v.

Obviously, this equation carries over to the unions of the bounded faces, that is, the tight-spans. �

Tight-spans of a point configuration A equipped with certain weight functions are closely related so-called regular
subdivisions of the configuration with respect to these weight functions, as we shall now recall. The convex hull of A is
denoted by convA and the relative interior of a set A ⊆ V is denoted by relintA. For a point configuration A we call F ⊆ A
a face of A if there exists a supporting hyperplane H of convA such that F = A ∩ H . An edge of A is a face of size 2. A
subdivision Σ of a point configuration A is a collection of subconfigurations of A satisfying the following three conditions
(see [6, Section 2.3]):

• (SD1) If F ∈ Σ and F̄ is a face of F , then F̄ ∈ Σ .
• (SD2) convA =


F∈Σ convF .

• (SD3) If F , F̄ ∈ Σ, F ≠ F ′, then relint(convF) ∩ relint(convF̄) = ∅.

In addition, a subdivision is called a triangulation if all faces are simplices, that is, configurations formed by the vertices of a
simplex. If A is a simplex the only possible subdivision of A is the trivial subdivision P (A) with sole maximal cell being A
itself. See Fig. 2.1 for some examples illustrating these concepts.

Now, given a weight function w : A → R, consider the lifted polyhedron:

Lw(A) = conv {(w(a), a): a ∈ A} + R≥0(1, 0) ⊆ R × V .

Then the regular subdivision Σw(A) of A with respect to w is obtained by taking the configurations {b ∈ A: (w(b), b) ∈ F}

for all lower faces F of Lw(A) (with respect to the first coordinate; by definition, these are exactly the bounded faces). So
the elements of Σw(A) are the projections of the bounded faces of Lw(A) to the last d coordinates. For more details see
[6, Chapter 5].

We can now state the relationship between tight-spans and regular subdivisions of point configurations:

Proposition 2.3 (Proposition 2.1 in [14]). The polyhedron Ew(A) is affinely equivalent to the polar dual of the polyhedron
Lw(A). Moreover, the face poset of Tw(A) is anti-isomorphic to the face poset of the interior lower faces (with respect to the first
coordinate) of Lw(A).

We shall not define all the notions of this proposition, but note that, as a consequence, the (inclusion) maximal faces of
the tight-span Tw(A) correspond to the (inclusion) minimal interior faces of Σw(A). Here, a face of Σw(A) is an interior
face if it is not entirely contained in the boundary of convA. In particular, the structure of Tw(A) determines the structure
of Σw(A) and vice versa.

We now consider a useful concept, a so-called split of a point configuration, that is useful for understanding the structure
of tight-spans of point configurations (see [15] for details on splits of polytopes and [14] for generalisations). A split T of a
point configuration A is a subdivision of A which has exactly two maximal faces denoted by T+ and T− (see e.g. Fig. 2.2).
Note that the affine hull of T+ ∩ T− is a hyperplane HT (in the affine hull of A), called the split hyperplane of T with respect
to A. Conversely, it follows from (SD2) and (SD3) that a hyperplane defines a split of A if and only if its intersection with the
(relative) interior of A is nontrivial and it does not separate the endpoints of any edge of A. It is straightforward to check
that a split T of a point configuration A is a regular subdivision of A. In particular, it follows that there is a lifting function
wT such that ΣwT (A) = T ; see [15, Lemma 3.5].
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Fig. 2.2. To the left a split T of a configuration of five points forming a pentagon together with its split hyperplane (line) HT . To the right a split of the point
configuration Ā(X) for |X | = 4 whose convex hull is an octahedron.

Now, a set T of splits of a point configuration A is called compatible if for all T1, T2 ∈ T the intersection of HT1 ∩HT2 with
the relative interior of convA is empty. The following observation characteriseswhen the tight-span of a point configuration
is a tree in terms of compatible splits, and will be the key to proving some of our results. It is a slight generalisation of
[15, Proposition 4.6].

Proposition 2.4. Let A be a point configuration and w : A → R a weight function. Then the tight-span Tw(A) is a tree if and
only if the subdivision Σw(A) is a common refinement of compatible splits of A.

Another important result concerning splits that we shall also use later is the so-called Split Decomposition Theorem;
see [15, Theorem 3.10] and [17, Theorem 2.2]. It states that each weight functionw inducing a subdivision Σw(A) of a point
configuration A can be uniquely decomposed in a certain special way into a sum of a ‘‘split prime’’ weight function plus a
sum of split weight functions. Here, we only need the following direct corollary of this fact:

Corollary 2.5. Let A be a point configuration and w : A → R a weight function such that Σw(A) is a common refinement of a
set T of compatible splits of A. Then there exists a function α : T → R>0 such that

w =


T∈T

α(T )wT .

3. Splits of sets and point configurations

A key observation used in [17] to relate the tight-span of a metric on X with the point configuration Ā(X) defined in the
introduction is that a bipartition of the set X corresponds to a split of the point configuration Ā(X) and vice versa. We now
explain how this fact leads to some further relationships between bipartitions of X and splits of Ā(X).

Let X be a finite set. A set {A, B}, with A, B ⊆ X two non-empty, disjoint subsets of X , is called a partial split of X , and a
pair (A, B) is called a directed partial split of X . If in addition A ∪ B = X , we call the bipartition {A, B} of X a split of X and
(A, B) a directed split of X . For a subset C ⊆ X a (partial) split {A, B} of X is said to split C if neither of the intersections A ∩ C
or B ∩ C is empty.

Now, two partial splits {A, B}, {C,D} of X are called compatible if one of the following four conditions is satisfied:

A ⊆ C and B ⊇ D,

A ⊆ D and B ⊇ C,

A ⊇ C and B ⊆ D,

A ⊇ D and B ⊆ C .

(3.1)

Note that this implies that there exist E ∈ {A, B} and F ∈ {C,D} such that E ∩ F = ∅, a fact which is often used to
define compatibility for splits (see, e.g., [23]). Two directed partial splits (A, B), (C,D) of X are called compatible if one of the
following four conditions is satisfied:

A ⊆ C and B ⊇ D,

A ⊆ X \ C and B ⊇ X \ D,

A ⊇ C and B ⊆ D,

X \ A ⊇ C and X \ B ⊆ D,

(3.2)

Note that Condition (3.2) implies Condition (3.1) and that Conditions (3.1) and (3.2) are equivalent for (directed) splits.
A set S of partial (directed) splits of X is called compatible if each two elements of S are compatible. Furthermore, a set S of
directed splits of X is called strongly compatible if there exists an ordering (A1, B1), . . . , (Al, Bl) of the elements of S such
that Ai ⊆ Ai+1 and Bi ⊇ Bi+1 for all 1 ≤ i < l.
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We now investigate the relation of these different kinds of compatibility with compatibility of splits of the point
configurations defined in the introduction.

First, we consider the point configuration A(X). Splits of this point configuration were first studied by Hirai [18,17].

Proposition 3.1 (Proposition 4.4 in [17]). Let X be a finite set. For a partial split {A, B} of X the hyperplane given by the equation
i∈A

f (i) =


i∈B

f (i)

defines a split of the point configuration A(X). Moreover, all splits of A(X) arise in this way.

Compatibility of splits of sets and of point configurations and can be related as follows:

Proposition 3.2 (Theorem 2.3 in [18]). A set S of partial splits of X is compatible if and only if {TS : S ∈ S} is a compatible set
of splits of A(X).

We now consider the point configurations B̄(X, Y ), first describing their splits.

Proposition 3.3. Let X and Y be two disjoint finite sets with |X | , |Y | ≥ 2 and A ( X, B ( Y be non-empty subsets of X and Y ,
respectively. Then the hyperplane given by

i∈A

f (i) =


j∈B

f (j) (3.3)

defines a split of the point configuration B̄(X, Y ). Moreover, all splits of B̄(X, Y ) arise in this way.

Note that the partial split of X obtained by taking the complements of A and B yields the same split of B̄(X, Y ) (but no
other split yields this split of B̄(X, Y )).
Proof. First we remark that for all non-empty A ( X, B ( Y the function f ∈ RX∪Y defined by

f (i) =



1
2|A|

, if i ∈ A,

1
2 |X \ A|

, if i ∈ X \ A,

1
2|B|

, if i ∈ B,

1
2 |Y \ B|

, if i ∈ Y \ B,

is in the interior of convB̄(X, Y ) since 0 < f (i) < 1 for all i ∈ X ∪Y and


i∈X∪Y f (i) = 2. It is also in the hyperplane defined
by Eq. (3.3), since


i∈A f (i) = 1,


i∈B f (i) = 1. Hence all those hyperplanes meet the interior of convB̄(X, Y ).

By the definition of B̄(X, Y ), two vertices u = (f1, f2), v = (g1, g2) ∈ RX
× RY of B̄(X, Y ) are connected by an edge if

and only if f1 = g1 or f2 = g2. So, by going from u to v along an edge, the value on at most one side of Eq. (3.3) changes by
at most 1. Since for all elements of B̄(X, Y ) all values occurring in Eq. (3.3) are integers, the corresponding hyperplane does
not cut an edge of B̄(X, Y ) and hence defines a split of B̄(X, Y ).

Now, let H = {f ∈ RX∪Y
:


i∈X∪Y αif (i) = 0} define a split of B̄(X, Y ) for some αi ∈ R. We can assume that the first

non-zero αi is equal to 1. However, since the matrix of vertices of a product of simplices is totally unimodular (i.e., all the
determinants of all square submatrices are in {0, 1, −1} [2]), all other non-zero αj have to be equal to ±1. Also, note that
the product of simplices convB̄(X, Y ) has |Y | facets that are isomorphic to |X |-dimensional simplices. The hyperplane H
has to meet at least one of these facets non-trivially. Since simplices have no splits, H has to define a face of this facet F . So
we can conclude that we cannot have αi = −αj for i, j ∈ X since H would then meet the interior of F . The only remaining
possibility for H is therefore Eq. (3.3) for arbitrary A and B. Since for A = ∅, B = ∅, A = X , or B = Y this hyperplane would
not intersect the relative interior of convB̄(X, Y ), the proof is complete. �

In view of the last result, a split of the point configuration B̄(X, Y ) is defined by two sets ∅ ≠ A ( X and ∅ ≠ B ( Y ,
and this representation is unique up to simultaneously taking the complements of A and B. Compatibility can now be
characterised as follows.

Proposition 3.4. Let T be a split of B̄(X, Y ) defined by A ( X and B ( Y , and U a split of B̄(X, Y ) defined by C ( X and D ( Y .
Then T and U are compatible if and only if one of the following conditions is satisfied:

A ⊆ C and B ⊇ D,

A ⊆ X \ C and B ⊇ Y \ D,

A ⊇ C and B ⊆ D, or
X \ A ⊇ C and Y \ B ⊆ D.

(3.4)
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Proof. We define the sets

A1 = A \ C, A2 = C \ A, A3 = A ∩ C, A4 = X \ (A ∪ C),

B1 = B \ D, B2 = D \ B, B3 = B ∩ D, B4 = Y \ (B ∪ D);

and set

Xi =


i∈Ai

f (i), Yi =


i∈Bi

f (i).

Then the hyperplanes for T and U are defined by

X1 + X3 = Y1 + Y3 and X2 + X3 = Y2 + Y3, (3.5)

respectively. If we subtract these two equations, we get

X1 − X2 = Y1 − Y2. (3.6)

We first prove that Condition (3.4) is sufficient for compatibility of T and U . So, suppose T and U are not compatible,
A ⊆ C , and D ⊆ B. This implies that there exists some x ∈ HT ∩ HU in the interior of convB̄(X, Y ) with X1 = Y2 = 0. From
this, Eq. (3.6) and the fact that B̄(X, Y ) ⊆ RX∪Y

≥0 , we can further conclude that X2 = Y1 = 0. So xi = 0 for all i ∈ A2 ∪ B1.
However, if xi = 0 for some i ∈ X ∪ Y , the point x would be contained in the boundary facet of convB̄(X, Y ) defined by
xi = 0. So A2 and B1 are empty, and hence T = U . The second case follows in a similar manner.

For the necessity, assume that (3.4) does not hold. This is equivalent to

A1 ≠ ∅ or B2 ≠ ∅, A3 ≠ ∅ or B4 ≠ ∅, A2 ≠ ∅ or B1 ≠ ∅, and A4 ≠ ∅ or B3 ≠ ∅. (3.7)

We now consider five possible cases, depending on the number of sets Aj, Bj which are empty. In each case we will give
a point x ∈ relint(convB̄(X, Y )) ∩ HS ∩ HT . This will be done by assigning values in the interval (0, 1) to all Xj, Yj for which
Aj, Bj, respectively, are non-empty such that Eq. (3.6) holds and


Xj =


Yj = 1. The explicit values of f ∈ RX∪Y are then

obtained by setting f (i) =
Xj
|Aj|

, f (i) =
Yj
|Bj|

, for i ∈ Aj, i ∈ Bj, respectively.

Case 1: None of the sets Aj, Bj is empty. Then we simply set Xj, Yj =
1
4 for all j ∈ {1, 2, 3, 4}.

Case 2: One of the sets Aj, Bj is empty. We assumewithout loss of generality that A1 = ∅. Then we set X3 =
1
2 , X4 = Y2 =

3
8 , Y1 = Y3 =

1
4 , and X2 = Y4 =

1
8 .

Case 3: Two of the sets Aj, Bj are empty. As in Case 2, we assume that one of these sets is A1. Using (3.7), and taking
into account that neither A, B, C,D nor their complements (in X and Y , respectively) can be empty, we get the following
possibilities:

• A1 = A2 = ∅: Set X3 = X4 =
1
2 and Yi =

1
4 for all i ∈ {1, 2, 3, 4}.

• A1 = B1 = ∅: Set X3 = Y3 =
1
2 and X2 = X4 = Y2 = Y4 =

1
4 .

• A1 = B3 = ∅: Set X4 = Y2 =
1
2 and X2 = X3 = Y1 = Y4 =

1
4 .

• A1 = B4 = ∅: Set X3 = Y2 =
1
2 and X2 = X4 = Y1 = Y3 =

1
4 .

Case 4: Three of the sets Aj, Bj are empty. We again assume that A1 is one of the sets. There remain three possibilities:

• A1 = A2 = B3 = ∅: Set X4 =
2
3 and X3 = Y1 = Y2 = Y4 =

1
3 .

• A1 = A2 = B4 = ∅: Set X3 =
2
3 and X4 = Y1 = Y2 = Y3 =

1
3 .

• A1 = B3 = B4 = ∅: Set Y2 =
2
3 and X2 = X3 = X4 = Y1 =

1
3 .

Case 5: Four of the sets Aj, Bj are empty. By assuming that A1 is one of them, this yields A1 = A2 = B3 = B4 = ∅. Set
X3 = X4 = Y1 = Y2 =

1
2 . �

Note that in the special case where Y is a disjoint copy of X , a directed partial split S = (A, B) of X gives rise to a split TS
of B̄(X), namely the one defined by A and B. In general, not all splits of B̄(X) arise in this way, since we assume that A and
B are disjoint. Proposition 3.4 then gives us the following.

Corollary 3.5. A collection S of directed partial splits of X is compatible if and only if {TS : S ∈ S} is a compatible set of splits for
B̄(X).

Note that a characterisation of the splits of the point configurationC(X) (the vertices of the cube) and their compatibility
is given in [13, Propositions 3.15 and 3.16]; we refrain from stating or proving it here since we will not use it later.
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4. Tight-spans of symmetric maps, distances and metrics

We begin by recalling some key definitions. A symmetric map D : X × X → R with D(x, x) = 0 for all x ∈ X and
D(x, y) ≥ 0 for all x, y ∈ X is called a distance (or dissimilarity map) on X . It is called ametric on X if it additionally satisfies
D(x, y) + D(y, z) ≥ D(x, y) for all x, y, z ∈ X (the triangle inequality).

Now, consider the vector space RX
= {f : X → R} of all functions X → R with the natural basis {ex: x ∈ X} where

ex ∈ RX denotes the function sending x to 1 and all other elements of X to 0. Then, the tight-span TD of a symmetric map
D : X × X → R is defined to be the set of all minimal elements of the polyhedron

PD =

f ∈ RX : f (x) + f (y) ≥ D(x, y) for all x, y ∈ X


(see [18, Section 2.3]). Note that ifD is ametric, then TD corresponds to the tight-span of themetricD as defined by Isbell [20]
and Dress [8].

Now, given a symmetric map D : X × X → R we define a weight function wD
: A(X) → R on the point configuration

A(X) via wD(ex + ey) = −D(x, y). The following proposition is the key to deriving the relation between tight-spans of
symmetric functions and tight-spans of the point configuration A(X). In the special case where D is a metric, this was the
observation of Sturmfels and Yu [24] mentioned in the introduction.

Proposition 4.1. Let D : X × X → R be a symmetric function. Then we have:

(a) PD = EwD(A(X)), and
(b) TD = TwD(A(X)).

Proof. (a) We have

PD = {f : X → R: f (x) + f (y) ≥ D(x, y) for all x, y ∈ X}

=

f : X → R: ⟨ex + ey, f ⟩ ≥ D(x, y) for all x, y ∈ X


=


f : X → R: ⟨a, f ⟩ ≥ −wD(a) for all a ∈ A(X)


= EwD(A(X)).

(b) Obviously, A(X) is positive and EwD(A(X)) is bounded from below since we have the inequalities 2ex ≥ −D(x, x) for all
x ∈ X . Thus, the claim follows from (a) and Lemma 2.1. �

Wewill now see that tight-spans of general symmetric maps and tight-spans of distances are essentially the same in the
sense that they only differ by a simple shift.

Proposition 4.2. Let D : X × X → R be a symmetric function, D′ defined via

D′(x, y) = D(x, y) −
1
2

(D(x, x) + D(y, y)) ,

and v : X → R defined by v(x) =
1
2D(x, x). Then TD = TD′ + v.

Proof. Our definitions imply that for a = ex + ey ∈ A(X), we have

wD′

(a) = −D(x, y) +
1
2

(D(x, x) + D(y, y)) = wD(a) + ⟨a, v⟩.

Hence the claim follows from Lemma 2.2. �

Obviously, for an arbitrary symmetric map D : X × X → R we have D′(x, x) = 0 for all x ∈ X . However, D′ is not
necessarily a distance, since D′ need not to be positive, even if D is. Even so, the following lemma shows that the negative
values of D can be essentially ignored when looking at the tight-span:

Lemma 4.3. Let D : X × Y → R be a symmetric function with D(x, x) = 0 for all x ∈ X, and D+ be defined by
D+(x, y) = max(0,D(x, y)) for all x, y ∈ X. Then TD = TD+

.

Proof. For two symmetric maps E, F : X → R with E ≥ F (pointwise) one directly sees that PE ⊆ PF , so PD+
⊆ PD. On the

other hand, for all f ∈ PD and x ∈ X , we have 2f (x) ≥ D(x, x) = 0, hence f (x) + f (y) ≥ 0 ≥ max(0,D(x, y)) = D+(x, y) for
all x, y ∈ X . This implies PD ⊆ PD+

. In consequence, we have PD = PD+
and hence TD = TD+

. �

So, by Proposition 4.2 and Lemma 4.3, we get:

Corollary 4.4. For any symmetric map D : X × X → R there exists a distance map (namely (D′)+ : X × X → R) and some
v ∈ RX such that TD = T(D′)+ + v.
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We now turn to one-dimensional tight-spans: Given a tree T = (V , E), an edge-length function α : E → R and a family
F = {Fx: x ∈ X} of subtrees of T , we can define a distance D on X by setting D(x, y) = min{DT (x, y): x ∈ Fx, y ∈ Fy}. A
distance arising in that way is called a distance between subtrees of a tree. Those distances can also be characterised in terms
of partial splits as follows. Given a partial split P = {A, B} of X , a corresponding distance on X is then defined by

dP(i, j) =


1, if i ∈ A, j ∈ B or i ∈ B, j ∈ A,
0, else, (4.1)

for all i, j ∈ X . Furthermore, for a set P of partial splits of X and a function α → R>0, we define d(P ,α) =


P∈P α(P)dP .
Using the relation between splits of the point configuration A(X) and partial splits of X (Propositions 3.1 and 3.2),

we obtain the following result characterising when the tight-span of a distance is a tree. This can also be inferred from
[18, Theorem 2.3] together with Proposition 4.1.

Theorem 4.5. Let D be a distance. Then the following are equivalent:
(a) The tight-span TwD(A(X)) is a tree.
(b) D is a distance of weights between subtrees of a tree.
(c) There exists a compatible set P of partial splits of X and α : P → R>0 such that D = d(P ,α).

5. Tight-spans of non-symmetric maps

Hirai and Koichi [19] introduced the concept of tight-spans of directed distances in order to study certain
multicommodity flow problems. In this section, we will show that these tight-spans can also be considered as tight-spans
of point configurations. We will also generalise these results to general non-symmetric maps.

Let X and Y be finite sets with X ∩ Y = ∅ and D : X × Y → R be an (arbitrary) map. We define the polyhedra
ΠD = {f : X ∪ Y → R: f (x) + f (y) ≥ D(x, y) for all x ∈ X, y ∈ Y } , and
PD = ΠD ∩ RX∪Y

≥0 .

We let ΘD and TD denote the sets of minimal elements of ΠD and PD, respectively, and we call the set TD the tight-span of D.
Now, recall that B̄(X, Y ) ⊆ RX∪Y is defined to be the configuration of all points ex + ey with x ∈ X, y ∈ Y and also that

B(X, Y ) = B̄(X, Y ) ∪ {2ex: x ∈ X ∪ Y }. Note that B(X, Y ), B̄(X, Y ) ⊆ B(X ∪ Y ) and that convB(X, Y ) is the simplex
conv{2ex: x ∈ X ∪ Y }, whereas all elements of B̄(X, Y ) are vertices of convB̄(X, Y ), which is the product of a (|X | − 1)- and
a (|Y | − 1)-dimensional simplex.

We now state an analogue of Proposition 4.1 for arbitrary maps D : X × Y → R (whose proof is similar and therefore
omitted). With such a map D associate the weight functions w̄D

: B̄(X, Y ) → R given by w̄D(ex + ey) = −D(x, y), x ∈

X, y ∈ Y and wD
: B(X, Y ) → R given by

wD(a) =


w̄D(a), if a = ex + ey, x ∈ X, y ∈ Y ,
0, else.

Proposition 5.1. Let D : X × Y → R. Then
(a) ΠD = Ew̄D(B̄(X, Y )),
(b) ΘD = Tw̄D(B̄(X, Y )),
(c) PD = EwD(B(X, Y )), and
(d) TD = TwD(B(X, Y )).

It was shown in [7, Lemma 22] that ΘD is piecewise-linear isomorphic to the tropical polytope (see, e.g., Develin and
Sturmfels [7]) with vertex set {(D(x, y))y∈Y : x ∈ X}. Similarly, using a proof like that of Lemma 4.3, we have:

Lemma 5.2. Let D : X × Y → R and D+ defined by D+(x, y) = max(0,D(x, y)) for all x ∈ X, y ∈ Y . Then TD = TD+
.

Of particular interest is the case where Y is a disjoint copy of X , that is, D is a (not necessarily symmetric) function from
X × X to R. We denote the two distinct copies of X by Xl and Xr and set Xd = Xl ∪ Xr . If in this case D ≥ 0 and D(x, x) = 0
for all x ∈ X , then D is called a directed distance; if D also satisfies the triangle inequality, it is called a directed metric. These
were considered by Hirai and Koichi [19]. In fact, our definitions of ΠD, ΘD, PD and TD generalise their definitions of these
objects to general maps.

As in the case of symmetric maps, it can be deduced from Lemma 2.2 that a map D : X × X → R can be transformed
into a map with D(x, x) = 0 for all x ∈ X by shifting it by a vector v ∈ RXd defined by v(x) = 1/2D(x, x) for x ∈ Xd (here x is
identified with its copy in X). Together with Lemma 5.2 this leads to the following corollary.

Corollary 5.3. For each map D : X × X → R there exists a directed distance D′ on X and some v ∈ RXd such that TD = TD′ + v.

With a directed distance D on X we associate a (symmetric) distance Du
: Xd × Xd → R≥0 given by setting

Du(x, y) =


D(x, y), if x ∈ Xl and y ∈ Xr or x ∈ Xr and y ∈ Xl,
0, else.
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It follows that PDu = PD and TDu = TD. In particular, it follows that tight-spans of undirected distances are just tight-spans
of certain special directed distances.

We no turn again to one-dimensional tight-spans. In [19], Hirai and Koichi give explicit conditions on D for when TD
and ΘD are trees. We now give new and (we feel) somewhat conceptually simpler proofs of these results using point
configurations. We begin by recalling some basic definitions from [19, Section 3].

An oriented tree Γ = (V (Γ ), E(Γ )) is a directed graph whose underlying undirected graph is a tree. For an oriented
tree Γ and an edge-length function α : E(Γ ) → R≥0, we define a directed distance DΓ ,α on V (Γ ) by setting DΓ ,α(x, y) =

e∈P⃗(x,y) α(e) for all x, y ∈ V (Γ ), where P⃗(x, y) is the set of all edges on the unique (undirected) path from x to y that are
directed from x to y. For A, B ⊆ V (Γ ) we set DΓ ,α(A, B) = min{DΓ ,α(a, b): a ∈ A, b ∈ B}. For an undirected distance
D : X × X → R and a family F = {Fx: x ∈ X} of subtrees of Γ , we say that (Γ , α, F ) is an oriented tree realisation of D if

D(x, y) = DΓ ,α(Fx, Fy) for all x, y ∈ X .

Now, let S = (A, B) be a directed partial split of X . We define a directed distance DS on X by setting

DS(x, y) =


1, if x ∈ A and y ∈ B,
0, else.

Note that DS is a directed metric if and only if S is a directed split. Also note that the oriented tree Γ consisting of a single
edge (v, w) with weight λ and

Fx =


{v} if x ∈ A,
{w} if x ∈ B,
Γ else,

for all x ∈ X , is an oriented tree realisation of DS .
Now, let D be an arbitrary directed distance with oriented tree realisation (Γ , α, F ). For each e = (a, b) ∈ E(Γ ) we

define a directed partial split Se = (Ae, Be) of X , where Ae is the set of all x ∈ X whose subtree Fx ∈ F is entirely contained
in the same connected component the forest obtained from Γ by deleting the edge e as a, and Be is defined in the same way
for b. It easily follows that D =


e∈E(Γ ) α(e)DSe .

Proposition 5.4. Let S be a set of directed partial splits, α : S → R>0 a function, and D the directed distance defined by

D =


S∈S

α(S)DS .

Then:

(a) D has an oriented tree realisation (Γ , α, F ) where each F ∈ F is a directed path if and only if S is compatible.
(b) D has an oriented tree realisation (Γ , α, F ) such that Γ is a directed path if and only if S is strongly compatible.

Proof. (a) Let e and f be two edges of Γ and Se and Sf the associated directed partial splits. We have to show that Se and
Sf are compatible. Suppose first that in any undirected path in Γ containing e and f these two edges are directed in the
same direction. (Since Γ is a tree, this is the case if there exists some undirected path with this property.) Then (possibly
after exchanging e and f ) we have Ae ⊆ Af and Bf ⊆ Be, which implies that Se and Sf are compatible by the first condition
of (3.2).

Now, suppose that in any undirected path in Γ containing e and f these two edges are directed in the different
directions. Because each F ∈ F is a directed path, this implies that there does not exist an F ∈ F that contains e as well
as f . Hence, we get (again after a possible exchange of e and f ) X \ Ae ⊆ Af and Be ⊆ X \ Bf , implying that Se and Sf
are compatible by the third condition of (3.2). On the other hand, given a compatible set of directed partial splits of X ,
we can construct a corresponding tree Γ with a family of subtrees F that are directed paths such that (Γ , α, F ) is an
oriented tree realisation of D.

(b) Follows directly from the definition. �

We now characterise directed distances whose tight-spans are trees.

Theorem 5.5 (Theorems 3.1 and 3.2 in [19]). Let D be a directed distance on X. Then:

(a) ΘD is a tree if and only if D has an oriented tree realisation (Γ , α, F ) such that each F ∈ F is a directed path.
(b) TD is a tree if and only if D has an oriented tree realisation (Γ , α, F ) such that Γ is a directed path.

Proof. (a) Let D be a directed distance on X such that D has on oriented tree realisation (Γ , α, F ) in which each F ∈ F is
a directed path. By Proposition 5.4(a), this implies that there exists a set S of directed partial splits of X such that

D =


S∈S

α(S)DS .
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For each S ∈ S and a ∈ B̄(X) we have

w̄DS (a) =


−1, if a = ex + ey and x ∈ A and y ∈ B,
0, else,

and so it immediately follows that w̄DS defines the split TS of B̄(X). By Corollary 3.5, the set {TS : S ∈ S} is a compatible
set of splits for B̄(X), and so the subdivision Σw̄D(B̄(X)) is a common refinement of compatible splits. Proposition 2.4
now implies that ΘD = Tw̄D(B̄(X)) is a tree.
Conversely, let D be a directed distance on X such that ΘD is a tree. By Proposition 2.4 there exists a compatible set T
of splits of B̄(X) such that Σw̄D(B̄(X)) is the common refinement of all splits in T . Since D is a directed distance, we
have wD(ex + ex) = 0 for all x ∈ X , which implies that each T ∈ T is defined by two disjoint subsets of X . Hence there
exists a directed partial split S with T = TS . Let S be the set of all such splits, which is compatible by Corollary 3.5. By
Corollary 2.5, there exists αS ∈ R≥0 such that w̄D

=


T∈T αSw
DS , so D =


S∈S αSDS and the claim now follows from

Proposition 5.4 (a).
(b) The splits of the point configuration B(X) are given by partial splits of the set Xd. However, given a directed distance D,

by definition, the value wD(ex + ey) can only be non-zero if x ∈ Xl and y ∈ Xr . This implies that the only possible partial
splits {A, B} of Xd that may occur are those with A ⊆ Xl and B ⊆ Xr (or vice versa) and A ∩ B = ∅ (where A and B are
considered as subsets of X). The splits of this type are in bijection with directed partial splits (A, B) of X .
Now, given two such directed partial splits (A, B), (C,D) of X , the corresponding splits of B(X) are compatible if and
only if

A ⊆ C and B ⊇ D, or A ⊇ C and B ⊆ D.

Proposition 5.4 (b) now implies the claim in a similar way as Proposition 5.4 (a) implies Part (a). �

In the case where D is a directed metric, that is, satisfies the triangle inequality, it is obvious that in each directed tree
realisation (Γ , α, F ) ofD all of the subtrees Fx are single vertices. In this special case, given a directed treeΓ , an edge length
function α and a map ϕ : X → V (Γ ), we call (Γ , α, ϕ) an oriented tree realisation of D if and only if (Γ , α, {ϕ(x): x ∈ X})
is an oriented tree realisation of D.

Corollary 5.6. Let D be a directed metric on X. Then we have:

(a) ΘD is a tree if and only if D has an oriented tree realisation.
(b) TD is a tree if and only if D has an oriented tree realisation (Γ , α, ϕ) such that Γ is a directed path.

Note that this result concerning oriented tree realisations is somewhat related to those presented in [21,22]. However it
differs since we take only one edge for each undirected edge of a tree rather than two.

6. Diversities as distances

For a finite set Y , we denote the powerset of Y by P (Y ) and let P ⋆(Y ) = P (Y ) \ {∅}. A diversity on Y is a function
δ : P (Y ) → R satisfying:

(D1) δ(A ∪ B) + δ(B ∪ C) ≥ δ(A ∪ C) for all A, C ∈ P (Y ) and B ∈ P ⋆(Y ), and
(D2) δ(A) = 0 for all A ∈ P (Y ) with |A| ≤ 1.

Diversities were introduced by Bryant and Tupper in [3].1 In this section, wewill show that a diversity can also be thought of
as a distance onP (Y ). This will allow us to apply the results in Section 4 to tight-spans of diversities whichwe shall consider
in the next section.

We first note two trivial properties of diversities; for a proof see [3, Proposition 2.1].

Lemma 6.1. Let δ be a diversity on Y and A, B ⊆ Y .

(a) If A ∩ B ≠ ∅, then δ(A) + δ(B) ≥ δ(A ∪ B).
(b) If A ⊆ B, then δ(A) ≤ δ(B).

Now, for an arbitrary symmetric map D : P ⋆(Y ) × P ⋆(Y ) → R, we define the following properties:

(A1) D(A, B) + D(B, C) ≥ D(A, C) for all A, B, C ∈ P ⋆(Y ), (triangle inequality)
(A2) D ({x}, {x}) = 0 for all x ∈ Y , and
(A3) D(A, B) =

1
2D(A ∪ B, A ∪ B) for all A, B ∈ P ⋆(Y ) with A ≠ B.

1 Note that Bryant and Tupper required δ(A) = 0 ⇐⇒ |A| ≤ 1 in (D2). In particular, our maps could be regarded as ‘‘pseudo-diversities’’, but for
simplicity we shall just call our maps diversities, too.
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Given a map δ : P (Y ) → R, let Dδ : P ⋆(Y ) × P ⋆(Y ) → R be given by

Dδ(A, B) =


2δ(A), if A = B,
δ(A ∪ B), else.

Obviously, Dδ is symmetric. Conversely, given a symmetric map D : P ⋆(Y ) × P ⋆(Y ) → R, we define the function
δ(D) : P (Y ) → R by setting δ(D)(A) =

1
2D(A, A) for A ∈ P ⋆(Y ) and δ(D)(∅) = 0.

Proposition 6.2. (a) Given an arbitrary function δ : P (Y ) → R, the map Dδ satisfies (A3). Moreover, if δ is a diversity, then Dδ

also satisfies (A1) and (A2).
(b) If D : P ⋆(Y ) × P ⋆(Y ) → R is a symmetric map fulfilling (A1)–(A3), then δ(D) is a diversity.
(c) Let δ : P (Y ) → R. Then δ(Dδ) = δ.
(d) Let D : P ⋆(Y ) × P ⋆(Y ) → R be a symmetric map. Then Dδ(D) = D if and only if (A3) holds.

Proof. (a) For all A, B ∈ P ⋆(Y ) with A ≠ B we have Dδ(A, B) = δ(A ∪ B) =
1
2Dδ(A ∪ B, A ∪ B), that is, (A3) holds. If in

addition δ is a diversity, then for all A, B, C ∈ P ⋆(Y ) with A ≠ C we have

Dδ(A, B) + Dδ(B, C) ≥ δ(A ∪ B) + δ(B ∪ C)
(D1)
≥ δ(A ∪ C) = Dδ(A, C).

So, if A = C , using Lemma 6.1, we get

Dδ(A, B) + Dδ(B, C) = 2Dδ(A, B) = 2δ(A ∪ B) ≥ 2δ(A) = Dδ(A, C).

Hence (A1) holds. Furthermore, Dδ ({x}, {x}) = 2δ({x}) = 0 for all x ∈ Y by (D2), so (A1) and (A2) also hold.
(b) We have

δ(D)(A ∪ B) + δ(D)(B ∪ C) =
1
2
D(A ∪ B, A ∪ B) +

1
2
D(B ∪ C, B ∪ C)

(A3)
= D(A, B) + D(B, C)

(A1)
≥ D(A, C)

=
1
2
D(A ∪ C, A ∪ C) = δ(D)(A ∪ C),

which is (D1). From (A2), we conclude that δ(D)({x}) = D({x}, {x}) = 0 for all x ∈ Y , hence (D2) holds.
(c) By definition, δ(Dδ)(A) =

1
2Dδ(A, A) =

2
2δ(A) = δ(A) for all A ∈ P (Y ).

(d) For all A, B ∈ P ⋆(Y ) with A ≠ Bwe have

Dδ(D)(A, B) = δ(D)(A ∪ B) =
1
2
D(A ∪ B, A ∪ B)

and Dδ(D)(A, A) = 2δ(D)(A) = D(A, A). Hence Dδ(D) = D if and only if condition (A3) is satisfied. �

Corollary 6.3. Diversities on Y are in bijective correspondencewith symmetricmapsP ⋆(Y )×P ⋆(Y ) → R satisfying (A1)–(A3).

To obtain not only a symmetric map, but even a distance on P ⋆(Y ), one can use the process described in Section 4 to
arrive at the distance dδ : P ⋆(Y ) × P ⋆(Y ) → R defined by dδ = ((Dδ)

′)+, or, equivalently, define

dδ(A, B) =


max(0, δ(A ∪ B) − (δ(A) + δ(B))), if A ≠ B,
0, if A = B. (6.1)

Lemma 6.4. The mapping from the set of diversities on Y to the set of all distances on P ⋆(Y ) defined by δ → dδ is injective.

Proof. Let δ, δ′ be diversities on Y with dδ(A, B) = dδ′(A, B) for all A, B ∈ P ⋆(Y ). We will show that δ(A) = δ′(A) implies
δ(A ∪ {i}) = δ′(A ∪ {i}) for all i ∈ Y , which will prove the claim by induction. Since we have

max(0, δ(A ∪ {i}) − δ(A) − δ({i})) = dδ(A, {i}) = dδ′(A, {i}) = max(0, δ′(A ∪ {i}) − δ′(A) − δ′({i})),

by Lemma 6.1 we also have δ(A ∪ {i}) − δ(A) = δ′(A ∪ {i}) − δ′(A), which completes the proof. �

We conclude with one final observation which is of independent interest.

Lemma 6.5. Let Y be a finite set, δ a diversity on Y and dδ the associated distance on P ⋆(Y ). Then dδ(A, B) = 0 for all
A, B ∈ P ⋆(Y ) with A ∩ B ≠ ∅.

Proof. By Lemma 6.1, we have δ(A ∪ B) − δ(A) − δ(B) ≤ 0 which implies dδ(A, B) = 0 by the definition of dδ . �
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7. Tight-spans of diversities

In [3], the tight-span of a diversity is introduced, which is defined as follows. Given a diversity δ on a finite set Y , the
tight-span of δ is the set T̂δ of all minimal elements of the polyhedron

P̂δ =


f ∈ RP (Y ): f (∅) = 0 and


A∈A

f (A) ≥ δ


A


for all A ⊆ P (Y )


.

We shall also consider the related set Tδ consisting of all minimal elements of the polyhedron

Pδ =

f ∈ RP (Y ): f (∅) = 0 and f (A) + f (B) ≥ δ(A ∪ B) for all A, B ∈ P (Y )


which wasmentioned in a preliminary version of [3]. Note that Bryant and Tupper showed that the set T̂δ is an injective hull
in an appropriately defined category. Although a similar result has not been shown to hold for Tδ , this set will also be useful
in our investigations of diversities.

We first prove that Tδ arises from the point configuration A(P ⋆(Y )), the configuration of integer points in a simplex
with edge-length 2, and that T̂δ arises from C(P ⋆(Y )), the configuration of vertices of a cube. More specifically, let wδ

:

C(P ⋆(Y )) → R be given by wδ(


i∈A ei) = δ(∪A) for all A ⊆ P ⋆(Y ). Then:

Proposition 7.1. Let δ : P (Y ) → R. Then:
(a) Pδ = {0} × EwDδ (A(P ⋆(Y ))), and Tδ = {0} × TwDδ (A(P ⋆(Y ))).
(b) P̂δ = {0} × Ewδ (C(P ⋆(Y ))), and T̂δ = {0} × Twδ (C(P ⋆(Y ))).

Proof. (a) We have

Pδ =

f ∈ RP (Y ): f (∅) = 0 and f (A) + f (B) ≥ δ(A ∪ B) for all A, B ∈ P (Y )


=


f ∈ RP (Y )

| f (∅) = 0, f (A) + f (∅) = f (A) ≥ δ(A) for all A ∈ P ⋆(Y ) and f (A)

+ f (B) ≥ δ(A ∪ B) for all A, B ∈ P ⋆(Y )


= {0} ×


f ∈ RP ⋆(Y )

| f (A) + f (A) ≥ 2δ(A) for all A ∈ P ⋆(Y ), f (A) + f (A)

≥ δ(A ∪ A) for all A ∈ P ⋆(Y ), and f (A) + f (B) ≥ δ(A ∪ B) for all A, B ∈ P ⋆ with A ≠ B


= {0} × EwDδ (A(P ⋆(Y ))).

The statement now follows from Proposition 4.1.
(b) We have

P̂δ =


f ∈ RP (Y ): f (∅) = 0 and


A∈A

f (A) ≥ δ


A


for all A ⊆ P (Y )



= {0} ×


f ∈ RP ⋆(Y ):


A∈A

eA, f


≥ δ


A


for all A ⊆ P (Y )


= {0} ×


f ∈ RP ⋆(Y ): ⟨a, f ⟩ ≥ wδ(a) for all a ∈ C(P ⋆(Y ))


= {0} × Ewδ (C(P ⋆(Y ))).

The statement now follows from Lemma 2.1 since C(P ⋆(Y )) is positive and Ewδ (C(P ⋆(Y )))is bounded from below by
the inequalities eA ≥ δ(A) = 0 for all A ∈ P ⋆(Y ). �

We turn now to one-dimensional tight-spans. First note that, by considering the distance map dδ defined in (6.1), we get

Tδ = {0} × Tdδ
+ (δ(A))A∈P (X) ,

which, in particular, implies the following:

Corollary 7.2. Let δ be a diversity. Then Tδ is a tree if and only if the tight-span Tdδ
of the distance dδ is a tree.

We now characterise diversities whose tight-spans are trees. A diversity δ on a set Y is called a phylogenetic diversity if
there is a weighted tree T with leaf set Y such that δ = δT , where δT is the diversity associated with T given bymapping any
subset A ⊆ Y to the length δT (A) of the smallest subtree of T connecting taxa in A.

Theorem 7.3. Let δ be diversity on Y . Then the following are equivalent:
(a) δ is a phylogenetic diversity.
(b) The tight-span T̂δ is a tree.
(c) The tight-span Tδ is a tree.
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The fact that (a) implies (b) follows from [3, Theorem 5.8], since the tight-span of a phylogenetic diversity is isomorphic
to the tight-span of the metric space associated with the same tree. To show that (b) is equivalent (c), we will prove that T̂δ

and Tδ are equal for a much larger class of diversities, the so-called split-system diversities (Theorem 7.4). The proof that (c)
implies (a) will then take up the remainder of this section.

Let S be a split of Y . We define the split diversity δS : P (Y ) → R of S as

δS(A) =


1, if S splits A,
0, else.

Given a set S of splits of Y and a function α : S → R>0 assigning weights to the splits in S, the split system diversity δ(S,α)

of (S, α) is defined as

δ(S,α)(A) =


S∈S

α(S)δS(A) =


S∈S,S splits A

α(S).

A phylogenetic diversity is a special case of a split system diversity where the set S is compatible. We now show that in case
δ is a split diversity, the tight-spans Tδ and T̂δ are equal:

Theorem 7.4. Let S be a split system, α : S → R>0 and δ(S,α) the associated split system diversity. Then

P̂δ(S,α)
= Pδ(S,α)

and T̂δ(S,α)
= Tδ(S,α)

.

Proof. We will show that P̂δ(S,α)
= Pδ(S,α)

which obviously implies T̂δ(S,α)
= Tδ(S,α)

. First note that, by definition, for any
diversity δ, one has P̂δ ⊆ Pδ and furthermore, for all f ∈ Pδ and A ∈ P (Y ), one has f (A) + f (∅) = f (A) ≥ δ(A). It now
suffices to show that for any A ⊆ P (Y ) with |A| ≥ 2 and f ∈ Pδ(S,α)

the system of inequalities

f (A) + f (B) ≥ δ(S,α)(A ∪ B) for all distinct A, B ∈ A, (7.1)

implies the inequality
A∈A

f (A) ≥ δ(S,α)


A


. (7.2)

Summing up all the Inequalities (7.1) we get
A,B∈A,A≠B

(f (A) + f (B)) ≥


A,B∈A,A≠B

δ(S,α)(A ∪ B)

⇐⇒ (|A| − 1)

A∈A

f (A) ≥


A,B∈A,A≠B


S∈S,S splits A∪B

α(S) =


S∈S

α(S)SP(S, A, 2),

where SP(S, A, 2) denotes the number of unordered pairs of distinct A, B ∈ A such that S splits A ∪ B. We now show that
SP(S, A, 2) ≥ |A| − 1 for all S ∈ S that split ∪A. Dividing the above inequality by |A| − 1 then gives Inequality (7.2) as
desired.

Let S ∈ S be a split that splits∪A. First suppose that there exists some A ∈ A that is split by S. Then SP(S, A, 2) ≥ |A|−1
since obviously for all B ∈ A distinct from A the set A ∪ B is also split by S. So we can assume that, for S = (C,D) and all
A ∈ A, we have either A ⊆ C or A ⊆ D. Let s be the number of A ∈ A with A ⊆ C . Since S splits ∪A, both s and |A| − s have
to be at least 1, so we get SP(S, A, 2) = s(|A| − s) ≥ A − 1, which finishes the proof. �

In preparation for completing the proof of Theorem 7.3, we now examine the distance dδ in case δ is a split diversity. Let
S = {C,D} be a split of Y . For each A, B ⊆ Y we have

δS(A ∪ B) − δS(A) − δS(B) =

1, if C ⊆ A and D ⊆ B or C ⊆ B and D ⊆ A
−1, if A ∩ C ≠ ∅, A ∩ D ≠ ∅, B ∩ C ≠ ∅, and B ∩ D ≠ ∅,
0, else,

so that

dδS (A, B) =


1, if C ⊆ A and D ⊆ B or C ⊆ B and D ⊆ A,
0, else.

Hence dδS = dP (as defined in Eq. (4.1)), where P is the partial split {P ⋆(A), P ⋆(B)} of P ⋆(Y ). By Proposition 3.1, the
corresponding weight function defines a split of A(P ⋆(Y )). We will show that a diversity whose tight-span is a tree comes
from a compatible set of splits by considering these steps in reverse order. The following lemmaswill be the key to our proof.

Lemma 7.5. Let Y be a finite set, {A, B}, {C, D} two compatible partial splits of P (Y ) and A ∈ A, A′
∈ C, B ∈ B ∩ D . Then

either A′
∈ A or A ∈ C.

Proof. Since {A, B}, {C, D} are compatible and B ∈ B ∩ D , by definition, we must have A ⊆ C or C ⊆ A, which implies
the claim. �
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Lemma 7.6. Let P be a compatible set of partial splits of P ⋆(Y ), {A, B} ∈ P , α : P → R>0 and δ be a diversity on Y such
that dδ = d(P ,α). Then the following statements hold:

(a) If A ∈ A, B ∈ B, A′
⊆ A, and dδ(A′, B) ≥ dδ(A, B), then A′

∈ A.
(b) If A ∈ A, then {i} ∈ A for all i ∈ A.
(c) If A, A′

∈ A, then dδ(A, A′) = 0.
(d) If i ∉ A ∈ P (Y ) with {i}, A ∈ A, then {i} ∪ A ∈ A.

Proof. (a) For A, B ⊆ Y , set P (A, B) = {{A, B} ∈ P : A ∈ A, B ∈ B}. Then we have

dδ(A′, B) = d(P ,α)(A′, B) =


P∈P (A′,B)

α(P)

≥


P∈P (A,B)

= dδ(A, B).

So, either P (A, B) = P (A′, B), which trivially implies the claim, or there exists some partial split {C, D} ∈ P (A′, B) \

P (A, B). Lemma 7.5 now gives us A′
∈ A (since A ∈ C would imply {C, D} ∈ P (A, B), as desired).

(b) Let B ∈ B. By (D1), we get

δ(A ∪ {i}) + δ({i} ∪ B) ≥ δ(A ∪ B).

This implies that

δ({i} ∪ B) − δ(B) ≥ δ(A ∪ B) − δ(A) − δ(B).

By definition of dδ (and (D2)), this is equivalent to dδ({i}, B) ≥ dδ(A, B). The claim now follows from Part (a).
(c) If dδ(A, A′) ≠ 0 this would imply that there exists a partial split {C, D} ∈ P with A ∈ C and A′

∈ D (or vice versa).
However, this split could not be compatible with {A, B}.

(d) By Part (c), we have dδ({i}, A) = 0 which implies δ(A∪ {i}) = δ(A) by the definition of dδ . Let B ∈ B. Since dδ(A, B) > 0
by assumption, we get

dδ(A, B) = δ(A ∪ B) − δ(A) − δ(B)
= δ(A ∪ B) − δ(A ∪ {i}) − δ(B)
≤ δ(A ∪ {i} ∪ B) − δ(A ∪ {i}) − δ(B)
= dδ(A ∪ {i}, B).

The claim now follows from Part (a). �

Corollary 7.7. Let P be a compatible set of partial splits of P ⋆(Y ), α : P → R≥0 and δ a diversity on Y such that dδ = d(P ,α).
Then for all P = {A, B} ∈ P there exists a partial split p(P) = {A, B} of Y such that A = P ⋆(A) and B = P ⋆(B). Furthermore
the set {p(P): P ∈ P } of partial splits of Y is compatible.

Proof. The existence of p(P) follows by iteratively applying Lemma 7.6 (b) and (d). The compatibility follows from the
compatibility of P by Proposition 3.2. �

We now complete the proof that was promised above.

Proof of Theorem 7.3. We only have to show that (c) implies (a). So, let δ be a diversity on Y such that the tight-span Tδ is
a tree. Corollary 7.2 implies that Tdδ

is a tree and Theorem 4.5 gives us a compatible set P of partial splits of P ⋆(Y ) and a
function α : P → R>0 such that dδ = d(P ,α). By Corollary 7.7, there exists a compatible set S = {p(P): P ∈ P } of partial
splits of Y such that A = P ⋆(A) and B = P ⋆(B). It remains to show that all S ∈ S are splits.

Suppose one of these partial splits, say {A, B}, is not a split, and let i ∈ A, j ∈ B and k ∈ Y \ (A ∪ B). By (D1), we get

δ({i, k}) + δ({k, j}) ≥ δ({i, j}),

which is equivalent to

dδ({i}, {k}) + dδ({k}, {j}) ≥ dδ({i}, {j}) (7.3)

by the definition of dδ and (D2). Now any partial split {P ⋆(C), P ⋆(D)} that separates k from either i or j must also separate
i and j since it is compatible to {P ⋆(A), P ⋆(B)}. So each split making a contribution to the left of Eq. (7.3) makes the same
contribution to the right of the equation and {P ⋆(A), P ⋆(B)} only contributes to the right, a contradiction.

So dδ = dδ(S,α) which implies δ = δ(S,α). Hence δ is a phylogenetic diversity. �
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8. Discussion

8.1. k-dissimilarity maps

We have seen how to define the tight-span of various maps that generalise metrics. Another kind of map that we could
consider taking the tight-span of is a k-dissimilarity map on a set X , that is, a function D :


X
k


→ R. In this case, to obtain

a tight-span one could take the set of vertices of the so-called hypersimplex ∆(k, X) ⊆ RX as the corresponding point
configuration, that is, the set of all functions


x∈A ex for all A ∈


X
k


. More specifically, motivated by Proposition 4.1 for the

case k = 2, given a k-dissimilarity map D on X , define the function wD
: ∆(k, X) ⊆ RX

→ R that sends


x∈A ex to −D(A),
set PD = EwD(∆(k, X)), and TD = TwD(∆(k, X)). It follows from Lemma 2.1 that TD is the set of minimal elements of PD.

Even though one might expect that TD has similar properties to the tight-spans we have so far considered, this is not
the case. Indeed, given a weighted tree T with leaf set X , one can define a k-dissimilarity map Dk

T by assigning to each
k-subset A ⊆ X the total length of the induced subtree. However, the tight-span TDk

T
does not in general also have to be a

tree, and so there is no obvious generalisation of the Tree Metric theorem. Even so, the tree T can be reconstructed from TDk
T

[16, Section 8.1], and so it could still be of interest to further study these tight-spans.

8.2. Coherent decompositions

Coherent decompositions of metrics were introduced by Bandelt and Dress [1] and are intimately related to tight-spans.
Thus the question arises whether a similar decomposition theory could be developed for the different generalisations of
metrics that we have considered.

In [15], the concept of coherent decompositions ofmetricswas generalised toweight functions of polytopes (as discussed
in Section 2). For directed distances, and also symmetric and non-symmetric functions, this directly leads to a theory
of coherent decompositions. Moreover, a decomposition theorem for k-dissimilarities in terms of ‘‘split k-dissimilarities’’
was recently derived in [16], which might be extended if an appropriate theory was worked out for tight-spans of
k-dissimilarities, as suggested above. For diversities, as we have seen, a diversity on a set Y can be considered as a distance
on P ⋆(Y ), but such diversities form only a subset of all such distances. So, to develop a theory of coherent decomposition
for diversities, one could maybe first try to answer the following question:

Question 8.1. Given a diversity δ how can one compute coherent decompositions of the distance dδ? Moreover, which
coherent components of such a decomposition are of the form dδ⋆ for some diversity δ⋆?

8.3. Infinite sets and injective hulls

In this paper, we have only considered tight-spans arising from finite sets. However,many of the results concerning tight-
spans (and not point configurations) can be translated to infinite sets. For example, much of the theory for the tight-span of a
metric space was originally developed for arbitrary metric spaces [8,20], which is important since the tight-span of a metric
(diversity) – which is of course an infinite set – comes equipped with a canonical metric (diversity), such that the tight-
span of this metric is nothing other than itself (see [20,3], respectively). Stated differently, this means that tight-spans are
injective objects in the appropriate category [20], a property that would be interesting to understand in the setting of point
configurations. However, if the theory for point configurations is to be extended to infinite sets, a first crucial step would be
to understand how to generalise splits of polytopes, which does not appear to have an obvious appropriate generalisation
in the infinite setting.
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