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Summary

Objectives: The present study was designed to reveal changes in the collagen network architecture and collagen content in cartilage during
growth and maturation of pigs.

Methods: Femoral groove articular cartilage specimens were collected from 4-, 11- and 21-month-old domestic pigs (n = 12 in each group). The
animal care conditions were kept constant throughout the study. Polarized light microscopy was used to determine the collagen fibril network bi-
refringence, fibril orientation and parallelism. Infrared spectroscopy was used to monitor changes in the spatial collagen content in cartilage tissue.

Results: During growth, gradual alterations were recorded in the collagen network properties. At 4 months of age, a major part of the collagen
fibrils was oriented parallel to the cartilage surface throughout the tissue. However, the fibril orientation changed considerably as skeletal mat-
uration progressed. At 21 months of age, the fibrils of the deep zone cartilage ran predominantly at right angles to the cartilage surface. The
collagen content increased and its depthwise distribution changed during growth and maturation. A significant increase of the collagen net-
work birefringence was observed in the deep tissue at the age of 21 months.

Conclusions: The present study revealed dynamic changes of the collagen network during growth and maturation of the pigs. The structure of
the collagen network of young pigs gradually approached a network with the classical Benninghoff architecture. The probable explanation for
the alterations is growth of the bone epiphysis with simultaneous adaptation of the cartilage to increased joint loading. The maturation of ar-
ticular cartilage advances gradually with age and offers, in principle, the possibility to influence the quality of the tissue, especially by habitual
joint loading. These observations in porcine cartilage may be of significance with respect to the maturation of human articular cartilage.

© 2008 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction biomechanical properties of articular cartilage”®. Biome-
) ) ) ) ) . chanical models have revealed that alterations of the colla-
The unique biomechanical properties of articular cartilage gen network directly influence the biomechanical behavior
result from the complex architecture of the collagen network of the cartilage. It is thus evident that the biomechanical be-
and the non-homogeneous spatial distribution of collagen, havior of articular cartilage cannot be fully characterized by
proteoglycans (PGs) and water in the tissue. It is well docu- its composition without taking into account the role of the
mented that the average biochemical composition of carti- architecture of the collagen network.
lage changes gradually with age'® and concomitantly, After birth, articular cartilage is rich in PGs and when
there are also changes in the biomechanical properties of viewed under the microscope, the tissue appears homoge-
cartilage””°. Previous studies have mostly been concemed neous. At this stage, the collagen network is not organized
with compositional and the corresponding biomechanical in a zonal manner. Further, different joint areas have a sim-
changes without taking into account the architectural ilar type of cartilage tissue. This means that local adaptation
changes occurring in the collagen network. Recent model- to intrinsic or external determinants such as joint loading
ing studies have supplemented our knowledge on the sig- has not yet taken place®. Recent histomorphometric and
nificance of the collagen network in determining the magnetic resonance imaging studies have pointed to signif-

icant alterations of the collagen network taking place during
skeletal maturation'®'". It has been proposed that the adult
articular cartilage structure is gradually formed by the divi-
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resonance images, the appearance of the T,-weighted im-
ages, known to relate closely to collagen tissue architec-
ture, changes with age. The multilaminar appearance
which is common at a young age becomes transformed to
a trilaminar, adult phenotype as skeletal maturity is
achieved'". This strongly suggests that the original collagen
network of cartilage is gradually replaced by a new collagen
framework during skeletal maturation®"".

The composition and the biomechanical properties of ar-
ticular cartilage vary in different joints and in different joint
areas'®'3. Also changes in joint loading conditions, e.g.,
due to strenuous exercise or immobilization, influence
both the biochemical composition and the biomechanical
properties of the articular cartilage'*'S. These changes
are indicative of the presence and impact of varying de-
grees and types of physical stress in different joints. In ad-
dition, there are zonal and maturational differences in the
superficial and deep zone chondrocytes'®~'°. Recently,
the superficial zone of calf articular cartila%e was shown
to contain a population of (progenitor) cells®°.

These developmental changes support the idea that carti-
lage undergoes major changes during maturation. This opens
the possibility that physical exercise during growth and adoles-
cence can improve the properties of cartilage and even pre-
vent the appearance of osteoarthrosis in older age®'. It is not
clear at what age the cartilage is most responsive to external
joint loads and weightbearing. Enzymes participating in the
modification of articular cartilage exhibit high activities in fetal
and adolescent cartilage but their activity diminishes as growth
and maturation proceeds®. Thus the most dynamic alter-
ations of articular cartilage appear to occur during skeletal
growth. Once the skeletal maturation has been attained, the
cartilage tissue maintains a stable highly unique structure
with minor later modifications®3~2°

The present study was designed to characterize the de-
velopment and changes in the architecture of the collagen
network of porcine articular cartilage during growth and mat-
uration. Polarized light microscopy and Fourier transform in-
frared imaging spectroscopy (FT-IRIS) enabled qualitative
and quantitative analysis of the spatial alterations of the col-
lagen network.

Methods
ANIMALS AND THE PREPARATION OF THE SAMPLES

Domestic female pigs were used as experimental animals. The pigs
were housed in the National Laboratory Animal Center, University of
Kuopio, in individual pens with a floor area of 2 x 2m?2. The animals,
kept on standard diet, were euthanized at the age of 4, 11 and 21
months when the weights of the animals were approximately 80, 150,
and 200 kg, respectively. The Animal Care and Use Committee of the
University of Kuopio approved the experimental design of this study.
The cartilage samples were prepared by drilling cartilage—bone plugs
from knee joints (lateral facet of the femoral trochlea) (n=12 per group)
(Fig. 1). The harvested specimens were fixed in phosphate buffered 10%
formalin, pH 7.4. Decalcification was carried out with 10% of ethylenedia-
minetetraacetic acid (EDTA) in phosphate buffer, pH 7.4, containing 10%
formalin for 14 days. The specimens were dehydrated in an ascending
series of alcohol solutions and treated with xylene prior to embedding
in paraffin as described earlier®®. Five-um-thick histological sections
were prepared for polarized light microscopy and FT-IRIS. Sections
were deparaffinized and treated with hyaluronidase, 1000 U/ml at 37°C
for 18 h (bovine testicular hyaluronidase, from Sigma) to remove PGs
from the tissue sections®®. Enzymatic removal of PGs was controlled
with staining of glycosaminoglycans with Safranin-O stain. Only faint
color was left after hyaluronidase treatment in contrast to the intensive
deep red staining of untreated sections. This indicated that the majority
of the PGs was removed during the procedure®®. The distribution profiles
of collagen in cartilage sections were determined from hyaluronidase-
treated sections. However, untreated sections were used for the determi-
nation of the collagen and PG contents around the chondrocyte lacunae.

POLARIZED LIGHT MICROSCOPY

Polarized light microscopy was used for the determination of the collagen
network birefringence, collagen fibril parallelism and collagen fibril orienta-
tion?’~2°. The measurement system was based on a scientific grade polar-
ized light microscope, Leitz Ortholux Il POL (Leitz Wetzlar, Wetzlar,
Germany). The optical components represented precision quality optics.
The microscope was modified for computation of the Stokes parameters®”-28,
The polarizers were placed in computer-controlled rotation tables. Two sep-
arate monochromators (591.4 + 10 nm, Schott, Germany and 594 + 3 nm,
XLK10, Omega Optical Inc., Brattleboro, VT, USA) were used to adjust the
final measuring wavelength (2 =594 + 3 nm). A Peltier-cooled, high-perfor-
mance CCD camera (Photometrics SesSys, RoperScientific, Tucson, AZ,
USA) was used for the signal detection. Polarizers and image acquisition
systems were controlled with a Macintosh G4 computer (Apple Computer,
Cupertino, CA, USA) utilizing the scripting capabilities of IpLab 3.5.5 soft-
ware (Scanalytics Inc., Fairfax, VA, USA)>°.

In polarized light microscopy, seven images were captured and used for
the calculation of the orientation independent parameters. Starting from the
alignment position (=0°), 15° stepwise rotations were made of the polarizer
pair. Thus, images were recorded at 0, 15, 30, 45, 60, 75 and 90° polarizer
pair positions, and an additional image was taken at the 90° position after
placing the A/4 phase shift plate into the light path. Pixel by pixel back-
ground-corrected 0, 45, 90, and the 90° images with a 4/4 phase shift plate
were used for the calculation of the Stokes parameters. For determination of
the birefringence, parallelism (anisotropy) and orientation parameters, also
15, 30, and 75° images were used (Fig. 2).

The orientation independent birefringence was calculated for each sam-
ple. Maximum theoretical birefringence was derived from the background-
corrected images at 0, 15, 30, 45, 60, 75 and 90°. The maximal signal
was determined using the least square fitting procedure for each image pixel.
The fitting procedure enables determination of the birefringence regardless
of the collagen fibril direction. Birefringence is a parameter that indicates
the combined effect of collagen content and collagen network organization®.

The parallelism index was calculated from the detected maximum and
minimum signals®®. The parallelism index indicates the extent to which the
collagen fibrils are running in parallel in each image pixel, i.e., whether fibrils
are running in the same direction or whether they take different paths in the
tissue.

The orientation of collagen fibrils was calculated from the Stokes param-
eters by the determination of the angle of the polarization ellipse®®. A defined
orientation represents the average orientation of the fibrils within single pixels
of a region and, therefore, the orientation of individual fibrils is not revealed.

The polarized light microscopic images were rescaled to a lower resolu-
tion and 5 x 5 median filtering was done before the final calculations. Each
cluster that underwent filtering corresponded to approximately 50 x 50 um.
Cartilage lacunae cause bias during calculations and, therefore, those areas
were excluded from the final data. Filtering was conducted to avoid the ef-
fects of different cell densities on the final calculations. In particular, the
cell lacunae affect the calculation of both the fibril orientation and the paral-
lelism index.

FT-IRIS

The collagen content of articular cartilage was estimated with FT-IRIS
measurements®*3'. Five-um-thick tissue sections were imaged with Perkin
Elmer Spotlight 300 instrument (Perkin Elmer, Waltham, MA, USA). The sec-
tions were placed on 2-mm-thick barium fluoride-windows. The hyaluroni-
dase treatment ensured that the spectral information was as specific as
possible for collagen. FT-IRIS data were collected using 8 cm™" spectral res-
olution and 6.25 um pixel resolution. Two repeated scans were performed
and averaged for each specimen. The spectral information from a region be-
tween 3600 and 700 cm~" was collected. The collagen content was esti-
mated by integration of the amide | region (1710—1610 cm~")*°.

Additional tests were conducted to estimate possible effects of the collagen
fibril orientation on the analysis of collagen content. Partially polarized IR-light
has been suggested to generate artifacts to the amide | and amide Il peak mea-
surements when highly anisotropic fibrillar material, such as cartilage, is mea-
sured®. To test this hypothesis, a cartilage specimen was measured three
times while the sample was rotated 45° after each measurement. Amide |
peak maps and distribution profiles were calculated from surface to deep carti-
lage for each measurement. No significant alterations were observed between
the measurements indicating that differences of the collagen fibril orientation
between the studied groups were not affecting the FT-IRIS measurements.

STATISTICAL ANALYSIS

Statistical significance of the differences between experimental groups
was tested using the non-parametric Kruskall—Wallis test (SPSS 11.5 soft-
ware, SPSS Inc., Chicago, IL, USA). Contrast analysis between the age
points was undertaken with a post hoc test for multiple comparisons. The
limit of statistical significance was set to P=0.05.
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Fig. 1. A characteristic image of the porcine femoral groove with the sample site on the lateral facet. A cartilage—bone cylinder was taken and
processed for polarized light microscopy and FT-IRIS.
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Fig. 2. Polarized light microscopy images demonstrating the alterations in the collagen fibril network in young (4-month-old) (A) and more ma-
ture (21-month-old) (B) porcine cartilage. Collagen birefringence, local fibril parallelism and fibril orientation in relation to the cartilage surface,
determined by quantitative polarized light microscopy, change gradually with growth and tissue maturation.




Osteoarthritis and Cartilage Vol. 17, No. 4

451

Results

The articular cartilage collagen network, as assessed by
polarized light microscopy and FT-IRIS parameters, under-
went significant changes during growth and maturation from
the age of 4—21 months (Fig. 2). The cartilage thickness
gradually decreased as the animals matured (P < 0.01).
The average thickness was 2294 + 569, 1141 +£238 and
790 + 117 um for 4-, 11- and 21-month-old animals, respec-
tively (Fig. 3).

Microscopical assessment was first performed by analyz-
ing the cartilage specimens of each group in 10% fractions
from the superficial to the deep cartilage. The collagen con-
tent increased significantly during cartilage growth and mat-
uration [Fig. 4(A)]. The average collagen content (amide |
absorption) increased gradually as maturation proceeded.
The collagen content underwent a major increase between
the 4- and 11-month age points (P < 0.01). The cartilage of
the youngest animals revealed high collagen content in the
upper part of the deep zone, whereas in the older animals,
the cartilage showed a more substantial increase in the col-
lagen content with tissue depth [Fig. 4(A)]. In general, the
collagen content increased gradually throughout the carti-
lage thickness. The greatest increase was observed in the
deep cartilage (Fig. 4A). The average amide | absorption
was 0.18 £0.04, 0.27 +£0.04 and 0.33+0.06 in the 4-,
11- and 21-month-old animals, respectively [Fig. 5(A)].

At the age of 4 months, the collagen fibrils had a predom-
inantly parallel orientation with the cartilage surface
throughout the cartilage [Fig. 2, Fig. 4(B)]. The organization
of collagen fibrils changed as the animals reached the age
of 11 months. At this timepoint, a decrease in the parallelism
index took place [Figs. 4(C) and 5(C)] and the collagen net-
work apparently exhibited a transition phase from a less or-
ganized architecture toward the adult phenotype (Fig. 4). At
the age of 21 months, the collagen network exhibited the
classical Benninghoff-type arrangement®® [Fig. 2(B)]. At
this stage, the superficial zone collagen fibrils ran parallel
to the cartilage surface. Then, the fibrils turned into the
deep cartilage to run at right angles to the surface [Figs.
2(B) and 4(B)]. The average fibril orientation in cartilage
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Fig. 3. Cartilage thickness is presented as group averages

(mean £+ S.D.). The thickness shows a gradual decrease with

age. Statistical differences were determined by the non-parametric

Kruskall-Wallis test. The contrasts between the different age

points were tested with a post hoc test. Statistically significant
differences are indicated.

was at 27.3+8.6, 47.8 +21.4 and 75.9 +5.5° for 4-, 11-
and 21-month-old animals, respectively (0° represents the
parallel with the cartilage surface) [Fig. 5(B)]. The parallel-
ism index indicated a highly organized collagen network
both in 4- and 21-month-old animals. At the age of 11
months, however, there was a significant decrease in the
degree of fibril organization (P< 0.001) [Figs. 4(C) and
5(C)]. The average parallelism indices were 72.4.3 + 13.6,
53.7 £ 5.3 and 70.8 £ 3.4 in 4-, 11- and 21-month-old ani-
mals, respectively [Fig. 4(C)]. The birefringence increased
between the timepoints of 11 and 21 months (P < 0.001),
but no significant differences were found when 4- and 11-
month-old animals were compared [Fig. 5(D)]. The birefrin-
gence increased especially in the deep zone cartilage
[Fig. 4(D)]. The distribution profile of the birefringence
throughout the cartilage thickness was very different from
that of both parallelism and orientation. Birefringence could
not distinguish the 4- and 11-month-old tissues from each
other, even though there was a clear decrease in the degree
of parallelism between these timepoints [Figs. 4 (C,D) and
5(C,D)].

The cartilage showed thinning during growth and matura-
tion. To reveal and examine in more detail the changes in
cartilage tissue, the collagen fibril network properties were
also studied by analyzing separately the most superficial
800 um tissue layer at each timepoint. At 21 months of
age, the average cartilage thickness of the cartilage was
800 um. Significant changes were again observed in all
measured parameters. A gradual increase in the collagen
content was observed with maturation of the tissue through-
out the tissue when 4-month-old animals were compared
with their 11- and 21-month-old counterparts (P < 0.01)
[Fig. 6(A)]. The average amide | absorption values were
0.18 £0.04, 0.26 £0.04 and 0.32+0.07 in the 4-, 11-
and 21-month-old animals, respectively. Highly organized
collagen fibrils, oriented tangentially to the surface, were re-
placed with a collagen network that was structured zonal-
wise, i.e., followed closely the classical Benninghoff model
(Figs. 2 and 6)33. Changes in collagen content, parallelism
and orientation were observed in all three cartilage zones
(superficial, intermediate and deep cartilage) whereas bire-
fringence only changed in the deep zone of 21-month-old
pigs (Fig. 6). The average values for collagen fibril orienta-
tion were 26.3 4 14.0, 43.04+-20.9 and 75.8 = 5.1° for 4-,
11- and 21-month-old animals, respectively. Changes
of the collagen fibril orientation were significant between
4- and 21-month-old animals (P < 0.001) and 11- and 21-
month-old animals (P < 0.05). The parallelism index dis-
played a significant alteration only between the 11- and
21-month-old animals (P < 0.01). The average parallelism
index values were 66.0 =21.0, 51.8 + 5.2 and 70.7 - 30.8
for 4-, 11- and 21-month-old animals, respectively. The bire-
fringence increased significantly for 21-month-old animals
(P < 0.01), but no statistically significant difference was ob-
served between 4- and 11-month-old animals. The average
birefringence values were 0.45+0.12, 0.50£0.13 and
1.48 +0.55 (x107°%) for 4-, 11- and 21 month old animals,
respectively.

FT-IRIS results showed that the area adjacent to cell la-
cunae, i.e., the territorial matrix, contained less collag
and more PGs than the interterritorial matrix (Fig. 7)3*3°
Characteristically, 4-month-old pigs exhibited a higher cell
density than the 21-month-old animals [Fig. 7(A,B)]. During
maturation, the depth-dependent collagen content as well
as that around the cell lacunae altered characteristically, in-
dicating growth-related alterations also in the microenviro-
ment around the cell lacunae.
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Fig. 7. Comparison of collagen content distribution in articular cartilage of 4-month-old (A, C and E) and 21-month-old pigs (B, D and F). Light

microscopic images (A and B) reveal the cell lacunae as dark dots showing the dimensions of the lacunae. The FTIR image obtained using the

amide | spectral wavelength indicates the collagen distribution in cartilage (C and D). The distribution of the collagen content reveals differ-

ences between the groups. The interterritorial cartilage matrix of mature animals (F) has a higher collagen content than that of the younger
animals (E). Lacunae and the territorial matrix appear to contain less collagen than the interterritorial matrix.
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Discussion

The results of the present study indicate that the collagen
network of porcine articular cartilage undergoes significant
remodeling during skeletal maturation. This was demon-
strated with imaging techniques that are capable of visual-
izing architecture of the collagen fibril network and the
spatial content of collagen. The 4-month-old pigs exhibited
low collagen content and displayed a collagen fibril orienta-
tion parallel to the cartilage surface throughout the uncalci-
fied tissue. This early fibril arrangement differs considerably
from the classical Benninghoff model according to which the
collagen fibrils run parallel to the surface in the superficial
tissue and are orientated at right angles to the surface in
the deep cartilage. The cartilage of the 11-month-old ani-
mals exhibited the largest variation in the orientation angles.
Further, the parallelism index indicated substantial hetero-
geneity of the collagen network architecture in that group
(Fig. 4). This structure seemed to represent a transitional
stage between the immature cartilage phenotype present
at a young age and the adult phenotype that was present
at the age of 21 months. Birefringence was increased in
the deep cartilage significantly at the age of 21 months.
Birefringence could not detect the changes that occurred
earlier, and virtually no difference was detected between
the 4- and 11-month-old animals. Orientation and parallel-
ism index seemed to be more sensitive indicators of the
maturational changes than birefringence.

The initial collagen network of young animals was gradu-
ally transformed into a mature network with a novel archi-
tecture and increased collagen content. It seems
reasonable to assume that this alteration reflects the tissue
response to growth and maturation as well as altered joint
loading conditions. The collagen content of cartilage in-
creases significantly during maturation. At the same time,
the distribution of collagen changes with tissue depth and
also around the cell lacunae. These characteristics in tissue
architecture and composition provide the foundation for the
unique biomechanical properties of articular cartilage®*.

During growth, the conditions for rapid remodeling are
probably ideal. The body weight and the muscular strength
increase gradually over a lengthy time period. The imma-
ture collagen network is conditioned to achieve strength
and the properties characteristic of the mature tissue. The
collagen synthesis rate is highest at a young age®®. As
the maturation proceeds, the collagen synthesis rate re-
duces in parallel with a decrease in the matrix metalloprotei-
nase levels. This probably also slows down the rate of
cartilage remodeling.

A pig reaches puberty at the age of 6 months. Breeding of
animals starts at 7 months of age. The youngest timepoint
(4 months) would possibly correspond an age of 6—8 years
in human life. Animals at the age of 11 months have passed
puberty but the skeletal maturity is not yet reached (age
possibly corresponds years 12—16 in humans). The porcine
skeletal development continues surprisingly long and the
growth cartilages close as late as at the age of 3—4 years
of age (expected lifespan of pigs is 10—15 years)®. At 21
months, the musculoskeletal system of animals might corre-
spond to the age of 20—25 years in humans. In the present
study, there occurred a significant remodelation of the colla-
gen network during skeletal development. These alterations
possibly continue until the skeletal maturity is reached.

Our findings indicate that there is an extensive postnatal
synthesis and reorganization at the collagen network. Tis-
sue maturation requires time and the final phenotype of
the tissue is only gradually achieved. The present results

are basically in line with the ideas proposed by Griinder
and Hunziker et al.'®'". However, Hunziker et al. claimed
that the superficial zone of cartilage does not experience
significant reorganization whereas the present findings indi-
cate that significant alterations in the content, organization
and orientation of the collagen fibrils also take place in
the superficial zone of cartilage. Thus, the present results
suggest that even the most superficial tissue is subjected
to significant structural modifications.

Earlier results indicated that there was a high activity of
matrix metalloproteinase enzymes in the articular cartilage
during growth and adolescence® %°. It seems likely that
both degradation and synthesis of collagen molecules and
the assembly of new fibrils are required for the remodeling
of the collagen network. We have observed a similar type
of collagen network remodeling in other species, such as
horse, cow and humans (unpublished observations). The
present results are not specific to pigs alone. We suggest
that different species undergo a similar type of maturation
process in their articular cartilage, even though the activity
and duration of cartilage maturation may vary. The age-de-
pendent remodeling of articular cartilage should be borne in
mind when experiments with pigs, or with other laboratory
or domestic animals, are carried out. The age of the animals
may significantly influence the results of experiments.

The functional properties of articular cartilage change as the
collagen content and collagen fibril orientation mature. Previ-
ous studies on developing cartilage have related the biome-
chanical properties and chemical composition of tissue with
each other>*®. In cartilage, PGs do not exhibit similar aniso-
tropic properties as collagen, even though they are also non-
homogeneously distributed. The collagen network significantly
controls the mechanical parameters of cartilage, such as the
tissue dynamic stiffness and the Poisson’s ratio*°. This is con-
sistent with the concept that the collagen fibril arrangement
governs the lateral expansion of the cartilage tissue during
compression and highlights the importance of the orientation
of the collagen fibrils when structure—function relationships
of cartilage are characterized.

In summary, the present results indicate that the early
postnatal collagen network of articular cartilage is gradually
remodeled in growing pigs. The remodeling is controlled by
the growth and maturation as well as, most probably, me-
chanical loading of the joints. In porcine articular cartilage,
maturation is a slow process. Changes of the collagen net-
work still continue at the age of 11 months. In the present
study, the adult phenotype of cartilage tissue was observed
by the age of 21 months. The timescale of tissue maturation
for the human articular cartilage remains to be clarified. In
principle, the growth and maturation period appears to
represent a window of opportunity for undertaking musculo-
skeletal interventions intended to improve cartilage proper-
ties. Further evidence for the occurrence of exercise-related
changes in cartilage was revealed by van Weeren et al.. In
a controlled exercise study with horses these authors
showed that musculoskeletal intervention at early age can
modify the composition of the extracellular matrix of carti-
lage and influence the maturation process*'. These findings
might indicate that regular physical exercise at a young age
may strengthen the cartilage collagen network and prevent,
or at least postpone, the appearance of osteoarthritis later
in life as previously speculated?'.
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