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Abstract

The deformation theory of Lie triple systems is developed. We shall present that the Yamaguti
cohomology plays a crucial role in this theory.
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Introduction
Lie triple system

The Lie triple system was first formulated in terms of the identities by Jacobson [11,
12]. Examing these identities and eliminating two from them, Yamaguti [14] established
the present formulation of a Lie triple system.

Letk be a field of characteristic zero. l4e triple systen{Lts) is a vector spac& over
k with a trilinear multiplicationa b c] satisfying

[aab]=0, 1)
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[abc]l+[bcal+[cab]l=0, (2)
[ab[cde]]:[[abc]de]—i—[c[abd]e]—i—[cd[abe]] )

for a,b,c,d,e € T. Equation (3) says thaD(a,b):T — T defined byD(a, b)(z) :=
[a b 7] is a derivation of the trilinear compositigp- — —].

Let L be a Lie algebra with produdt;, b], then the ternary compositioja b c] =
[a, b], c] satisfies the above identities, hentds a Lts. Conversely, any Lt can be
considered as a subspace of a Lie algebra as follows (Bertram [1], Jacobson [12]): Let
H :=Der(T) c EndT) be the space of derivations of the Lie triple productionThen
the direct sumI" @ Der(T) turns out to be a Lie algebra with a bilinear prod{iet—]
given byla, bl := D(a,b), la, f1:=—f(a), [f.al:=—la, f1, [f.gl:=fog—gof,
for a,b e T, f,g € Den(T). The standard-imbedding & is the subalgebrd (T) :=
T @ [T, T] of the Lie algebral’ ® Der(T). The LtsT is realized as the-1-eigenspace
of the involutiono : L(T) — L(T) defined by ((a, f)) := (—a, f). This observation will
enable us to apply the well developed theory for Lie algebras to study Lts's. In fact, Lister
[13] constructed a structure theory of Lts’s, and Harris [10] developed a cohomology theory
of Lts’s on this line.

On the other hand, Yamaguti’'s approach [14] to a cohomology theory of Lts's was
intrinsic. His cohomology theory is discussed without going out of a Lts into an enveloping
Lie algebra, so that the Yamaguti coboundary is defined in terms of only elements of a Lts.

Deformation theory

The deformation theory of algebras was introduced by Gerstenhaber in a series of papers
[3-7]. It has subsequently been extended to covariant functors from a small category to
algebras [8] and to algebraic systems, bialgebras, Hopf algebras [9] by Gerstenhaber and
Schack, also to Leibniz pairs and Poisson algebras [2] by Flato, Gerstenhaber and Voronov,
etc.

In this paper we shall develop a deformation theory of Lie triple systems, keeping in
mind the following aspects due to Gerstenhaber [4]:

Aspects of deformation theory

(1) A definition of the class of objects within whictleformationtakes place and
identification of theinfinitesimalsof a given object with the elements of a suitable
cohomology group

(2) A theory of theobstructiondo theintegrationof an infinitesimal deformation.

(3) A parameterizatiorof the set of objects.

(4) A determination of the natural automorphisms of the parameter space and the
determination of theigid objects.

Let us recall that a suitable cohomology group fue tleformation theory of associative al-
gebras, Lie algebras and noncommutative Poisson algebras is the Hochschild cohomology,
the Chevalley—Eilenberg cohomology and the total cohomology of them, respectively.
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1. Deformation of aLietriple system

Let T be a Lts overk with a ternary composition(—, —, —) =[— — —]:T x T x
T — T. A deformation ofT is a formal power series; : T[[z]] x T[] x Tt — T[z]
(z: deformation parameter) of the form

at(as bv C) = ao(as bv C) + tal(av b, C) + 12(12(07 b, C) + Tty
where eachw; : T x T x T — T is ak-trilinear map and extended to that of the power
series ringk[[¢] andag = «. Furthermorel'[[¢] is the set of all formal power series in

whose coefficients are elementsiofind a module ovet[¢]. Thena, defines the trilinear
multiplication onT'[[¢] and such a system is denoted by

T, = (Tl ).

According to the aspect (1) of the deformation thedtyis required to be the same kind
asT, thatis, ak[[7]-Lts. Thus the conditions, corresponding to (1)—(3),

or(a,a,b)=0, (4)
ar(a,b,c)+as(b,c,a)+as(c,a,b) =0, (5)
ot,(a, b, (c,d, e)) = (ott(a, b,c),d, e) —i—a,(c, ar(a,b,d), e) (6)

+a,(c,d,at(a,b,e))

must be satisfied. The conditions (4) and (5) lead to the obvious equations

aj(a,a,b) =0, 7
ai(a,b,c)+a;(b,c,a)+a;(c,a,b)=0 (8)

fori =0,1,2,.... The condition (6) is expressed as
Y tHai(a,b.aj(c.d. €)=t {ai(aja b.c).d,e) +ai(c.aj(a b,d),e)
+ai(c,d,aj(a,b, e))}.

Then we have

Z lai(aj(a, b, c).d,e) +ai(c,aj(a b,d),e) +ai(c.d,aj(a,b,e))
itj=n —ai(a,b,aj(c,d,e))}zo

forn=0,1,2,....If we put
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a o B(x1, X2, X3, X4, x5) = ar(B(x1, X2, x3), X4, X5) + a(x3, B(x1, X2, X4), X5)

+ a(x3, x4, B(x1, x2, x5)) — a(x1, X2, B(x3, X4, X5)),
then they can be written in the forms
apoal +agoag=0, 9)
and forn > 2,
—qQo, — 0, 00)=0U100,—1+a200y_2+ - +oay_100Q1. (20)

We call these thdeformation equationfor a Lie triple system.

Letay, o, be deformations of a Lt& with o] := « + tat} + t2a, + - - - . The deformation
o is equivalentto «;, denoted by, ~ o, if there exists a[[¢]-module isomorphism
fi:T/ — T, of the form

fi=lr+tfi+2fot-e,

where eacly; is ak-linear mapT — T extended to bé[[¢]-linear such that

aj(a.b,c)= frar(fia), fi(b), fi(©)) :=a; * fi(a,b,c) (11)

(a,b,c €T). If we write [abc]; = «/(a,b,c) and[abc]; = w4 (a, b, ¢), then the above
equality (11) meang; ([a bcl;) = [fi(a) f:(b) fi(c)];, in other words, thay; is ak[[¢]-Lts
isomorphism.

Whenap = a2 = --- = 0, we say thaiy, is the null deformationand write Tp =
(T[], ar). The null deformation is a just “formal power series triple systeff].
A deformationy, is said to be thérivial deformationwhenT; ~ Tp.

2. Yamaguti cohomology

We first recall the definition of a Lts-module given by Yamaguti [14]. [ebe a Lts
and V be a vector space ovér V is called aT-moduleif there exists a bilinear map
0:(a,b) — 6(a,b) of T x T into the associative algebra of the linear transformations of
V satisfying the following conditions:

6(c,d)0(a,b)—0(b,d)(a,c) —0(a,[bcd])+ Db, c)0(a,d) =0, (12)
6(c,d)D(a,b) — D(a,b)0(c,d) +6([abcl,d)+6(c,[abd]) =0, (13)

whereD(a, b) =60(b,a) — 0(a, b). The LtsT itself can be considered asTamodule by
the action

0(a,b)(v) = [vab).
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Remark (An interpretation of (12), (13)). Suppose that the vector space direct sum
E =T & V isitself the Lts such that

(1) T is a subsystem,
(2) [abc] liesinV if any one ofa, b, cisin V, and
(3) [abc]=0if any two ofa, b, careinV.

This is a general idea of flaing a module. Substituting(a, b)(v) for [vab] in the
defining identity (3), we have the conditions (12) and (13).

Let V be theT-module defined by a bilinear ma&pFor each: > 0 we define &-vector
spaceC?' (T, V) of (2n + 1)-cochains off" with coefficients inV as follow: A cochain
f e CZ*TYT, V) is ak-multilinear function of 2 + 1 variablesf:7 x --- x T — V
satisfying

fxg, ... x20—2,x,x,y)=0

and

fa, o xm—2,x,y, 0+ f(x1, ..., x20-2, ¥y, 2, %) + f(x1,...,x20-2,2,x,y) =0
for x;, x, v,z € T, and we understand Ho®¥", V) by C1(T, V).

The Yamaguti coboundarys a k-linear maps?*—1:c2-1(1,v) - c#+(T,V)
defined by

827 f(x1, ... X20s1)

=0(x2n, Xon+1) f (X1, ..., X20—1) — O(X20-1, X2041) f (X1, ..., X20—2, X2)

n
k —
+ > (D" D(xa—1, x2) £ (X1 - K2 L Kk -2 X2n11)
k=1
n  2n+1
k+1 — =
+ Y Y (v K S [ 1 X X)L X200)
k=1 j=2k+1

where™ denotes omission. With this coboundary the Yamaguti cochain forms a complex

1 3
(1, vy > 31, v) 5 ST, V) — -,

and §2't1521=1 — 0 for n = 1,2,... (consult with Yamaguti [14] on the proof). The
cocycles and coboundaries are denoted&byr’, V) and B* (T, V) respectively, while the
Yamaguti conomologg H*(T, V)= Z*(T,V)/B*(T, V).

In the case thaV is the LtsT itself, the operatos is written down for lower orders as



F. Kubo, Y. Taniguchi / Journal of Algebra 278 (2004) 242—-250 247

81 f (x1, x2, x3)
=[f(xp) x2x3] — [ f(x2) x1x3] + [x1x2 f(x3)] — f([x1x2x3]),
83 f (x1, x2, x3, X4, X5)
= [ f(x1, x2, x3) xax5] — [ f(x1, X2, x4) x3x5] — [x1x2 f (x3, x4, X5)]
+ [xaxa f (v1.x2, x5)| + f (Ix1x2x3]. x4, x5) + f (x3, [x1x2x4], x5)

+ f(x3, x4, [x1x2x5]) — f(x1, x2, [x3x4X5])

forxq,...,xs5€eT.

3. Infinitessmal of defor mation

Let us return to the deformation equations (9), (10) and Egs. (7), (8). It follows from
(7) and (8) that each; can be viewed as an elements of the 3-Yamaguti cochain space
C3(T, T). One can easily see thag o o, + o, o g = S, for n > 1. Hence the deformation
equations (9), (10) can be expressed as

Sar =0, (14)

alo0u_1+aroa,—2+ - +a,—10a1=—8a, (15)

in terms of the 3-Yamaguti coboundasy The infinitesimalof the deformationy; is a1.
Sinceay is a 3-cocycle by (14), this concept suits the aspects of the Gerstenhaber’s
deformation theory.

Assume that deformationg = o + ta1 + t2ap + - - ande, = o + tary + t2ty + - - -
are equivalent undef, = 17 + tf1 4+ t2f> + - - - . The defining equation; = oy * f;, i.e.,
filej(a, b, ) =a:(fi(a), fi(b), fi(c)) is equivalent to

fna+fn—10l§|_+"'+f0(¥;l=0[Fn+o{1Fn_l+...+anF0

or
n—1
Olilzan +Oan_anl+Z(aiFn—i_fn—ia,/')a (16)
i=1
where fo = 17 and
aiFja,b,e)="Y a(fi(@, fib), (). (17)
k+l+m=j

Forn =1 one has:; = a1 + 8f1. Thus we have



248 F. Kubo, Y. Taniguchi / Journal of Algebra 278 (2004) 242-250

Theorem 1 (Infinitesimal). Let «;, «; be equivalent deformations of a L%, «), then
the first-order terms of them belong to the same cohomology class in the third Yamaguti
cohomology grougf3(T, T).

4. Rigidity

A Lts T isanalytically rigid if every deformatiorf; is equivalent to the null deformation
Tp. As the deformation theory of algebras wikiinary products, such as associative
algebras and Lie algebras, we have a fundamental theorem.

Theorem 2 (Rigidity). If T is a Lts withH3(T, T') = 0, thenT is analytically rigid.

Proof. Leta; is a deformation of a LtsT', o) and writea; = o + 1" oty + 1" ot pq + -+ .
It follows from (15) thatse;, = 0, i.e.,«, € Z3(T, T). By our assumptiorH3(T, T) = 0
we can findf") e CX(T, T) such thatw, = 8. Now consider the deformatiow, =
a; % (17 — 17 £). In this case Eq. (16) is

O['/, = Oy +OlFr —_ (—f(r))o[ =0y — (Sf(r) = O’

observing (17)aF,(a,b,c) =a(—f(a), b, c) +a(a, — O b), c) +ala, b, — ().
Hencew; = o + tr+1o/+1 + ---. Repeating this procedure, one can remove an increasing

r

number of terms of any deformatiofn = o + rorg + 1200 + -+ -
(- (low (ar =) (1 =27 @)) 5 ) =

which impliesa; ~«a. O

5. Obstruction, integration

A 3-cocyclex; € Z3(T, T) is said to bentegrableif there exists a one parameter family
o, whose first-order term ig1, so thate, = o + tag + %02 + - --. Now let us go back to
the deformation equation (15):

arody_1+ago0, 2+ +ay_10a1=—day.

Suppose that we have already had. .., o,—1. We want to findw, satisfying (15). But

there is arobstructionto do so. The left-hand side of (15) define a 5-cocycle and we shall
call this an obstruction cocycle. The verification of this fact sets us a long computation, and
as a result convinces us that the Yamaguti cohomology is a suitable one for the deformation
theory of Lts’s.

Lemma. If « and B8 are 3-cocyclesthena o @ anda o 8 + B o @ are 5-cocycles.
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Proof. Lemma follows from the following formula:

8(f o g)(x1, x2, X3, X4, X5, X6, X7)
=8/ (g(x1, x2, x3), X4, X5, X6, X7) + 8 (3, g(x1, X2, X4), X5, X6, X7)
+ 81 (x3, x4, g(x1, X2, X5), X6, X7) + 8 (X3, X4, X5, g(x1, X2, X6), X7)
+ 81 (x3, x4, x5, x6, g(x1, X2, X7)) — 8 (X1, X2, (X3, X4, X5), X6, X7)
— 8 (x1, x2, x5, g(x3, x4, xp), X7) — 8 (X1, X2, X5, X6, (X3, X4, X7))
+ 81 (x1, x2, x3, x4, g (x5, X6, x7)) — f(8g(x1. X2, X3, X4, X5), X6, X7

)
— f(xs, 88 (x1, x2, x3, X4, X6), x7) — f (x5, x6, 8¢ (X1, X2, X3, X4, X7))
)

— f (%1, x2. 88(x3, x4, x5, X6, X7)) + f (x3, x4, 88 (x1, X2, X5, X6, X7)

— [f (1, x2, x3) x4 8 (x5, X6, x7) | + [8(x1, X2, X3) x4 f (x5, X6, X7) ]

+ o+

— |x3 f(x1, x2, x4) g (x5, X6, X7) x38(x1, x2, x4) f (x5, x6, X7)

+ | f(x1, x2, x5) x6 g(x3, X4, X7) | — | (X1, X2, X5) X6 f (X3, X4, X7)
+ | f(x1, x2, x5) g(x3, X4, X6) X7 g(x1,x2, x5) f(x3, x4, X6) X7
— | f(x1, x2, x6) g(x3, X4, X5) X7 g(x1, x2, x6) f(x3, x4, X5) X7

— | f(x3, x4, x5) x6 g (x1, X2, X7) 8(x3, x4, x5) x6 f (X1, X2, X7)

—_— e e e e e e

+ + + +

[

[ [ ]

[ [ ]

[ -[ ]
— [ f (x1, x2, x6) x5 g (x3, x4, x7) | + [ g (x1, x2, x6) X5 f (x3, X4, x7) |
[ [ ]

[ [ ]

[ [ ]

— | x5 f(x3, xa, x6) g(x1, X2, X7) | + | x5 g (x3, X4, x6) [ (x1, X2, x7) |.
This lemma immediately leads to the following result.
Proposition. Leta; = o + tay + 12wz + - - - be a deformation of a LT, «). Then
a1oa,_1t+aroay_2+---+a,_ 1001 € ZS(T, T).
Now we can state the third fundamental theorem.
Theorem 3 (Integration).If 7 is a Lts with H>(T, T) = 0, then every3-cocycle is
integrable.
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