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Abstract

Let A be an excellent local normal domain and {fn}∞n=1 a sequence of elements lying in
successively higher powers of the maximal ideal, such that each hypersurface A=fnA satis6es R1.
We investigate the injectivity of the maps Cl(A) → Cl((A=fnA)′), where (A=fnA)′ represents the
integral closure. The 6rst result shows that no non-trivial divisor class can lie in every kernel.
Secondly, when A is, in addition, an isolated singularity containing a 6eld of characteristic zero,
dim A¿ 4, and A has a small Cohen–Macaulay module, then we show that there is an integer
N ¿ 0 such that if fn ∈mN , then Cl(A) → Cl((A=fnA)′) is injective. We substantiate these results
with a general construction that provides a large collection of examples.
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1. Introduction

The development of the divisor class group of a Noetherian normal domain A is
due, in large part, to Samuel’s work [23,24] with unique factorization domains (UFDs)
in the 1960s. Roughly speaking, the divisor class group of A, denoted by Cl(A), is
a measure of the extent to which A fails to be a UFD. In particular, Cl(A) is trivial
if and only if A is a UFD. Samuel [24, p. 171] conjectured the following: If B is a
complete local UFD, then B[[T ]] is a UFD. However, without additional restrictions,
this conjecture is false. Perhaps surprisingly, counterexamples to this conjecture, as
well as subsequent research in the subject of divisor class groups, relied heavily upon
methods from algebraic geometry. For instance, using projective schemes, Danilov
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[8, Proposition 1.1] established a map j∗: Cl(A[[T ]]) → Cl(A). Then in a series of
articles [6–8], he characterized the injectivity of j∗. These results in some ways par-
allel those of Grothendieck [14, Lemma 3.16], who found conditions under which the
homomorphism from the Picard group of the punctured spectrum of A to that of a
hypersurface is injective.

Let f be a prime element such that A=fA is normal. Lipman [17, pp. 205–206]
generalized Danilov’s map by showing that there is a homomorphism of divisor class
groups j∗: Cl(A) → Cl(A=fA). Many examples exist where j∗ is not injective. When
A is, in addition, an excellent Q-algebra, GriKth and Weston [13, Corollary 1.3] gave
conditions for the kernel of j∗ to be torsion free. Then, in 1996, Miller [19, Sections 4
& 5], generalized the notion of divisor class group to rings satisfying the Serre condi-
tion S2 and proved that

⋂∞
n=1 Ker(Cl(A[[T ]]) → Cl(A[[T ]]=(Tn))) is trivial. (Actually,

Miller’s generalization of the class group is subsumed by that of Call [3, appendix].)
This motivates the investigation into whether a similar result will hold more generally

for a sequence of distinct elements. To be speci6c, let (A;m) be a Noetherian local
normal domain and let {fn}∞n=1 be a sequence of elements such that each An = A=fnA
satis6es R1 and limn→∞fn = 0 in the m-adic topology (i.e. fn ∈men where en → ∞
as n → ∞). Then there is a map Cl(A) → Cl(A′

n), where A′
n represents the integral

closure of An. We consider the following two questions:

1. Must it be the case that
⋂∞
n=1 Ker(Cl(A) → Cl(A′

n)) is trivial?
2. Are there situations where an integer N ¿ 0 exists such that if fn ∈mN , then

Cl(A) → Cl(A′
n) is monic? In other words, if the answer to (1) is yes, must it

be true that all but 6nitely many of the kernels are null? And if so, are there
e)ective methods to determine N?

We take questions (1) and (2) as “principles” which govern the behavior of the group
homomorphism Cl(A) → Cl(A′

n).
In Section 2, we begin by stating de6nitions and giving a review of several con-

cepts that will be used in proving our results. This section provides the background
information and references that the reader may 6nd useful.

In Section 3, we answer (1) aKrmatively when the ambient ring is excellent. Al-
though this 6rst result shows that no divisor class can be in all of the kernels of
Cl(A) → Cl(A′

n), it does not give much of a connection between a given divisor class
of the ambient ring and its image in the divisor class group of any speci6c hypersur-
face. However, it does suggest that the pathology of the map Cl(A) → Cl((A=fA)′)
lies near the “top” of the maximal ideal, where f∈m is any element such that A=fA
satis6es R1.

In Section 4, our second theorem seeks to make a connection between divisor classes
on the ambient ring and a hypersurface—at least concerning injectivity. We show the
existence of an integer N ¿ 0, such that if f is a element in mN with A=fA satisfying
R1, then the group homomorphism Cl(A) → Cl((A=fA)′) is injective. In this case, we
add the assumptions that A is an isolated singularity of dimension greater than three
which contains the rationals. We also assume that A has a small Cohen–Macaulay
module M . This result supplies evidence for an aKrmative answer to the following
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question: For an excellent, normal, local isolated singularity A containing the rationals
and f∈m such that (A=fA)′ satis6es R1, is Cl(A) → Cl((A=fA)′) injective? We end
with several examples that elucidate our results.

2. Preliminaries

There are several basic references for the material appearing in this section. The
standard results of commutative and homological algebra appear in the ubiquitous
Matsumura [18] and Rotman [22], respectively. For material on the divisor class group,
one should refer to Bourbaki [2, Chapter 7] and Fossum [10].

Let A be a Noetherian normal domain. The dual of an A-module a is HomA(a; A),
denoted a?. Note that a?? := (a?)?. There is a map �: a → a??, where �(x) is
de6ned by �(x)(g) = g(x), for x∈ a and g∈ a?. We say that a is re2exive if � is an
isomorphism.

One formulation of the divisor class group of A is the group of isomorphism classes
of reRexive ideals of A, or equivalently, reRexive A-modules of rank one. An element
[a]∈Cl(A) is called a divisor class. Multiplication is de6ned by [a] · [b]= [(a⊗b)??],
the identity element is [A], and the inverse of [a] is [a?]. This de6nition is equiva-
lent to the classical additive de6nition of the divisor class group appearing in [2,10,
p. 489, p. 29]. In particular, a reRexive height one ideal a can be written uniquely as the
primary decomposition

⋂s
j=1 p

(ej)
j , where the pj are height one prime ideals containing

a. The notation a(d) means
⋂s
j=1 p

(ejd)
j .

There is also a notion of divisor for modules which are not necessarily of rank one.
In particular, for a 6nitely generated A-module M , there exists a free submodule L of
M such that M=L is a torsion module. Set �(M=L) = �p lp(M=L) · p, where the sum
is taken over all height one primes, and where lp denotes the length of (M=L)p as an
Ap-module. This is a 6nite sum. The class of �(M=L) in Cl(A) is called the divisor
class attached to M and is denoted by [M ]. In [2, Section 4.7, Proposition 16], it is
demonstrated that [M ] is independent of the choice of L. For an ideal a of A, the two
de6nitions of divisor coincide, so there is no confusion in notation.

The following facts concerning attached divisors, taken from [19, Lemma 6.3], can
be a useful tool for comparing divisor classes:

(2.1) If I is an ideal of a normal domain A and M is a 4nitely generated torsion-free
A-module of rank r, then [HomA(I; M)] =−r[I ] + [M ].

Another important subject for our purposes is the S2-i6cation of a ring. A ring S is
an S2-i4cation of A if, (i) it is module-6nite over A, (ii) it satis6es the Serre condition
S2 over A, and (iii) Coker(A → S) has no support in codimension one in A. If A
has a canonical module, for example, if A is the homomorphic image of a Gorenstein
ring, then A has an S2-i6cation. Furthermore, when A satis6es R1, the S2-i6cation is
the integral closure. This fact is instrumental in obtaining the maps Cl(A) → Cl((An)′).
(See Hochster–Huneke [16] for more details on S2-i6cations.) We collect a few facts
concerning S2-i6cations, the third of which has a proof similar to the one given for
[1, Proposition 4.1].
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(2.2) Let (A;m) be an excellent local domain and f an element of m such that
A=fA satisifes R1. Then the integral closure of A=fA is local; in particular, f is a
prime element. (See [15, Section XIII], or [16, Proposition 3.9].)

(2.3) Let A be a local ring satisfying R1 such that A has an S2-i4cation A′. Let
M be a 4nitely generated torsion-free A-module. If M satis4es the condition S2, then
M is an A′-module.

(2.4) Let A be a normal ring. If L and N are 4nitely generated A-modules such that
N satis4es S2, then the module HomA(L; N ) satis4es S2, and there is an isomorphism
HomA(L∗∗; N )

∼=→HomA(L; N ).
We end this section with some additional de6nitions and two lemmas which will be

useful in the proof of our 6rst theorem. The proofs of the lemmas rely on the concepts
introduced here.

Recall that a submodule N of M is pure if the sequence 0 → N⊗L → M⊗L is exact
for every A-module L. A module N is called pure injective if, whenever the injection
N → M is pure, then it splits. War6eld [27] and GriKth [12, Section 3] are good
references for the preceding de6nitions. Next, an A-module M is said to be m-divisible
if m ·M =M . Note that if an A-submodule N of M is pure, then the unique maximal
m-divisible submodule of M=N is N=N , where N represents the m-adic closure of N
in M . As a result, M=N has no m-divisible submodule.

Lemma 2.5. Let (A;m) be a local ring, M =
∏
A the countable direct product of

copies of A, and N =
∐
A the direct sum. Then M=N is faithfully 2at. (Note that

N = {〈an〉 ∈M |an → 0 in the m-adic topology}.)

Proof. By GriKth [11, Lemma 1.7], N is a pure submodule of the Rat module M .
Therefore, it is Rat, and M=N is Rat. Since N=N is the maximal m-divisible submodule
in M=N , m ·M=N �= M=N .

Lemma 2.6. Let f1; f2; f3; : : : be a sequence of prime elements in a complete local
ring (A;m) such that limn→∞ fn =0 in the m-adic topology. Set P=

∏
An. Then the

map A ,→ P splits.

Proof. Let M be a 6nitely generated A-module of 6nite length; say mrM = 0 for
r�0. Choose n�0 such that en¿ r. Consider the map M → ∏

M=fnM , where for
x∈M; x → (x+f1M; x+f2M; : : :). The nth component x+fnM equals x, which shows
that the map is an injection. Consequently, by GriKth [12, Corollary 3.2], A is a pure
submodule of P. Let E = EA(k). By GriKth [12, Proposition 3.6], HomA(E; E) = A is
pure injective, which gives the result.

3. First theorem

We begin with a statement of our 6rst theorem, motivated by the 6rst principle in
the introduction.
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Theorem 3.1. Let (A;m; k) be an excellent, normal, local domain and let f1; f2; f3; : : :
be a sequence of elements in A such that

(a) limn→∞ fn = 0 in the m-adic topology, and
(b) An = A=fnA satis4es R1, for each n.

Then
⋂∞
n=1 Ker(Cl(A) → Cl(A′

n)) is trivial, where A′
n represents the integral closure

of A.

Before beginning the proof, we provide some necessary discussion. Because of the
assumption of excellence on A, we can assume that A is complete. The only detail
in passing to the completion that is a possible cause for concern is that Ân remains a
domain. But this follows from (2.2).

There exists a regular local ring R ⊂ A such that A is a 6nite R-module. Set A∗ =
HomR(A; R). Since A satis6es S2 as an R-module, for each p∈Spec(R) of codimension
less than or equal to two, Ap is a maximal Cohen–Macaulay module over the regular
local ring Rp. As a result, the height of annA Ext1R(A

∗; R) is greater than or equal to
three.

For each n, there is a short exact sequence 0 → A
·fn→A → An → 0, and thus an

exact sequence 0 → HomR(A; R)
·fn→HomR(A; R) → Ext1R(An; R). Likewise, the short

exact sequence 0 → A∗ ·fn→A∗ → A∗ → 0, where A∗ = A∗=fnA∗, yields the long exact
sequence

0 → HomR(A∗; R) → HomR(A∗; R)
·fn→HomR(A∗; R) → Ext1R(A∗; R) → · · ·. Now

HomR(A∗; R) = A∗∗ ∼= A since R is normal and A satis6es S2 as an R-module. These
results are summarized in the commutative diagram below, where the rows are exact:

0

0 0

A** A** ExtR (A*,R)1 ExtR (A*,R)1
. fn

. fn

Coker (. fn)

AnAA

The sequence 0 → An → Ext1R(A∗; R) → Ext1R(A
∗; R) is exact. Set UR=R=(fnA∩R). We

claim that Ext1R(A∗; R), or equivalently HomR(A∗; UR), is an S2-i6cation of An. Since it is
straightforward to show that HomR(A∗; UR) satis6es S2 and is 6nitely generated over An,
we need only establish that Coker(An → HomR(A∗; UR)) has no support in codimension
one in An. But this follows from the fact that htAannAExt1R(A

∗; R)¿ 3.

Lemma 3.2. There is a 4nitely generated A-module W, independent of n, with htA ann
W ¿ 3, such that for every n, A′

n=An is isomorphic to a submodule of W.

Proof. Since HomR(A∗; R)) = A′
n, take W to be Ext1A(A

∗; R).
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From (2.6), recall that P :=
∏
An and that A → P splits. Set P′ =

∏
A′
n; S =

∐
An,

and S ′ =
∐
A′
n.

Lemma 3.3. There is a commutative diagram:

A

P P ′

Proof. AnnW contains an A-sequence of length two, which by (3.2), is in Ann(P′=P)
as well. Thus, ExtiA(P

′=P; A)=0 for i=0; 1. The claim follows by applying HomA(−; A)
to the exact sequence 0 → P → P′ → P′=P → 0.

Remark 3.4. A is also a direct summand of P=S since the image of A → P has a
trivial intersection with S and the splitting map sends S to 0 in A. Consequently, the
argument of (3.3) can be applied to P=S ,→ P′=S ′ in order to conclude that A is also
a direct summand of P′=S ′.

Proof of Theorem 3.1. Let [a]∈⋂∞
n=1 Ker(Cl(A) → Cl(A′

n)). The maps Cl(A) →
Cl(A′

n) are de6ned by [a] → [(a ⊗A A′
n)

∗∗], where the duals are taken with respect
to A′

n. It suKces to show that [a?] is trivial, where a? = HomA(a; A). Note that for
each n; HomA(a; A′

n) ∼= A′
n. Thus, HomA(a; P′) ∼= P′, and since a is 6nitely generated,

HomA(a; S ′) ∼= S ′. As a result, HomA(a; P′=S ′) ∼= P′=S ′, since the sequence 0 → S ′ →
P′ → P′=S ′ → 0 is pure exact.

Because the fn’s go to zero in the m-adic topology, the m-adic closure of S in P,
denoted by S, is {〈an〉 ∈P | an → 0 in the m-adic topology on A}.

Thus, the map
∏
A=
∐
A → P=S, de6ned by 〈an〉 +

∐
A → 〈an〉 + US, is an isomor-

phism. By (2.5), P=S is faithfully Rat over A. Consequently, one can see that sequence
0 → P=S → P′=S → P′=P → 0 is split by applying HomA(−; P=S) and using the
methods of (3.3).

Lemma 3.5. Any 4nitely generated torsion-free direct summand N of P′=S ′ is a direct
summand of P=S.

Proof. Let P′=S ′ = N ⊕ K . Making use of the fact that S = S ′ ∩ S, the short exact
sequence 0 → (S ′ + S)=(S ′) → P′=S ′ → P′=(S ′ + S) → 0 can be rewritten as 0 →
(S ′ + S)=S ′ → N ⊕ K → P=S ⊕ T → 0, where T is a torsion A-module. Note that
(S ′+S)=S ′ is m-divisible since it is isomorphic to S=S. Consequently, it must map into
K . Thus, N is a direct summand of P=S.

Conclusion: As per (3.4), because A is a direct summand of P′=S ′; a? is a direct
summand of HomA(a; P′=S ′) ∼= P′=S ′. By the previous claim, a? is a direct summand
of P=S, which is faithfully Rat. Consequently, a? is Rat, or equivalently, A-free. In
other words, [a?] is trivial.
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4. Second theorem

As we stated in the introduction, our second theorem will provide a connection
between a divisor class on the ambient ring and its image in the divisor class group of
a speci6c hypersurface—a connection that Theorem 3.1 does not address. However, 3.1
does suggest that the pathology of the map Cl(A) → Cl((A=fA)′) lies near the “top” of
the maximal ideal. In fact, we put forth the following question: Let A be an excellent,
normal, local Q-algebra such that A is an isolated singularity of dimension at least
four. For any f∈m such that (A=fA)′ satis6es R1, is the map Cl(A) → Cl((A=fA)′)
injective? We supply evidence for an aKrmative answer to this query in the case where
A has a small Cohen–Macaulay module. Such a module is 6nitely generated and has
depth equal to the dimension of A. For such a ring A, we can identify an integer N ¿ 0
having the distinction that, when f∈mN is such that A=fA satis6es R1, then the map
Cl(A) → Cl((A=fA)′) is injective. This is our next result.

Theorem 4.1. Let (A;m; k) be an excellent, normal, local Q-algebra such that A is
an isolated singularity of dimension at least four. In addition, suppose that A has a
small Cohen–Macaulay module M. Then there is an N ¿ 0, depending only on the
ring A, such that the following holds: If f∈mN is such that A=fA satis4es R1, then
Cl(A) → Cl((A=fA)′) is injective.

As in Section 3, we give some discussion before proceeding with the proof. Again,
we can assume that A is complete. Set dim A = d. For every system of parameters
of A, there is a regular local ring R which is a subring of A and over which A is
module-6nite. Let & be the enveloping algebra. In this case, &=A⊗R A. Let ' :& → A
be the surjection de6ned by '(a⊗ b) = ab. Set J = Ker(') and )= ann& J. Then the
Noetherian di)erent of the R-algebra A, as de6ned by the eponymous Noether [20], is
the ideal '()), denoted by NA=R. Let R be the set of all regular local rings R obtained
as above. Set NA = �RNA=R, where the sum is taken over all R∈R. This ideal will
play a central role in the proof of Theorem 4.1, as evinced by the following fact:

(4.2) The ideal NA de4nes the singular locus of Spec(A); i.e., for P∈Spec(A); AP

is regular if and only if P does not contain NA. (The proof of this uses the fact that A
is an isolated singularity and is similar to the one that appears in [28, Lemma 6.12].)

As a result of (4.2), NA is an m-primary ideal; say mN ⊂ NA, for some N ¿ 0.
This is the integer in Theorem 4.1 that we wanted to identify. Let 0 �= f∈mN be
an element such that A=fA satis6es R1, and set M = M=fM , where M is the small
Cohen–Macaulay module in the statement of the theorem.

It happens that f, by virtue of belonging to NA, annihilates Ext1A(L;−), for any
lift L of M . A 6nitely generated A-module L is a lift of M if there is a short exact

sequence 0 → L
·f→L → M → 0. The fact that f annihilates Ext1A(L;−) is important

because it will allow us to establish the existence of only 6nitely many lifts of M ,
which is a key part of our proof.

Before demonstrating all of this, we need a few facts about Hochschild cohomology,
since it plays a crucial role in the annihilation of Ext1A(L;−). For any A-bimodule
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W , the nth Hochschild cohomology module, HHn
R(A;W ), is obtained by taking the

homology of the complex:

W d0

−−→HomR(A;W ) d1

−−→HomR(A⊗R A;W ) d2

−−→ · · · :

In particular, HH0
R(A;W ) = ker(d0) = W (A) = {w∈W |aw = wa; ∀a∈A}. For details,

refer to [21, Chapter 11]. We are now equipped to prove the following preliminary
lemma.

Claim 4.3. For each R∈R, the Noetherian di)erent NA=R annihilates HH1
R(A;−).

Proof. For any A-module W , by applying Hom&(−; W ) to the short exact sequence
0 → J → &

'→A → 0, one obtains a long exact sequence:

0 → Hom&(A;W ) → W → Hom&(J; W ) +→Ext1&(A;W ) → 0:

By the surjectivity of + and the de6nition of ), it is easy to see that ) · Ext1&(A;W ) =
0. Thus, NA=R annihilates Ext1&(A;W ), which is isomorphic to HH1

R(A;W ). (See [4,
p. 169] for details.)

Claim 4.4. For any lift L of M;NA annihilates Ext1A(L;−).

Proof. Let R∈R. Then any lift L is R-free. Let 0 → K → F → L → 0 be a short exact
sequence of A-modules, where F is A-free. For any A-module W , 0 → HomR(L;W ) →
HomR(F;W ) → HomR(K;W ) → 0 is a short exact sequence. Using the notation
HomR(L;W ) = [L;W ]R, there is a long exact sequence of Hochschild cohomology:
0 → HH0

R(A; [L;W ]R) → HH0
R(A; [F;W ]R) → HH0

R(A; [K;W ]R) → HH1
R(A; [L;W ]R) →

· · ·
By de6nition, HH0

R(A; [L;W ]R)=([L;W ]R)
(A) =[L;W ]A. Therefore, the claim follows

from (4.3) and the commutative diagram below, where the rows are exact:

([F,W ]R)(A) ([K,W ]R)(A)

[F,W ]A [K,W ]A

1HHR (A,[L,W ]R)

ExtA (L,W )1 0

Coker 

Claim 4.5. There are only 4nitely many lifts of M .

Proof. Let L be a lift of M and let F be a free A-module with rank equal to the number
of minimal generators of L. There is a pullback diagram for the homomorphisms ·f
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and - as seen below:

0

0

0

0 0

0

0

0L L

L

K K

K F

M M

.f

f :

π

∋

:∋

Note that the top row is split exact, since it is obtained by multiplying the extension
j by f. Therefore, K ⊕ L ∼= Z1(M), the 6rst syzygy of M: Z1(M) is unique up to
isomorphism of complexes since F maps onto M minimally. Likewise, K ∼= Z1(L).
As a result, Z1(L) ⊕ L ∼= Z1(M) for any lift L of M . Since A satis6es the Krull–
Schmidt Theorem, as per Swan [26, p. 566], Z1(M) = N1 ⊕ · · · ⊕ Nt , where each Ni
is indecomposable and unique up to isomorphism. Consequently, up to isomorphism,
there can be only 6nitely many L.

Proof of Theorem 4.1. The idea of the proof is to contradict the 6nite number of lifts
of M just established. For simplicity, set B=(A=fA)′. Let [a] be a non-trivial element
in Ker(Cl(A) → Cl(B)). From the short exact sequence

0−−→M
·f−−→M −−→M −−→ 0;

there is a long exact sequence

0−−→HomA(a; M)
·f−−→HomA(a; M)−−→HomA(a; M) +−−→Ext1A(a; M):

Claim 4.6. HomA(a; M) ∼= M .

Proof. By (2.3), M is a B-module. Therefore

HomA(a; M) ∼= HomA(a;HomB(B;M)) ∼= HomB(a ⊗A B;M):

Since M satis6es S2 over B, by (2.4)

HomB(a ⊗A B;M) ∼= HomB((a ⊗A B)∗∗; M);

where the dual is taken with respect to B. Since [a]∈Ker(Cl(A) → Cl(B)); (a⊗AB)∗∗ ∼=
B. Thus, HomB((a ⊗A B)∗∗; M) ∼= HomB(B;M) ∼= M .

Claim 4.7. Ext1A(a; M) = 0.

Proof. Assume Ext1A(a; M) �= 0. Then it has 6nite length as an A-module, since
ap

∼= Ap for every prime p �= m. In the long exact sequence preceding (4.6), set
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C = Coker(HomA(a; M) → M). Then we have the following exact sequence:

0HomA(a, M ) HomA(a, M )

K

M C
.f

0

Depth HomA(a; M)¿ 2 since M , and hence HomA(a; M), satis6es S2 as an A-module.
Since depthA(M)¿ 3 and depthA(C)=0, it follows that depthA(K)=1. We will make
use of these calculations shortly.

Let R∈R, with maximal ideal n. Then Ext1A(a; M) has 6nite length over R and
H 1

n(C) = 0. From 0 → K → M → C → 0, we obtain the exact sequence H 1
n(C) →

H 2
n(K) → H 2

n(M), where H 2
n(M) = 0 as well. As a result, H 2

n(K) = 0. Similarly, we
obtain the exact sequence:

H 2
n(HomA(a; M))

·f→H 2
n(HomA(a; M)) → H 2

n(K) = 0:

Since the map ·f is surjective, if H 2
n(HomA(a; M)) is 6nitely generated, then it equals

zero. We claim that this is the case. Since HomA(a; M) is 6nitely generated over
R; H 2

n(HomA(a; M)) satis6es the descending chain condition. ByMatlis and local duality:

H 2
n(HomA(a; M)) ∼= H 2

n(HomA(a; M))∨∨ ∼= Extd−2
R (HomA(a; M); R)∨;

where (−)∨ = HomR(−; ER(k)). Extd−2
R (HomA(a; M); R) has 6nite length as an R-

module. Consequently, Extd−2
R (HomA(a; M); R)∨ satis6es the ascending chain condi-

tion, as desired. Thus, since H 2
m(HomA(a; M))=0; depthA(HomA(a; M)) must be strictly

greater than two, recalling our previous calculations. But this contradicts the depths as

computed from the short exact sequence 0 → HomA(a; M)
·f→HomA(a; M) → K → 0,

which proves the claim.

This means that HomA(a; M) is a lift of M . In other words, we have the short exact
sequence:

0−−→HomA(a; M)
·f−−→HomA(a; M)−−→M −−→ 0:

Thus, if Ker(Cl(A) → Cl(B)) is non-trivial, there are in6nitely many lifts of M . More
speci6cally, by GriKth and Weston [13, Corollary 1.3], the kernel is torsion free; so
[a(m)] �= [a(n)] for all m; n¿ 0. By (2.1), [HomA(a(m); M)] �= [HomA(a(n); M)]. Thus,
HomA(a(m); M) and HomA(a(n); M) are non-isomorphic lifts of M for all m; n¿ 0,
which provides the contradiction, and thus proves the theorem.

Remark 4.2. It should be noted that the above proof requires f to be in NA, rather
than in mN . However, the integer N obtained gives a lower bound for injectivity of
the map on divisor class groups.

Remark 4.3. This result gives rise to a couple of questions. Is Theorem 4.1 true without
a small Cohen–Macaulay module? In other words, is a small Cohen–Macaulay module
really necessary? Note that the assumption of a big Cohen–Macaulay module M will
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not suKce since one cannot argue that [HomA(a; M)] is non-trivial. This is just one of
many places in the proof where 6nite generation is needed. Secondly, is the theorem
true in characteristic p¿ 0 or mixed characteristic? In either case, there might be some
p-torsion elements in the kernel of Cl(A) → Cl(B). Finally, is there a hypersurface
A=fA satisfying R1, with f∈NA, such that Cl(A) → Cl((A=fA)′) is not injective?
Such an A could not possess a small Cohen–Macaulay module, which would disprove
the small Cohen–Macaulay conjecture. This remains an open question.

Example 4.1 (Danilov [7, p. 128]). Let A =Q[[X; Y; Z]]=(pX 3 + p2Y 3 − aZ3), where
a∈{3; 4; 5; 10; 11; 14; 18; 21; : : :} is obtained from the study of Diophantine equations in
[25, Table 4g] and p is a prime that does not divide a. Then j∗: Cl(A[[T ]]) → Cl(A)
is not injective. Note that A represents an isolated singularity, but dim A= 2.

Example 4.2. Let A=C[X; Y; Z;W ]=(XY −ZW ). Then the domain B=C[X; Y; Z]=(XY −
Z2) is a hypersurface of A since B=A=(w− z)A, where the lower case letters represent
the images in the ring A. Hence, we obtain a map Cl(A) → Cl(B). (Again, A represents
an isolated singularity, but its dimension is three.) It can be shown that Cl(A) ∼= Z and
Cl(B) ∼= Z2 by using the fact that both groups are generated by the ideal (x; z). The
kernel of the map Cl(A) → Cl(B) is necessarily non-trivial. In fact, for any integer
n¿ 2, if Bn = C[X; Y; Z]=(XY − Zn), then Cl(Bn) is isomorphic to Zn. Therefore, the
maps Cl(A) → Cl(Bn) all fail to be injective. However, these maps do not satisfy the
hypotheses of Theorems 3.1 and 4.1 since the elements fn = XY − Zn do not lie in
higher and higher powers of the maximal ideal.

Remark 4.4. Non-trivial examples of the ring A described in Theorem 4.1 can be ob-
tained by appealing to algebraic geometry. Let V be a non-singular variety over an
algebraically closed 6eld k of characteristic zero such that its homogeneous coordi-
nate ring S(V ) has a small Cohen–Macaulay module M . It suKces to let V be any
non-singular irreducible hypersurface in P3

k , like V = Z(X 4
0 + X 4

1 + X 4
2 + X 4

3 ), which
does not satisfy Chow’s condition of proper [5, pp. 816–818]. “Enlarge” V by taking
its product with P1

k . Call this product W . There is a commutative diagram, where the
rows and columns are exact:

0

  

0

  
  

  
0       Cl(S(W ))   0

0     

  

  

 
 0

0

0

  Cl(W )

Cl(V )   Cl(S(V ))�

�

�

�
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One can see that the torsion-free rank of Cl(S(W )), as an abelian group, grows from
that of Cl(S(V )) by a factor of Z. This process can be iterated, so that at each step
we obtain a non-Cohen–Macaulay ring whose dimension has grown by one and whose
divisor class group has grown by Z.

Finally, note that irreducible hypersurface sections satisfying R1 are guaranteed by
Bertini’s Theorem [9, p. 10]. One can also generate irreducible hypersurface sections
in the generic way described below.

Example 4.3. Let (A;m) be an excellent local normal domain that is an isolated sin-
gularity of dimension d¿ 4. Set B = A[X1; X2; : : : ; Xd]. Then Bm[X ] retains the rele-
vant properties of A, with Cl(Bm[X ]) ∼= Cl(A). The elements fn =

∑d
i=1 a

n
i Xi, where

{a1; : : : ; ad} is a system of parameters for A, represent a sequence of elements f1; f2; : : :
of Bm[X ] as in Theorems 3.1 and 4.1.
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