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Abstract

The deformation theory of Lie triple systems is developed. We shall present that the Yam
cohomology plays a crucial role in this theory.
 2004 Elsevier Inc. All rights reserved.

Keywords:Lie triple system; Algebraic deformation; Yamaguti cohomology

Introduction

Lie triple system

The Lie triple system was first formulated in terms of the identities by Jacobson
12]. Examing these identities and eliminating two from them, Yamaguti [14] establ
the present formulation of a Lie triple system.

Let k be a field of characteristic zero. ALie triple system(Lts) is a vector spaceT over
k with a trilinear multiplication[a b c] satisfying

[a a b] = 0, (1)
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[a b c] + [b c a] + [c a b] = 0, (2)[
a b [c d e]] = [[a b c]d e

] + [
c [a b d] e] + [

c d [a b e]] (3)

for a, b, c, d, e ∈ T . Equation (3) says thatD(a,b) :T → T defined byD(a,b)(z) :=
[a b z] is a derivation of the trilinear composition[− − −].

Let L be a Lie algebra with product[a, b], then the ternary composition[a b c] =
[[a, b], c] satisfies the above identities, henceL is a Lts. Conversely, any LtsT can be
considered as a subspace of a Lie algebra as follows (Bertram [1], Jacobson [12
H := Der(T ) ⊂ End(T ) be the space of derivations of the Lie triple product onT . Then
the direct sumT ⊕ Der(T ) turns out to be a Lie algebra with a bilinear product[−−]
given by[a, b] := D(a,b), [a,f ] := −f (a), [f,a] := −[a,f ], [f,g] := f ◦ g − g ◦ f ,
for a, b ∈ T , f,g ∈ Der(T ). The standard-imbedding ofT is the subalgebraL(T ) :=
T ⊕ [T ,T ] of the Lie algebraT ⊕ Der(T ). The LtsT is realized as the−1-eigenspace
of the involutionσ :L(T ) → L(T ) defined byσ((a,f )) := (−a,f ). This observation will
enable us to apply the well developed theory for Lie algebras to study Lts’s. In fact,
[13] constructed a structure theory of Lts’s, and Harris [10] developed a cohomology t
of Lts’s on this line.

On the other hand, Yamaguti’s approach [14] to a cohomology theory of Lts’s
intrinsic. His cohomology theory is discussed without going out of a Lts into an envelo
Lie algebra, so that the Yamaguti coboundary is defined in terms of only elements of

Deformation theory

The deformation theory of algebras was introduced by Gerstenhaber in a series of
[3–7]. It has subsequently been extended to covariant functors from a small categ
algebras [8] and to algebraic systems, bialgebras, Hopf algebras [9] by Gerstenha
Schack, also to Leibniz pairs and Poisson algebras [2] by Flato, Gerstenhaber and V
etc.

In this paper we shall develop a deformation theory of Lie triple systems, keepi
mind the following aspects due to Gerstenhaber [4]:

Aspects of deformation theory

(1) A definition of the class of objects within whichdeformation takes place and
identification of theinfinitesimalsof a given object with the elements of a suitab
cohomology group.

(2) A theory of theobstructionsto theintegrationof an infinitesimal deformation.
(3) A parameterizationof the set of objects.
(4) A determination of the natural automorphisms of the parameter space an

determination of therigid objects.

Let us recall that a suitable cohomology group for the deformation theory of associative a
gebras, Lie algebras and noncommutative Poisson algebras is the Hochschild coho
the Chevalley–Eilenberg cohomology and the total cohomology of them, respective
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1. Deformation of a Lie triple system

Let T be a Lts overk with a ternary compositionα(−,−,−) = [− − −] :T × T ×
T → T . A deformation ofT is a formal power seriesαt :T [[t]] × T [[t]] × T [[t]] → T [[t]]
(t : deformation parameter) of the form

αt (a, b, c) := α0(a, b, c) + tα1(a, b, c) + t2α2(a, b, c) + · · · ,

where eachαi :T × T × T → T is a k-trilinear map and extended to that of the pow
series ringk[[t]] andα0 = α. FurthermoreT [[t]] is the set of all formal power series int
whose coefficients are elements ofT and a module overk[[t]]. Thenαt defines the trilinea
multiplication onT [[t]] and such a system is denoted by

Tt := (
T [[t]], αt

)
.

According to the aspect (1) of the deformation theory,Tt is required to be the same kin
asT , that is, ak[[t]]-Lts. Thus the conditions, corresponding to (1)–(3),

αt (a, a, b) = 0, (4)

αt (a, b, c) + αt (b, c, a) + αt(c, a, b) = 0, (5)

αt

(
a, b,αt(c, d, e)

) = αt

(
αt (a, b, c), d, e

)+ αt

(
c,αt (a, b, d), e

)
+ αt

(
c, d,αt (a, b, e)

) (6)

must be satisfied. The conditions (4) and (5) lead to the obvious equations

αi(a, a, b) = 0, (7)

αi(a, b, c) + αi(b, c, a) + αi(c, a, b) = 0 (8)

for i = 0,1,2, . . . . The condition (6) is expressed as

∑
t i+j αi

(
a, b,αj (c, d, e)

) =
∑

t i+j
{
αi

(
αj (a, b, c), d, e

)+ αi

(
c,αj (a, b, d), e

)

+ αi

(
c, d,αj (a, b, e)

)}
.

Then we have

∑
i+j=n

{
αi

(
αj (a, b, c), d, e

)+ αi

(
c,αj (a, b, d), e

)+ αi

(
c, d,αj (a, b, e)

)
− αi

(
a, b,αj (c, d, e)

)} = 0

for n = 0,1,2, . . . . If we put
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α ◦ β(x1, x2, x3, x4, x5) = α
(
β(x1, x2, x3), x4, x5

) + α
(
x3, β(x1, x2, x4), x5

)
+ α

(
x3, x4, β(x1, x2, x5)

) − α
(
x1, x2, β(x3, x4, x5)

)
,

then they can be written in the forms

α0 ◦ α1 + α1 ◦ α0 = 0, (9)

and forn � 2,

−α0 ◦ αn − αn ◦ α0 = α1 ◦ αn−1 + α2 ◦ αn−2 + · · · + αn−1 ◦ α1. (10)

We call these thedeformation equationsfor a Lie triple system.
Let αt ,α

′
t be deformations of a LtsT with α′

t := α + tα′
1 + t2α′

2 +· · · . The deformation
α′

t is equivalentto αt , denoted byα′
t ∼ αt , if there exists ak[[t]]-module isomorphism

ft :T ′
t → Tt of the form

ft = 1T + tf1 + t2f2 + · · · ,

where eachfi is ak-linear mapT → T extended to bek[[t]]-linear such that

α′
t (a, b, c) = f −1

t αt

(
ft (a), ft (b), ft (c)

) := αt ∗ ft (a, b, c) (11)

(a, b, c ∈ T ). If we write [a b c]′t = α′
t (a, b, c) and [a b c]t = αt (a, b, c), then the above

equality (11) meansft ([a b c]′t ) = [ft (a)ft (b)ft (c)]t , in other words, thatft is ak[[t]]-Lts
isomorphism.

When α1 = α2 = · · · = 0, we say thatαt is the null deformationand write T0 =
(T [[t]], αt ). The null deformation is a just “formal power series triple system”T [[t]].
A deformationαt is said to be thetrivial deformationwhenTt ∼ T0.

2. Yamaguti cohomology

We first recall the definition of a Lts-module given by Yamaguti [14]. LetT be a Lts
and V be a vector space overk. V is called aT -moduleif there exists a bilinear ma
θ : (a, b) → θ(a, b) of T × T into the associative algebra of the linear transformation
V satisfying the following conditions:

θ(c, d)θ(a, b)− θ(b, d)θ(a, c)− θ
(
a, [b c d])+ D(b, c)θ(a, d) = 0, (12)

θ(c, d)D(a, b) − D(a,b)θ(c, d) + θ
([a b c], d) + θ

(
c, [a b d]) = 0, (13)

whereD(a,b) = θ(b, a) − θ(a, b). The LtsT itself can be considered as aT -module by
the action

θ(a, b)(v) = [v a b].
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Remark (An interpretation of (12), (13)). Suppose that the vector space direct s
E = T ⊕ V is itself the Lts such that

(1) T is a subsystem,
(2) [a b c] lies inV if any one ofa, b, c is in V , and
(3) [a b c] = 0 if any two ofa, b, c are inV .

This is a general idea of defining a module. Substitutingθ(a, b)(v) for [v a b] in the
defining identity (3), we have the conditions (12) and (13).

LetV be theT -module defined by a bilinear mapθ . For eachn � 0 we define ak-vector
spaceC2n+1(T ,V ) of (2n + 1)-cochains ofT with coefficients inV as follow: A cochain
f ∈ C2n+1(T ,V ) is a k-multilinear function of 2n + 1 variablesf :T × · · · × T → V

satisfying

f (x1, . . . , x2n−2, x, x, y) = 0

and

f (x1, . . . , x2n−2, x, y, z) + f (x1, . . . , x2n−2, y, z, x) + f (x1, . . . , x2n−2, z, x, y) = 0

for xi, x, y, z ∈ T , and we understand Homk(T ,V ) by C1(T ,V ).
The Yamaguti coboundaryis a k-linear map δ2n−1 :C2n−1(T ,V ) → C2n+1(T ,V )

defined by

δ2n−1f (x1, . . . , x2n+1)

= θ(x2n, x2n+1)f (x1, . . . , x2n−1) − θ(x2n−1, x2n+1)f (x1, . . . , x2n−2, x2n)

+
n∑

k=1

(−1)n+kD(x2k−1, x2k)f
(
x1, . . . , x̂2k−1, x̂2k, . . . , x2n+1

)

+
n∑

k=1

2n+1∑
j=2k+1

(−1)n+k+1f
(
x1, . . . , x̂2k−1, x̂2k, . . . , [x2k−1x2k xj ], . . . , x2n+1

)

wherê denotes omission. With this coboundary the Yamaguti cochain forms a com

C1(T ,V )
δ1−→ C3(T ,V )

δ3−→ C5(T ,V ) −→ · · · ,

and δ2n+1δ2n−1 = 0 for n = 1,2, . . . (consult with Yamaguti [14] on the proof). Th
cocycles and coboundaries are denoted byZ•(T ,V ) andB•(T ,V ) respectively, while the
Yamaguti cohomologyis H •(T ,V ) = Z•(T ,V )/B•(T ,V ).

In the case thatV is the LtsT itself, the operatorδ is written down for lower orders as
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δ1f (x1, x2, x3)

= [
f (x1) x2 x3

] − [
f (x2) x1x3

] + [
x1 x2 f (x3)

] − f
([x1 x2x3]

)
,

δ3f (x1, x2, x3, x4, x5)

= [
f (x1, x2, x3) x4 x5

] − [
f (x1, x2, x4) x3x5

] − [
x1 x2f (x3, x4, x5)

]
+ [

x3x4 f (x1, x2, x5)
] + f

([x1 x2x3], x4, x5
) + f

(
x3, [x1 x2 x4], x5

)
+ f

(
x3, x4, [x1x2 x5]

) − f
(
x1, x2, [x3x4 x5]

)

for x1, . . . , x5 ∈ T .

3. Infinitesimal of deformation

Let us return to the deformation equations (9), (10) and Eqs. (7), (8). It follows
(7) and (8) that eachαi can be viewed as an elements of the 3-Yamaguti cochain s
C3(T ,T ). One can easily see thatα0◦αn +αn ◦α0 = δαn for n � 1. Hence the deformatio
equations (9), (10) can be expressed as

δα1 = 0, (14)

α1 ◦ αn−1 + α2 ◦ αn−2 + · · · + αn−1 ◦ α1 = −δαn (15)

in terms of the 3-Yamaguti coboundaryδ. The infinitesimalof the deformationαt is α1.
Since α1 is a 3-cocycle by (14), this concept suits the aspects of the Gerstenh
deformation theory.

Assume that deformationsαt = α + tα1 + t2α2 + · · · andα′
t = α + tα′

1 + t2α′
2 + · · ·

are equivalent underft = 1T + tf1 + t2f2 + · · · . The defining equationα′
t = αt ∗ ft , i.e.,

ft (α
′
t (a, b, c)) = αt (ft (a), ft (b), ft (c)) is equivalent to

fnα + fn−1α
′
1 + · · · + f0α

′
n = αFn + α1Fn−1 + · · · + αnF0

or

α′
n = αn + αFn − fnα +

n−1∑
i=1

(
αiFn−i − fn−iα

′
i

)
, (16)

wheref0 = 1T and

αiFj (a, b, c) =
∑

k+l+m=j

αi

(
fk(a), fl(b), fm(c)

)
. (17)

Forn = 1 one hasα′ = α1 + δf1. Thus we have
1
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Theorem 1 (Infinitesimal).Let αt , α′
t be equivalent deformations of a Lts(T ,α), then

the first-order terms of them belong to the same cohomology class in the third Yam
cohomology groupH 3(T ,T ).

4. Rigidity

A Lts T isanalytically rigid if every deformationTt is equivalent to the null deformatio
T0. As the deformation theory of algebras withbinary products, such as associati
algebras and Lie algebras, we have a fundamental theorem.

Theorem 2 (Rigidity). If T is a Lts withH 3(T ,T ) = 0, thenT is analytically rigid.

Proof. Let αt is a deformation of a Lts(T ,α) and writeαt = α + trαr + tr+1αr+1 + · · · .
It follows from (15) thatδαr = 0, i.e.,αr ∈ Z3(T ,T ). By our assumptionH 3(T ,T ) = 0
we can findf (r) ∈ C1(T ,T ) such thatαr = δf (r). Now consider the deformationα′

t =
αt ∗ (1T − trf (r)). In this case Eq. (16) is

α′
r = αr + αFr − (−f (r)

)
α = αr − δf (r) = 0,

observing (17):αFr (a, b, c) = α(−f (r)(a), b, c) + α(a,−f (r)(b), c) + α(a, b,−f (r)(c)).
Henceα′

t = α + tr+1α′
r+1 + · · · . Repeating this procedure, one can remove an increa

number of terms of any deformationαt = α + tα1 + t2α2 + · · · :

(· · · ((αt ∗ (
1T − t1f (1)

)) ∗ (
1T − t2f (2)

)) ∗ · · ·) = α,

which impliesαt ∼ α. �

5. Obstruction, integration

A 3-cocycleα1 ∈ Z3(T ,T ) is said to beintegrableif there exists a one parameter fam
αt whose first-order term isα1, so that,αt = α + tα1 + t2α2 + · · · . Now let us go back to
the deformation equation (15):

α1 ◦ αn−1 + α2 ◦ αn−2 + · · · + αn−1 ◦ α1 = −δαn.

Suppose that we have already hadα1, . . . , αn−1. We want to findαn satisfying (15). But
there is anobstructionto do so. The left-hand side of (15) define a 5-cocycle and we
call this an obstruction cocycle. The verification of this fact sets us a long computatio
as a result convinces us that the Yamaguti cohomology is a suitable one for the defor
theory of Lts’s.

Lemma. If α andβ are 3-cocycles, thenα ◦ α andα ◦ β + β ◦ α are 5-cocycles.
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δ(f ◦ g)(x1, x2, x3, x4, x5, x6, x7)

= δf
(
g(x1, x2, x3), x4, x5, x6, x7

) + δf
(
x3, g(x1, x2, x4), x5, x6, x7

)
+ δf

(
x3, x4, g(x1, x2, x5), x6, x7

) + δf
(
x3, x4, x5, g(x1, x2, x6), x7

)
+ δf

(
x3, x4, x5, x6, g(x1, x2, x7)

) − δf
(
x1, x2, g(x3, x4, x5), x6, x7

)
− δf

(
x1, x2, x5, g(x3, x4, x6), x7

) − δf
(
x1, x2, x5, x6, g(x3, x4, x7)

)
+ δf

(
x1, x2, x3, x4, g(x5, x6, x7)

) − f
(
δg(x1, x2, x3, x4, x5), x6, x7

)
− f

(
x5, δg(x1, x2, x3, x4, x6), x7

) − f
(
x5, x6, δg(x1, x2, x3, x4, x7)

)
− f

(
x1, x2, δg(x3, x4, x5, x6, x7)

) + f
(
x3, x4, δg(x1, x2, x5, x6, x7)

)
− [

f (x1, x2, x3) x4 g(x5, x6, x7)
] + [

g(x1, x2, x3) x4 f (x5, x6, x7)
]

− [
x3 f (x1, x2, x4) g(x5, x6, x7)

] + [
x3 g(x1, x2, x4) f (x5, x6, x7)

]
+ [

f (x1, x2, x5) x6 g(x3, x4, x7)
] − [

g(x1, x2, x5) x6 f (x3, x4, x7)
]

+ [
f (x1, x2, x5)g(x3, x4, x6) x7

] − [
g(x1, x2, x5) f (x3, x4, x6) x7

]
− [

f (x1, x2, x6) x5 g(x3, x4, x7)
] + [

g(x1, x2, x6) x5 f (x3, x4, x7)
]

− [
f (x1, x2, x6)g(x3, x4, x5) x7

] + [
g(x1, x2, x6) f (x3, x4, x5) x7

]
− [

f (x3, x4, x5) x6 g(x1, x2, x7)
] + [

g(x3, x4, x5) x6 f (x1, x2, x7)
]

− [
x5 f (x3, x4, x6) g(x1, x2, x7)

] + [
x5 g(x3, x4, x6) f (x1, x2, x7)

]
. �

This lemma immediately leads to the following result.

Proposition. Letαt = α + tα1 + t2α2 + · · · be a deformation of a Lts(T ,α). Then

α1 ◦ αn−1 + α2 ◦ αn−2 + · · · + αn−1 ◦ α1 ∈ Z5(T ,T ).

Now we can state the third fundamental theorem.

Theorem 3 (Integration).If T is a Lts with H 5(T ,T ) = 0, then every3-cocycle is
integrable.

Acknowledgments

We are grateful to K. Yamaguti for stimulating discussions and very helpful commen
The first author also expresses his deep appreciation to M. Gerstenhaber for hi
encouragement.



250 F. Kubo, Y. Taniguchi / Journal of Algebra 278 (2004) 242–250

er-

h.

el,
er

:
to

2.
98

–530.

2.
References

[1] W. Bertram, The Geometry of Jordan and Lie Structures, in: Lecture Notes in Math., vol. 1754, Spring
Verlag, 2000.

[2] M. Flato, M. Gerstenhaber, A.A. Voronov, Cohomology and deformation of Leibniz pairs, Lett. Mat
Phys. 34 (1995) 77–90.

[3] M. Gerstenhaber, On the cohomology structure of an associative ring, Ann. of Math. 78 (1963) 59–103.
[4] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964) 267–288.
[5] M. Gerstenhaber, On the deformation of rings and algebras II, Ann. of Math. 84 (1966) 1–19.
[6] M. Gerstenhaber, On the deformation of rings and algebras III, Ann. of Math. 88 (1968) 1–34.
[7] M. Gerstenhaber, On the deformation of rings and algebras IV, Ann. of Math. 99 (1974) 257–276.
[8] M. Gerstenhaber, S.D. Schack, Algebraic cohomology and deformation theory, in: M. Hazewink

M. Gerstenhaber (Eds.), Deformation Theory of Algebras and Structures and Applications, Kluw
Academic, Dordrecht, 1988, pp. 11–264.

[9] M. Gerstenhaber, S.D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, in
M. Gerstenhaber, J. Stasheff (Eds.), Deformation Theory and Quantum Groups with Applications
Mathematical Physics, in: Contemp. Math., vol.134, Amer. Math. Soc., Providence, RI, 1992, pp. 51–9

[10] B. Harris, Cohomology of Lie triple systems and Liealgebras with involution, Trans. Amer. Math. Soc.
(1961) 148–162.

[11] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math. 71 (1949) 149–170.
[12] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951) 509
[13] W.G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952) 217–242.
[14] K. Yamaguti, On the cohomology space of Lie triple system, Kumamoto J. Sci. Ser. A 5 (1960) 44–5


