

King Saud University

www.ksu.edu.sa

Arabian Journal of Chemistry

ORIGINAL ARTICLE

Metallic and non-metallic anionic interaction activities estimated with sound velocity and refractive index

Man Singh *, R.K. Ameta, B.S. Kitawat, R.K. Kale

School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India

Received 3 February 2011; accepted 6 May 2011 Available online 14 May 2011

KEYWORDS

Sound velocity; Light velocity; Refractive index; Solute solvent interaction; Adiabatic compressibility; Apparent molal compressibility **Abstract** Density ($\rho \pm 10^{-3}$ kg m⁻³), sound velocity ($V_S \pm 10^{-2}$ ms⁻¹) as acoustic property and refractive index ($\mu_{ri} \pm 10^{-4}$) for 0.01–0.1 m K₂Cr₂O₇, K₂HPO₄, KMnO₄, KH₂PO₄, KCl, and KOH aqueous salts with compressibility attained with ion–solvent interaction (ISI) are reported at 0.01 interval and 293.15 K. Ionic internal pressure generated with ISI is expressed as adiabatic compressibility (β , pa⁻¹) with relative change ($\Delta\beta/\beta_0$) and apparent molal compressibility (φ , m²N⁻¹) with specific ionic activities for metallic and non-metallic anions. Linear regression generated V_S^0 , μ_{ri}^0 , φk^0 , and β^0 as limiting data for analysis of speed of light and sound. The V_S^0 as KH₂PO₄ > K₂HPO₄ > KOH > K₂Cr₂O₇ > KCl > KMnO₄ denoted a minimum V_S^0 metallic anions. With concentrations, the sound velocity and refractive index are noted as ISI functions where the sound and light waves were in opposite trends. The Mn⁰ and Cr⁰ transitional metals with anions of the K₂Cr₂O₇ and KMnO₄ have affected the compressibility as K₂Cr₂O₇ > KMnO₄ due to 2Cr⁺⁶. The V_S^0 , μ_{ri}^0 , φk^0 , and β^0 analyzed their ionic strengths in comparison to HPO₄⁻, H₂PO₄⁻, Cl⁻, and OH⁻ as non-metallic anions considering the interactions as sensors. A molionic model of ion–water interaction and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The $V_{\rm S}$ of ionic liquids (ILs) as a physicochemical indicator does analyze several internal properties, such as residual

* Corresponding author. Tel.: +91 079 23260210; fax: +91 079 23260076.

E-mail addresses: mansingh50@hotmail.com (M. Singh), ametar-akesh40@gmail.com (R.K. Ameta).

Peer review under responsibility of King Saud University.

stress, hardness, grain size micro structure, elastic constant, medicinal engineering, and agriculture (Sumathi and Varalakshmi, 2010). Conceptually, the sound as energy travels through a medium such as air or water, as a compressed phase, where pressure variations bring changes and its waves travel through particles of interacting species within fixed interfaces. The ionic or internal activities significantly cause interruptions in travel due to ISI, where a cycle of wave varies with the compressibility. The compressibility as function of the type and nature of bonds critically furnish useful information about ionic–molecular interactions. Recently, the $V_{\rm S}$ data are used to elucidate an interpreted ISI in liquid medium (Baluja and Oza, 2005; Rawat and

http://dx.doi.org/10.1016/j.arabjc.2011.05.007

1878-5352 © 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Sangeeta, 2008; Ali and Nain, 1996; Ogawa and Murakami, 1987) as the salts disrupt hydrogen bonding forming new structural reorientation. Thus the data infer ion-solvent configurations with different ionic pressure due to intrinsic hydration structures. Therefore, the ionic interactions exerted internal pressure which is also studied with Debye– Hückel ionic theory (Debye and Hückel, 1923), and fitted in present study. For understanding a role of ion polar interaction force, several parameters, such as β , $\Delta\beta$, $\Delta\beta/\beta_0$, and ϕk were studied to find structural arrangements with relative strength of various types of intermolecular or inter ionic interactions. Thus, the ISI created a compressed medium for traveling velocities.

The μ_{ri} is an optical in nature for analyzing optical properties of materials whose values are often required to interpret spectroscopic data (Singh, 2002). Light absorbing capacity as characteristic feature develops a mediate light accepter device to design physically, biologically and chemically stability of the compounds or solutions. The μ_{ri} is a most authentic optical data plays key role in various areas of material science for designing thin film technology and others. Similarly, the μ_{ri} data are widely used for determination of solution concentrations (Subedi et al., 2006). Thus the μ_{ri} study exhibits efficient optical functions for developing an optical device with such liquids which are studied in the present work. The present study showed that the ISI increased the μ_{ri} and decreased the speed of light in water due to compressibility. The $V_{\rm S}$ and $\mu_{\rm ri}$ in the present study for salts solution offered understanding the behavior of AIL. Knowledge of the $V_{\rm S}$ and $\mu_{\rm ri}$ of electrolyte solutions is extremely important to identify their internal and external properties. Such structural ionic activities with corresponding state of hydrogen bonding could be studied with the $V_{\rm S}$ and $\mu_{\rm ri}$. For example, observed $V_{\rm S}^0$ values as $KH_2PO_4 > K_2HPO_4 > KOH > K_2Cr_2O_7 > KCl > KMnO_4$ $\mu_{\rm ri}^0$ as $KMnO_4 > KH_2PO_4 > KOH > K_2H$ and $PO_4 > KCl > K_2Cr_2O_7$ inferred comparative analysis of the ionic interactions in our study. The $V_{\rm S}$ and $\mu_{\rm ri}$ parameters on HPO₄⁻, H₂PO₄⁻, Cl⁻, OH⁻, and Cr₂O₇⁻ MnO₄⁻, and similar others could act as authentic non-metallic and metallic anionic interaction sensors, respectively. The study predicted that the number of anionic metals with oxidation states plays an effective role to produce internal pressure and affected the $V_{\rm S}$ which is less than $\mu_{\rm ri}$. An interesting property of solution as wave conservation is studied. Thus the metallic and nonmetallic anionic studies are highly significant but are not reported yet. Interestingly more and more ionic liquid systems if are subjected to such studies then their data trends and magnitudes do illustrate the nature and size of the ions with respect to medium and polarity. Thus the K₂Cr₂O₇, K₂HPO₄, KMnO₄, KH₂PO₄, KCl, and KOH aqueous mixtures were chosen to exactly investigate the effect of metallic and nonmetallic ions on water structures vis-a-vis the acoustic property of the mixtures.

2. Experimental methods

2.1. Chemicals and solvents

Chemicals (99.99%, AR, K₂Cr₂O₇, K₂HPO₄, KMnO₄, KH₂PO₄, KCl, KOH, Ranbaxy, India) were used as received. Milli-Q water was used as a solvent.

2.2. Analytical conditions

The experiment was done at 293.15 K. Solutions w/w were prepared with Milli-Q water of $10^{-6} \,\mu\,\text{S}\,\text{cm}^{-1}$ conductance with electronic Kern ABS 220-4 model balance with ± 0.01 mg accuracy. The ρ and $V_{\rm S}$ data with 10^{-3} kg m⁻³ and 10^{-2} ms ⁻¹, respectively, were measured with density and sound velocity meter DSA 5000M whose quartz U tube was cleaned with acetone after each measurement. The equipment works on a theory of oscillation periods of U tube for air, solvent and solutions (Pal et al., 2010). The $\mu_{\rm ri}$ was measured with \pm 10⁻⁴ using Rudolph Research analytical J series Refractometer model 57. Its sample plate was properly cleaned and dried each time with acetone. The measurements for water values were repeated several times to ensure calibration and reproducibility of the equipment. The μ_{ri} literature value of the water was 1.3328 which very closely matched with experimental values of water. The precision and reproducibility of measured data along with 95.5% confidence variance were noted with highly reproducibility. Similarly the $V_{\rm S}$ experimental value was 1482.69 ms⁻¹ for water and had shown striking agreements with literature values.

3. Calculations

Densities were applied for adiabatic compressibility (Mason, 1929) calculation with Eq. (1).

$$\beta = 1/V_{\rm S} \times \rho^0 \tag{1}$$

The $V_{\rm S}$ and ρ^0 are sound velocity and density of solution and solvent, respectively. A variation in compressibility and relative change in adiabatic compressibility were calculated with Eqs. 2 and 3, respectively.

$$\Delta\beta = \beta - \beta_0 \tag{2}$$

$$\Delta\beta/\beta_0$$
 (3)

The β_0 a water adiabatic compressibility = 4.56×10^7 pa⁻¹ was calculated with Eq. (1). The apparent molal compressibility was calculated with Eq. (4).

$$\Phi \mathbf{k} = 1000/m \cdot \rho^0 (\rho^0 \beta - \beta_0 \rho) + \beta_0 \cdot \mathbf{M}/\rho \tag{4}$$

The ρ^0 and ρ are densities of solvent and solution, respectively, *m* is molality and M is molecular mass. The velocity of light (V_L) is calculated with $\mu_{ri} = V_L$ (vacuum)/ V_L (medium) as the $V_L = 2.99 \times 10^8 = 3.00 \times 10^8$ m/s in vacuum (Newcomb, 1886) was used.

4. Results and discussion

4.1. The V_S , V_L , and V_S^{θ} , μ_{ri}^{θ} and concentration study for comparative ionic interactions

The concentration effect on $V_{\rm S}$ and $\mu_{\rm ri}$ was analyzed from data given in Table 1 and showed increases in $V_{\rm S}$ and $\mu_{\rm ri}$ with increase in concentration and $V_{\rm L}$ was decreased. The $V_{\rm S}$ and $\mu_{\rm ri}$ directly determined internal pressure and ionic hydration with salt's interactions which formed a high compact continuous medium through which the sound and light waves traveled. Thus the ISI forces developed a denser medium that manifolded the sound speed with a decrease in light velocity. The ISI created anion-hydration and partly the unengaged

Table 1 Molality (*m*), density ($\rho \pm 10^{-3} \text{ kg m}^{-3}$), sound velocity ($V_{\rm S} \pm 10^{-2} \text{ ms}^{-1}$), % $V_{\rm S} \pm 10^2$, adiabatic compressibility ($\beta \pm 10^{-4} \text{ pa}^{-1}$), change in adiabatic compressibility ($\Delta\beta \neq 10^{-4} \text{ pa}^{-1}$), relative change in adiabatic compressibility ($\Delta\beta/\beta_0 \pm 10^{-4}$), apparent molal compressibility ($\phi k \pm m^2 N^{-1}$), refractive index ($\mu_{\rm ri} \pm 10^4$), velocity of light ($V_{\rm L} \pm 10^3 \text{ ms}^{-1}$), % of light velocity (% $V_{\rm L} \pm 10^2$).

m ρ	$V_{\rm S}$	$%V_{\rm S}$	$\beta \times 10^7$	$-\Delta\beta \times 10^9$	$-\Deltaeta/eta_0$	$-\varphi k\times 10^5$	$\mu_{ m ri}$	$V_{\rm L} \times 10^8$	$\% V_{\rm L}$
$K_2Cr_2O_7$									
0.01 1.00014	41 1483.10	0.03	4.5457	1.1200	0.0025	6.5305	1.3333	2.250	0.03
0.02 1.00228	87 1483.80	0.07	4.5317	2.5212	0.0055	8.4544	1.3339	2.249	0.08
0.03 1.00420	07 1484.50	0.12	4.5187	3.8140	0.0084	8.3909	1.3344	2.248	0.12
0.04 1.00618	80 1485.20	0.17	4.5056	5.1251	0.0112	8.4651	1.3349	2.247	0.15
0.05 1.00815	54 1485.70	0.20	4.4938	6.3100	0.0138	8.2581	1.3354	2.247	0.19
0.06 1.01011	19 1486.41	0.25	4.4807	7.6125	0.0167	8.3094	1.3360	2.246	0.24
0.07 1.01222	28 1487.12	0.30	4.4671	8.9729	0.0197	8.5226	1.3365	2.245	0.27
0.08 1.01414	40 1487.73	0.34	4.4551	1.0181	0.0223	8.3793	1.3370	2.244	0.31
0.09 1.01636	66 1488.39	0.38	4.4414	1.1551	0.0253	8.6073	1.3375	2.243	0.35
0.10 1.01834	46 1489.07	0.43	4.4287	1.2819	0.0281	8.5757	1.3380	2.242	0.38
K ₂ HPO₄									
0.01 0.99968	89 1484.16	0.10	4.5412	1.5639	0.0034	14.384	1.3332	2.250	0.03
0.02 1.00112	21 1485.90	0.22	4.5241	3.2748	0.0072	15.04	1.3334	2.250	0.04
0.03 1.00271	10 1487.66	0.34	4.5063	5.0599	0.0111	15.744	1.3338	2.249	0.07
0.04 1.00410	05 1489.03	0.43	4.4917	6.5137	0.0143	15.047	1.3340	2.249	0.09
0.05 1.00556	66 1490.79	0.55	4.4746	8.2247	0.0180	15.203	1.3342	2.249	0.10
0.06 1.00716	64 1492.62	0.67	4.4566	1.0029	0.0220	15.568	1.3345	2.248	0.12
0.07 1.00859	91 1493.92	0.76	4.4425	1.1434	0.0251	15.145	1.3348	2.248	0.15
0.08 1.01025	58 1495.85	0.89	4.4238	1.3311	0.0292	15.555	1.3351	2.247	0.17
0.09 1.01161	13 1497.44	0.99	4.4085	1.4841	0.0326	15.331	1.3353	2.247	0.18
0.10 1.01298	80 1498.68	1.08	4.3952	1.6164	0.0355	14.95	1.3356	2.246	0.21
KM.O									
$\mathbf{K}MnO_4$	20 1492.74	0.00	4 5510	4 0926	0.0011	2 2022	1 2222	2 250	0.02
0.01 0.99922	50 1462.70	0.00	4.3319	4.9820	0.0011	2.3633	1.3332	2.230	0.05
0.02 1.00053	30 1462.99 40 1482.22	0.02	4.3434	1.1400	0.0023	2 6594	1.3330	2.230	0.00
0.03 1.00144	1403.23	0.04	4.339	2.6204	0.0059	3.0384	1.3339	2.249	0.08
0.04 1.00202	20 1465.75	0.07	4.3300	2.0294	0.0038	4.5795	1.3342	2.249	0.10
0.05 1.00550	00 1465.90	0.08	4.3233	3.1374	0.0009	3.9749	1.3340	2.240	0.15
0.00 1.00322	20 1464.10	0.10	4.5100	4.0274	0.0088	6 2125	1.3349	2.247	0.15
0.09 1.00991	10 1484.08	0.15	4.3043	6 1724	0.0115	6 5502	1 2252	2.247	0.17
0.00 1.0082	20 1404.90	0.15	4.4931	6 3540	0.0135	5 3742	1.3353	2.247	0.10
0.09 1.00912	10 1485.00	0.10	4.4955	7 5160	0.0139	6 1858	1.3357	2.240	0.21
0.10 1.01111	10 1405.52	. 0.19	4.4017	7.5100	0.0105	0.1656	1.5555	2.240	0.25
KH_2PO_4									
0.01 0.99923	30 1483.62	2 0.06	4.5466	1.0249	0.0022	8.6427	1.3331	2.250	0.02
0.02 1.00020	00 1484.60	0.13	4.5362	2.0662	0.0045	8.6403	1.3333	2.250	0.03
0.03 1.00117	70 1485.57	0.19	4.5259	3.0955	0.0068	8.5903	1.3335	2.250	0.05
0.04 1.00210	00 1486.50	0.26	4.5161	4.0798	0.0090	8.4082	1.3336	2.250	0.06
0.05 1.00306	60 1487.49	0.32	4.5057	5.1146	0.0112	8.4348	1.3338	2.249	0.07
0.06 1.00405	50 1488.47	0.39	4.4953	6.1528	0.0135	8.4793	1.3339	2.249	0.08
0.07 1.00484	40 1489.26	0.44	4.4871	6.9799	0.0153	8.0734	1.3341	2.249	0.09
0.08 1.00590	00 1490.35	0.52	4.4758	8.1091	0.0178	8.3051	1.3343	2.248	0.11
0.09 1.00700	00 1491.41	0.59	4.4646	9.2315	0.0203	8.4951	1.3344	2.248	0.12
0.10 1.00795	50 1492.36	0.65	4.4547	1.0222	0.0224	8.4501	1.3346	2.248	0.13
KCl									
0.01 0.99868	80 1483.09	0.03	4.5524	4.4750	0.0010	3.1484	1.3330	2.251	0.01
0.02 0.99912	20 1483.71	0.07	4.5466	1.0305	0.0023	3.803	1.3331	2.250	0.02
0.03 0.99961	10 1484.34	0.11	4.5405	1.6386	0.0036	4.1718	1.3332	2.250	0.03
0.04 1.00009	90 1484.96	0.15	4.5345	2.2349	0.0049	4.3155	1.3333	2.250	0.03
0.05 1.00050	00 1485.41	0.18	4.5299	2.6940	0.0059	4.0613	1.3334	2.250	0.04
0.06 1.00105	50 1486.24	0.24	4.5224	3.4493	0.0076	4.496	1.3335	2.250	0.05
0.07 1.00166	60 1486.79	0.28	4.5163	4.0581	0.0089	4.6338	1.3336	2.250	0.06
0.08 1.00197	70 1487.12	0.30	4.5129	4.3982	0.0097	4.2311	1.3337	2.249	0.06
0.09 1.00246	60 1487.70	0.34	4.5072	4.9709	0.0109	4.2681	1.3338	2.249	0.07
0.10 1.00357	70 1489.03	0.43	4.4941	6.2747	0.0138	5.3128	1.3340	2.249	0.09
КОН									
0.01 0.99858	80 1483.50	0.05	4.5503	6.5536	0.0014	5.631	1.3330	2.251	0.01
0.02 0.9990	70 1484.19	0.10	4.5439	1.3013	0.0029	5.883	1.3331	2.250	0.02
0.03 0.99940	90 1484.94	0.15	4.5374	1.9496	0.0043	5.8636	1.3332	2.250	0.03
0.04 0.99989	90 1485.63	0.20	4.5314	2.5518	0.0056	5.7184	1.3333	2.250	0.03
0.05 1.00033	20 1486.48	0.26	4.5242	3.2654	0.0072	5.8839	1.3334	2.250	0.04
0.06 1.00074	40 1487.13	0.30	4.5184	3.8505	0.0084	5.7711	1.3335	2.250	0.05
0.07 1.00123	20 1488.03	0.36	4.5108	4.6119	0.0101	5.9795	1.3336	2.250	0.06
0.08 1.00165	50 1488.86	0.42	4.5038	5.3104	0.0117	6.0332	1.3337	2.249	0.06
0.09 1.00211	10 1489.56	0.46	4.4975	5.9392	0.0130	6.0093	1.3337	2.249	0.06
0.10 1.00258	80 1490.43	0.52	4.4901	6.6765	0.0147	6.1059	1.3338	2.249	0.07

water with the similar molecules as a homogeneous medium. Thus a pattern of ion-hydration is different with each salt and inferred interaction as important information about a medium characterization that increased $V_{\rm S}$ and decreased $V_{\rm L}$. It is observed that an increase in concentration is accompanied with an increase in internal pressure. For example, $V_{\rm S}$ is 343.2 m/s in air and 1482.69 m/s with water while $V_{\rm L}$ is 3×10^8 m/s in vacuum but V_L in water is 2.5209 m/s. Thus, the K₂Cr₂O₇, K₂HPO₄, KMnO₄, KH₂PO₄, KCl, and KOH interactions have increased and decreased V_S and V_L, respectively (Table 1). It inferred that the ISI enhanced and exerted a higher internal pressure where an increase in $V_{\rm S}$ is accompanied with a decrease in $V_{\rm L}$, depicted in Fig. 1. Both $V_{\rm S}$ and $V_{\rm L}$ are mutually inversely proportional due to an additional resistance and compressibility, respectively, with concentration. With salts Table 1 shows a percentage increase in $V_{\rm S}$ with approximately equal decrease in $V_{\rm L}$. It is similar to energy conservation as partly the energy is consumed and the same

amount of energy is appeared in another form. Thereby it seems an interesting property of solution that inferred absorption of a certain amount of a particular wave and the same amount of another form is exhibited as wave conservation.

 V_S^0 $KH_2PO_4 > K_2HPO_4 > KOH > K_2$ The with $Cr_2O_7 > KCl > KMnO_4$ sequence inferred higher internal pressure with the KH₂PO₄ and lowest for KMnO₄ (Table 2). It is explained with pressure p = 1/volume v (Boyle's law) relation where the density $\rho = \text{mass m/v}$. It marked the KH₂PO₄ with higher density that caused stronger ionic interactions and the KMnO₄ with lower density due to weaker ionic interactions. Such observation inferred that a metallic anion weakened the ionic interactions and the non-metallic anion strengthened the same. Similarly, the μ_{ri}^0 as KMnO₄ > KH₂. $PO_4 > KOH > K_2HPO_4 > KCl > K_2Cr_2O_7$, with highest values with $KMnO_4$ and lowest with $K_2Cr_2O_7$ (Table 2) inferred that the MnO_4^- a metallic anion with weaker internal pressure and also the $Cr_2O_7^-$ with two metallic anion with

Figure 1 Relation between sound and light velocity.

Table 2 Linear regression data for sound velocity $V_S^0 \pm 10^{-2} \text{ s}^{-1}$, $S_{V_S} \pm 10^{-2} \text{ ms}^{-1} \text{ kg mol}^{-1}$, refractive index $\mu_{ri}^0 \pm 10^{-4}$, $S_{\mu_{ri}} \pm 10^{-4} \text{ kg mol}^{-1}$, adiabatic compressibility $\beta^0 \pm 10^4 \text{ pa}^{-1}$, $S_\beta \pm 10^4 \text{ pa}^{-1} \text{ kg mol}^{-1}$, and apparent molal compressibility ϕ k⁰ ± m²N⁻¹, $S\phi$ k ± m²N⁻¹ kg mol⁻¹.

	$V_{\rm S}^0$	$S_{V_{\rm S}}$	$\mu_{ m ri}^0$	$S_{\mu_{ m ri}}$	$-\varphi k^0 \times 10^5$	$S\phi k \times 10^{-4}$	$\beta^0 \times 10^7$	$S_{\beta} \times 10^7$
K ₂ Cr ₂ O ₇	1482.49	65.75	1.33283	0.0520	7.5946	11.905	4.5579	-1.2919
K_2HPO_4	1482.64	162.98	1.33292	0.0267	14.969	4.1485	4.5565	-1.6400
KMnO ₄	1482.39	30.81	1.33301	0.0296	2.3897	41.851	4.5618	-0.7901
KH ₂ PO ₄	1482.65	96.66	1.33297	0.0162	8.6231	-3.1125	4.5567	-1.0159
KCl	1482.45	61.58	1.33288	0.0105	3.4301	14.801	4.5590	-0.6064
КОН	1482.63	72.22	1.33293	0.0090	5.6653	4.0465	4.5575	-0.6680

Table 3	Rationalized $V_{\rm S}^0$ and $\mu_{\rm ri}^0$.					
	$K_2Cr_2O_7$	K_2HPO_4	$\rm KMnO_4$	KH_2PO_4	KCl	КОН
$V_{\rm S}^0$ ratio	1.000067	1.000169	1.000000	1.000175	1.000040	1.000162
$\mu_{\rm ri}^0$ ratio	1.000000	1.000068	1.000135	1.000105	1.000038	1.000075

variable valence inferred weaker shear stress and strain due to moderately weaker ionic interaction. The V_S^0 values of the K₂Cr₂O₇, K₂HPO₄, KH₂PO₄, KCl and KOH are rationalized w.r.t. those of the KMnO₄ with the 1.000067, 1.000169, 1.000175, 1.000040, and 1.000162 times higher than of the KMnO₄, respectively. Similarly, the μ_{ri}^0 of the K₂HPO₄, KMnO₄, KH₂PO₄, KCl, and KOH are rationalized w.r.t. the K₂Cr₂O₇ and noted 1.000068, 1.000135, 1.000105, 1.000038 and 1.000075 times higher than of the $K_2Cr_2O_7$, respectively (Table 3). In comparison to the K₂HPO₄ and KH₂PO₄, there is no specific effect of 1 and 2 K⁺ on $V_{\rm S}$ and $\mu_{\rm ri}$ while the PO_4^{3-} anions are the same because both V_S and μ_{ri} for the KH₂PO₄ are higher than of the K₂HPO₄. However, in comparison to $K_2Cr_2O_7$ and $KMnO_4$ the V_s are higher with $K_2Cr_2O_7$ and μ_{ri} with KMnO₄ due to an effect of anionic metals on V_{S} and μ_{ri} . The two anionic metallic atoms such as Cr in the $K_2Cr_2O_7$ has increased V_S more than single anionic metallic atom such as Mn in the KMnO₄ that decreased the μ_{ri} . The Mn and Cr are in +7 and +6 oxidation states in KMnO₄ and K₂Cr₂O₇, respectively, so another information is also important that the metal having high oxidation number decreased $V_{\rm S}$ and increased $\mu_{\rm ri}$ while the metal having low oxidation number increased $V_{\rm S}$ and decreased $\mu_{\rm ri}$. In comparison of K₂Cr₂O₇ and KCl, the effect of ionic size and symmetrical arrangement of the ISI existed. The metallic anion such as $K_2Cr_2O_7$ increased V_8 more than of the KCl where the K⁺ and Cl⁻ have the same sizes due to the same electronic configuration such as 1s², 2s², 2p⁶, 3s², 3p⁶. These variations could be due to the same sizes of the ions which might have created symmetrical arrangement of the ISI while the different size of the ions such as the K^+ and $Cr_2O_7^{2-}$ with metallic anionic property developed unsymmetrical ISI which increased the compressibility. This effect is opposite for the μ_{ri} such as the KCl increased μ_{ri} higher than of K₂Cr₂O₇.

4.2. Adiabatic (β) and apparent molal compressibilities (ϕk)

The negative values of the ϕk , $\Delta \beta$, and $\Delta \beta / \beta_0$ (Sumathi and Varalakshmi, 2010; Anwar, 1998; Anwar and Anil Kumar, 2002) given in Table 1 which is due to ISI, where the $\Delta\beta$ and $\Delta\beta/\beta_0$ values increased with increase in salts concentration. It may be attributed to an overall increase in the cohesive forces in the solution (Sumathi and Varalakshmi, 2010; Pandey and Akhatar, 1996). These cohesive forces may result into interaction between water-water, salt-water and salt-water adjacent molecules, where the β values decreased with increase in concentration (Table 1). The β^0 are as KMnO₄ > KCl > K₂. $Cr_2O_7 > KOH > KH_2PO_4 > K_2HPO_4$ (Table 2) shows that KMnO₄ has the highest and K₂HPO₄ has the lowest β^0 value with 0.0053 pa^{-1} difference in their values due to creating high adiabatic compress medium (ACM). A decrease in β^0 is due to an increase in ion-dipolicstriction where the salts caused a compression with the decrease in the compressibility (Riyazudden and Khan, 2009). A comparison of KH₂PO₄ and K₂HPO₄ salts inferred that a replacement of an H⁺ from K₂HPO₄ caused a weaker ISI with contribution of K⁺ for creating ACM. Thus the cations matter a lot toward an ACM effect on the water structure. Thus KH_2PO_4 with only single K⁺ created a stronger ACM while K_2 HPO₄ with 2K⁺ caused a weaker ACM. Thus the K₂HPO₄ interaction is two times weaker effective for ACM than of the KH₂PO₄. The difference of their β^0 values are very low with 0.0002 pa^{-1} which has obtained from (KH₂PO₄-K₂HPO₄) that inferred the more cation numbers had partially caused ACM effect. Similarly the KMnO₄ has created stronger ACM than of the $K_2Cr_2O_7$ due to the number of cation and number of transitional metal in their anions. It inferred that the low number of a metal such as Mn (+7) in MnO₄ caused stronger ACM than of the high number of a metal such as Cr(+6). Thus extensively and explicitly constituted a concept of molionic mixtures where nature of salts had caused structural impacts on the water structure with variable resultants values of $V_{\rm S}$, β and ϕk . The ratio of their β^0 values is 1.0008 pa⁻¹ derived from (KMnO₄/K₂Cr₂O₇) had inferred the partially affected ACM by less number of anionic metals. A linear fitting of the ϕk^0 with the composition are found as $K_2HPO_4 > KH_2PO_4 > K_2Cr_2O_7 > KOH > KCl > KMnO_4$ (Table 2) due to a reverse relation of ϕk^0 with β^0 except KOH and K₂Cr₂O₇. It inferred that those factors which are accountable for strong β^0 or ACM such as numbers of cation or anionic metals are weaker for ϕk . The similar trend of V_S and ϕk with opposite trends of the β^0 showed a special relationship among $V_{\rm S}$, β , and ϕk as $V_{\rm S} = \phi k/\beta$ as such as relation among the density = mass/volume.

5. Conclusion

The study distinguished concentration effect on $V_{\rm S}$ and $\mu_{\rm ri}$ with ISI and even when the MnO₄⁻, Cr₂O₇⁻ anions with transitional metals were present with potassium in salts. The $V_{\rm S}$ and $\mu_{\rm ri}$ are increased and $V_{\rm L}$ is decreased for aqueous potassium salts solution. The opposite relation of $V_{\rm S}$ and $V_{\rm L}$ is found with increasing internal pressure generated with ISI. The study concluded that the salts contribution with metallic anions (Cr⁺⁶ and Mn⁺⁷) as ISI did decrease sound velocity in a certain proportion then it increased the light velocity with a similar proportion for the same solution. It is exactly fitted in natural trends of first law of thermodynamics as energy conservation because the light and sound velocities are forms of energy.

Acknowledgment

The authors are highly thankful to Central university of Gujarat, Gandhinagar, for providing financial, infrastructural support and experimental facilities.

References

Sumathi, T., Varalakshmi, M., 2010. Rasayan J. Chem. 3, 550–555. Baluja, S., Oza, S., 2005. Fluid Phase Equilib 200 (1), 49–54. Rawat, M.K., Sangeeta, 2008. Indian J. Pure Appl. Phy. 46, 187–192.

- Ali, A., Nain, A.K., 1996. Acoustics Lett. 19, 53.
- Ogawa, H., Murakami, S.J., 1987. J. Solution Chem. 16, 315.
- Debye, P.W., Hückel, E., 1923. Phys. Z. 24, 185.
- Singh, Shyam, 2002. Physics Scripta. 65, 167-180.
- Subedi, D.P., Adhikari, D.R., Joshi, U.M., Poudel, H.N., Niraula, B., 2006. J. Sci. Eng. Technol. 2, 1.
- Pal, A., Kumar, H., Sharma, S., Maan, R., Sharma, H.K., 2010. Chem. Eng. 55, 1424–1429.
- Mason, D.O., 1929. Philos. Mag. 8, 218.
- Newcomb, S., 1886. The velocity of light. Nature 34, 29-32.
- Anwar, Ali., 1998. J. Pure Appl. Ultrason. 20, 82.
- Anwar, Ali, Anil Kumar, Nainar, 2002. J. Pure Appl. Ultrason. 24, 27.
- Pandey, D., Akhatar, Y., 1996. J. Pure Appl. Ultrason. 18, 108.
- Riyazudden, Khan, Imran, 2009. J. Thermodyn. Acta. 483, 45.