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Andrews's recent proof of the Mills-Robbins-Rumsey conjectured formula for 
the number of totally symmetric self-complementary plane partitions is used to 
derive a new multi-variate constant term identity, reminiscent of, but not implied 
by, Macdonald's BC,-Dyson identity. The method of proof consists in translating 
to the language of constant terms an expression of Doran for the desired number 
in terms of sums of minors of a certain matrix. The question of a direct proof of 
the identity, which would furnish an alternative proof of the Mills-Robbins-Rumsey 
conjecture, is raised, and a prize is offered for its solution. © 1994 Academic Press, Inc. 

PROLOGUE 

Somet imes,  it  m a y  occur  to ma thema t i c i an  X, in his a t t empt  at  p rov ing  
a conjec tured  equa l i ty  A = B, to in t roduce  ano the r  quan t i ty  C, and  to 
a t t empt  to p rove  the two lemmas  A = C and  C = B. The  or iginal  conjecture  
A = B would  then follow by the t rans i t iv i ty  of the -- relat ion.  Alas,  it might  
happen  that ,  after the successful comple t ion  by  X of the first pa r t  of his 
p rog ram,  but  before finishing the second par t ,  the conjecture  A = B is 
p roved  by  his r ival  Y by  a comple te ly  different method.  Should  X let 
t housands  of hours ,  50 yel low pads ,  and  10 ba l l -po in t  pens go unrecorded  
in the archiva l  l i te ra ture?  Cer ta in ly  not!  All  tha t  X has to do  is p r o m o t e  
the equal i ty  C = B from the s ta tus  of  l emma  to tha t  of theorem and  observe 
tha t  its p r o o f  follows immedia te ly  f rom his own l emma A = C, Y's theorem 
A = B, and  the symmet ry  and  t ransi t iv i ty  of the equal i ty  relat ion.  To be on 
the safe side, X should  argue also tha t  in add i t i on  to the intr insic  interest  
of C = B, the method of  proof  of the l emma  A = C is interest ing,  and  might  
lead to the p r o o f  of o ther  conjectures.  
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The above scenario happened with the following specialization. 
X = Your faithful servant. 
Y = George Andrews. 
A = The number of totally symmetric self complementary plane parti- 

tions (TSSCPP) whose 3D Ferres diagrams fit inside [0, 2hi 3. 

n 1 (3i+ 1)! 
B =  ( n + i ) ! '  

i =0  

the Andrews-Mills-Robbins-Rumsey sequence { 1, 2, 7, 42, 429 .... } [A3, 
MRR1, MRR2, Ro l l .  

C = C T  H ( 1 - - X i / X j )  f i  ( l + x i - 1 )  n - i  
l <~i<j<~n i=1 

x (1 - x i )  -1 I] (1 - x i x j ) - ' } ,  
i l<~i<j<~rt 

where "CT" stands for the phrase "the constant term of," i.e., the coefficient 
of o o X 1 • . . X  n . 

1. INTRODUCTION 

Andrews [ A l l  has recently proved the following conjecture of Mills, 
Robbins, and Rumsey [MRR2] (see also [Rol ,  S]). 

THEOREM A = B  (Andrews [A1]). A=B. 

In this paper we prove 

THEOREM C = B. C = B. 

This identity closely resembles Macdonald's [Macd2] celebrated 
BC,-Dyson identity, but does not seem to be implied by it. Its mere exist- 
ence seems to indicate that Macdonald's identities and conjectures are far 
from being the only explicitly evaluable constant term expressions, and that 
there are still many more waiting to be discovered. Even more exciting is 
the possibility that there exists a common generalization of Macdonald's 
constant term identities and the present one. Section 7 presents yet another 
such identity. We refer the readers to [Gu]  and [Ga-Go]  for an update 
on the status of Macdonald's constant term conjectures. 

In the constant term C, we view the rational function inside the braces 
as a power series in positive power of xl ..... xn. When this is multiplied by 
the Laurent polynomial in front of the braces, one obtains a well-defined 
Laurent series, wih a well-defined constant term. 
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Theorem C = B would follow from Andrews's theorem A = B and the 
following lemma: 

LEMMA A = C. A = C. 

I am offering 25 U.S. dollars I for a direct proof of theorem C =  B that 
does not use Andrews's theorem A = B. Such a proof, combined with my 
lemma A = C would, of course, give a new proof of theorem A = B. 

The readers are welcome to look up the definition of TSSCPP in 
[MRR2]  or [S],  if they wish, but the present paper can be understood 
without it, provided one is willing to believe Doran's [ D o ]  result, to be 
recalled shortly, that the number of these creatures, whatever they are, 
equals the sum of minors of a certain matrix. In fact the larger message of 
this paper is the introduction of a new and potentially useful method for 
expressing sums of minors of matrices whose entries are binomial coef- 
ficients in terms of constant terms of rational functions, the Mills-Robbins- 
Rumsey conjecture being the instructive example by which this method is 
illustrated. The present method can be viewed as a determinantal extension 
of Egorychev's [E ]  method of "integral representation" (which is tan- 
tamount to "constant term") for binomial coefficients sums. MacMahon's  
celebrated master theorem [ M a c M ]  that expresses a certain determinant 
as a certain constant term also comes to mind, but at first sight appears to 
be only a distant cousin. 

2. DORAN'S SUM OF MINORS EXPRESSION FOR THE NUMBER OF TSSCPP 

To prove lemma A = C, we need a result of Doran [ D o ]  (no relation). 
Let D be the sum of all the n xn  minors of the following n x  ( 2 n - 1 )  
matrix: 

X i j ' = ( i - l ] ,  l<.i<~n, 1 ~<j~<2n- 1. 
' " \ j - i ~  

THEOREM A=D (Doran [Do] .  A=D. 

It remains to prove that D = C. I prove a more general result. Let D' be 
the sum of all the n x n minors of the n x (2n + m - 1) matrix J( given by 

Xij, :=(m+i--\ j--i 1), l<~i~n, l~j~2n+m--1, 

1 Because the prize is being offered by the author and not by the publisher, readers should 
contact the author directly. 
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and let C' be given by 

C':=CT 

I prove 

LEMMA D ' =  C'. 

DORON ZEILBERGER 

[I (1-  x,/xj) f i  (l + x?l) m+n-i 
l<~i<j<~n i=1 

X{ l. x,, 1 
i= l <~i<j<~n 

D' = C'. 

The proof of this lemma is given in the next section. Assuming it for the 
moment, we have 

COROLLARY D = C. D = C. 

Proof Take m = 0 in Lemma D' = C'. 

Completion of the proof of Lemma A = C. 
Lemma A = D and Corollary D = C. 

Combine Doran's [-Do] 

3. PROOF OF LEMMA D' = C' 

We have a fairly long string of equalities. Whenever the equality requires 
explanation, we label the equal sign with an integer and give the explana- 
tion in Section 4, under the heading of that integer. Some readers may 
prefer to consult Section 4 simultaneously. 

z dot(re+i-l) 
l~<jl<J2< . . .<jn<~2n+m 1 \ jr - i  l<~i<~n,l<~r<~n 

= ~ d e t ( r e + i - l )  
O<j l<J2<. . .< jn<~2n+m_ 2 k j ~ - i +  1 l<~i<~n,l<<.r<~n 

=(1) E 2 S E n ( = ) f i  ( m - ] - T c ( r ) - - ] ~  
O<~jl<J2<...<jn<~2n+m 2 Tees n r = l  j,-rc(r)+ l] 

(2) ~ ~ sgn(Tz)CT[~ (1 "~Xr)m+~z(r)-i 1 
0~<jl<:J2"< "'" <jn <~ 2n + m -- 2 ~ ~ Sn "" r 

= ~ CT j, 
O~<jl<J2< "'" <jn <~ 2n q- m -- 2 X r 

X Z s g n ( ~ ) f i  ~(1 "°f-Xr)Xr-] 7 z ( r ) - l ]  
zt~Sn r= l  
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=(3) C T  (1-[-Xr) m I] [ ( l+x~)x~- ( l+x j ) x i ]  
l <~i<j<~n 

x Z XcJ'... xU" 1 
0~<jl<J2< ... <jn<~2n+m--2 

_-(4) CT (1 "}- Xr) m ~I [ (1  .+ x~)x , -  (1 + xj)xj] 
l <~i<j<~n 

x y_., x ~J~... x2 '~'] 
O~<jl<J2< "'" <jn<OO 

[rO1 : (5) C T  ( l + x 2 1 ) m  U [ ( l + x i - 1 ) x ? l - - ( l + x j l ) X ~  1 ] 
l <~i<j<~n 

× 2 
0 <~Jl <~J2 <. • "" <~Jn "< oa 

[rO  : (6) CZ (1+x7~) m U [ ( l + x j 1 ) x ? l - ( l + x j - 1 ) x j  1 ] 
l ~ i < j ~ n  

X (l  --  Xn) -1  (1 -- x~x~_ 1) - -1 . . .  ( l  --  XnXn_ 1" '"  Xl ) - -1 ]  

:(7) 1 [ r __I~l 1,1~. C T  (1 + X r l )  m ~ [ ( l " ] - X ? 1 ) x i - l - - ( l + x 7 1 ) X j - 1  ] 
l ~ i < j ~ n  

sgn(rc)rc[(1-Xn) -1 ( 1 - x . x . _ l )  1.. .  
~Z ~ Sn 

.(1-x.x._~-..xl)-1]] 

: (8)1 CT (1 + x f f ' )  m l~ 
l <~i<j<~n 

--1 --1 [(l+x, )x~ - O  + x71)x713 

× (I (1-x , ) - '  l]  
i=1 l <~i<j<~n 

X ~SnZ sgFl(~)r=l  f i  r (1 " ~ - X r l ) X r l ] r c ( r ) 1 1  

n! c7~ (l + Xr') ~ 1] (Xj-- X~) 
l <~i<zj<~n 

II~.<i<j.<~ (xj- x,) ] 
(i-- 
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=(9) C T  (1 +Xr')  m 1--[ (Xj--Xi) 
r l<~i<j<~n 

X f i  ( 1 - - X i )  -1  H ( I _ _ X i X j )  1 

/=1 l <~i<j<~n 

11 
r= l  

= CT (lq-xZ1) re+r-1 I-I 
~ <~i<j<~n 

X f i  ( I - - X i )  -1  H 
i=1 l<~i.<j<~n 

(1 -xjxj) 

(I--xixj)--I 1. 

4. EXPLANATIONS OF THE ABOVE EQUALITIES 

1. The definition of the determinant. 

2. The binomial theorem and the fact that 
CT[f(x)] CT[g(y)]. 

3. The Vandermonde determinant identity: 

CT[f(x) g(Y)l = 

E sgn(g) h y~(r)-l= F[ (Yi--Yj)" (V) 
~z~ Sn r= l  l ~ i<j<~n 

See [Ge] and I-A2, Sect. 4.4] for Gessel's beautiful combinatorial proof. 

4. The added terms are of higher degree than the polynomial in front 
of the sigma, and so add 0 to the constant term. 

5. We make the transformation x,-~ x 71, i = 1, ..., n, which obviously 
does not change the constant term. We also changed the summation range 
from { 0 < j l < . - - < j ~ < o o }  to { 0 ~ j l ~ < . . . ~ j n < o e } ,  which does not 
change anything, since the extra monomials all have at least two of their 
exponents equal, and hence their contribution to the constant term is zero, 
thanks to the anti-symmetry of the kernel. 

6. Here we use 

E x{,..x{° 
0~<jl 4j2~< ... <~jn<oo 

= ( 1 - x ~ )  - l ( 1 - x n x n  x ) - l ' " ( 1 - - x n x ~ _ l " " x l ) - k  
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For  n = 1 this is just the sum of an infinite geometric series. Assuming this 
is true for n -  1 variables, x2, ..., x , ,  we have 

E X {  1"" "XJn 

0~<jl ~<j2~< --- ~jn<OO 

: ( X l " " "  Xn)  jt  " X J l . . .  xJn --Jl 

0 0 <~J2 --Jl <~ "'" <~Jn --Jl < co 

= (1--Xl . - . X ~ ) l ( 1 - - X 2 . . . X n ) - X . . . ( 1 - - X ~ )  -1 

7. Here we "average" over all the images under the symmetric group, 
noting that the constant term is not affected. More explicitly, for any 
Laurent series f ( x l ,  ..., xn) let the symmetric group act naturally by 

:re(f )(Xl, ..., Xn)=f(x~(1), ..., Xn(n)), 

and let 

1 
f # = n . l  ~ ~z(f); 

rc E Sn 

then CT(f)= CT(f #). We also used the obvious fact that i f f  ~ denotes the 
"anti-symmetrizer," 

1 
fe=~.  ~ sgn(rc) zc(f); 

rc ~ Sn 

then if g is anti-symmetric, 

(g f )# = g ( f e ) .  

8. Here we used the identity 

sgn(Tr)~[(l_xn ) l ( l_xnx~_l)- l . . . ( l_xnx~ 1.. .  x .1)1]  
rc ~ S n 

~ I I<~i .< j~n  ( X j - -  X i )  
n 

H i =  1 ( 1  - -  X i )  I ~ 1  <~ i<j<.n ( 1  - -  X i X j ) "  

This is easily seen to be equivalent to Schur's identity that sums all 
the Schur functions (e.g., [-Macdl, Ex. 1.5.4, p. 45]). Here I give another 
proof which, incidentally, also proves Schur's identity. Let us call the 
left side f ( X l ,  ..., Xn) , and the right side g(x~ ..... xn). Separating, the 
sum over Sn in the definition of f into the n subsets of Sn, according to 
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the values of re(n), we have (chopping z (n )=  i amounts to losing n -  i 
inversions) 

f ( x l  ..... x,) = (1 - X l X 2 . . . x , )  -a ~ ( -  1)("-i) f ( x l ,  x2, ..., 2i ..... x,).  
i = 1  

Since f ( x l ) = g ( x a )  is obviously true, f = g  is true for n =  1. The identity 
would follow by induction if we can prove that 

g(xl ..... x n ) = ( 1 - X l X 2 . . . x , )  1 ~ ( _ l ) ( n - i ) g ( x l ,  x2 ..... 2i ..... X,), 
i = a  

which is equivalent to 

( 1 - X l  Xn) ~ " 1 "n i "x .... . . . .  t -  ) gt 1 ..... 2i,..., x , ) /g(x , ,  x,).  
i = 1  

But it is readily seen that 

ig (x l  ..... fc i ..... Xn) ( l__xi  ) ( - 1 ) "  [I (1--XiXj)/(X,--Xj). 
g(Xl ..... X,) l<.j<.,,,j~i 

It thus remains to prove that 

(1-x,...x.)= Z ( l-x,)  [I (x,-xj)/(a-x,xj). 
i = a  l <~j<~n,j~=i 

This is a rational function identity resembling those of Good [Go] ,  
Gustafson and Milne [Gu-Mi] ,  Gross and Richards [Gr-Ri] ,  and Milne 
[Mi].  It is easily proved by Lagange-interpolating the degree-n polynomial 
(in z) f ( z )  := (1 - Z X l ) . . .  (1 -ZXn) at the n + 1 points {1, xl ..... x,}, sub- 
stituting z = 0, and finally making trivial adjustments. 

9. This is (7) in reverse. 

5. ROBBINS'S CONJECTURED EXPRESSION FOR D' AND A MORE GENERAL 
(AND HENCE EASIER) CONSTANT TERM CONJECTURE 

Robbins [Ro2], in a private communication, made the following 
conjecture regarding the sum of minors D'. Let B'(m, n) be defined by 
B'(O, n) = B(n), and 

B ' ( m + l , n )  '~ l ( 2 m + j + 2 ) ( 3 m + 2 n + 2 + j ) ;  
= 2 H (m + 1 +j)(3m + 2 + 2j) i f (m,  n) j= 1 
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then 

CONJECTURE D ' =  B' (Robbins [Ro2]) .  D' = B'. 

Conjecture D' = B' would, of course, follow from the following constant 
term conjecture: 

Conjecture C' = B'. C' = B'. 

C ' =  B', being more general than C =  B, should be easier to prove. Its 
proof will, in particular, solve the 25-dollar problem stated above. 

6. SUMS OF MINORS OF GENERALIZED BINOMIAL COEFFICIENTS MATRICES 

Our approach to expressing the sums of minors of the matrix X took 
advantage of the fact that its entries were representable as constant terms 
as 

X i j  = C T ( 1 - F x ) m + i - 1  [ ( ( l " [ - X ) X ) i - 1 ]  
• . - - C T  ( l + x )  m x J _ l  j .  , xY--t 

Scanning the proof of D' = C' given in Section 3, we see that it is still valied 
when ( I + X )  m is replaced by a general polynomial f ( x )  and (1 + x ) x  is 
replaced by a general polynomial g(x). We thus have 

GENERAL THEOREM. Let f ( x )  and g(x) be polynomials and consider the 
n × (deg(f )  + ( n -  1) deg(g) + 1) matrix whose entries are given by 

~ F f ( x )  g(x) i -  1). 

Xi,~:='~ L J 
The sum o f  all its n x n minors equals 

CT  [ I  (xj-x~) f i  f(x:, l )g(xF') ~ 
l <~i<j<~n i=1 

x{~(J-x,)-~ lq (1-x,x~) -~} 
i~ l <~i<j<~n 

=n~. C T  H ( x j - - x , )  f ( x / - 1 )  U 
1 <~i<j<~n i= 1 1 <~ i<j<~n 

i= l<~i<j<~n 

(g(x j  -1 ) --g(x~l)) 
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Proof Do a global "replace" in Section 3, replacing (1 --I-x_) m b y f ( x )  
and x_ (1 + x_)  by g(x). (Here we used the MATHEMATICA convention 
of transformation rules, where "x_" means "anything, to be called x.") The 
second equality follows from explantion 4 of Section 4. 

ANOTHER CONSTANT TERM IDENTITY 

Taking f (x )  = (1 AvX) m, g(x) = (1 "q- X), the matrix X becomes 

Xi:::(m+i-1)' \ j - i  ' l<<.i<<.n, l<.j<<.n+m. (,) 

The sum of its n × n minors can be computed explicitly, since each minor 
is nothing but a Schur function evaluated at Xx =x2 . . . . .  xn = 1, by 
the Jacobi-Trudi formula (e.g. [Macdl, p. 25, (3.5)]), and these can be 
summed (q= 1 in [Macdl, p. 52, (4)]; see also I-Del, De2] for a superb 
exposition about summing Schur functions) to yield 

~-1 f i  2 i+ j ,  
]-I i + j  

j=0 i=1 

as observed empirically by Robbins [Ro2]. Combining the general 
theorem with the above, we get the following elegant multi-variate constant 
term identity. 

IDENTITY 

1 (l__Xi~ n~. CT H f i  (1+x71)  m 
l<~iCj<n \ Xj/ i=1 

{~1 1 t n--j~ i x (1--xi)  -1 l-[ ( 1 - x i x : )  . .  2i+j .  fi 
i= l<i<j<n : =  i=1 i + j  

I am offering 5 U.S. dollars for a direct proof of this identity. 

[A1 ] 

[A2] 
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