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Abstract In this paper, the solutions of nonlinear integral equations, including Volterra, Fredholm,
Volterra–Fredholm of first and second kinds, are approximated as a linear combination of some basic
functions. The unknown parameters of an approximate solution are obtained based on minimization
of the residual function. In addition, the existence and convergence of these approximate solutions are
investigated. In order to use Newton’s method for minimization of the residual function, a suitable initial
point will be introduced. Moreover, to confirm the efficiency and accuracy of the proposed method, some
numerical examples are presented. It is shown that there are considerable improvements in our results
compared with the results of the existing methods. All numerical computations have been performed on
a personal computer using Maple 12.
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1. Introduction

The general form of a nonlinear integral equation is given as
follows:

αg(y(x)) + β

 1

0
k1(x, t, y(t))dt

+ γ

 x

0
k2(x, t, y(t))dt = f (x), (1)

where parameters α, β, γ , functions g(y(x)), k1(x, t, y(t)),
k2(x, t, y(t)) and f (x) are known and y(x) is the unknown
function to be determined.

Several numerical methods for approximating the solution
of the Eq. (1) have been presented. Most of these methods are
based on the appropriate linear combinations of some basic
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functions, such as Chebyshev polynomials, Legendre polynomi-
als, Bernstein polynomials, Spline functions, Taylor polynomi-
als, Block-pulse functions and wavelets. Many attempts have
been made to solve Eq. (1) in the case of:

g(y(x)) = y(x), k1(x, t, y(t)) = k1(x, t)[y(t)]p,

k2(x, t, y(t)) = k2(x, t)[y(t)]q, (2)

where p and q are non-negative integers. Many researchers
such as Yalcinbas [1], Bildik and Inc [2], Maleknejad et al. [3,4],
Ordokhani et al. [5,6], Yousefi and Razaghi [7], Babolian et al. [8],
Maleknejad et al. [9], Mohsen and El-Gamel [10], Sloss and
Blyth [11], Hashemizadeh et al. [12] and Marzban et al. [13],
presented the approximate solution using Taylor series, the
modified decomposition method, Chebyshev and Bernstein
polynomials, rationalized Haar functions, Legendre wavelets,
triangular functions, sinc bases, Walsh functions and Hybrid
functions, respectively. A few of these methods are applicable
for finding an approximate solution for Eq. (1) in the case that
the corresponding kernels are not as Eqs. (2).

Note that, the kernels k1(x, t, y(t)), k2(x, t, y(t)) can be
simplified by the Wavelet basics, so we may use them for
determination of approximate solutions of Eq. (1). In order
to increase the rate of the convergence for approximate solu-
tions, we approximate the solution by some polynomials. The
minimization of the residual function has been used in [14] for
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linear integral equations. Recently, Chen and Jiang [15] have ob-
tained the approximate solution for linear integral equations
based on the minimization of the norm of the residual func-
tion. In this paper, the basic idea [14,15] has beendeveloped and
applied to nonlinear integral equations. In fact, the solution of
Eq. (1) is approximated by a linear combination of some ba-
sic polynomials. The polynomial approximations are obtained
based on theminimization of the norm of the residual function.
Based on the proposed method, the problem of solving a non-
linear integral equation is converted to a minimization prob-
lem of unconstrained nonlinear programming. In the present
work, a new approach is introduced to increase the precision
of the approximate polynomial solutions of the integral equa-
tions. The accuracy and convergence rate of this method are
compared with the other existing ones, which indicates the im-
provement in the results. So, themain advantage of thismethod
is its applicability for solving some integral equations of first
and second kinds, integro-differential integral equations,multi-
dimensional integral equations, ordinary andpartial differential
equations.

This paper is organized as follows. In Section 2, the exis-
tence and convergence of the best approximate solutions for
nonlinear integral equations are investigated. In Sections 3 and
4 computational methods and the choice of initial point for ob-
taining the approximate solution of the Eq. (1) are proposed. In
Section 5, the results of some numerical experiments are pre-
sented and they are comparedwith the results of existingmeth-
ods. Finally Section 6 concludes the paper.

2. Preliminaries and fundamental theorems

Let us consider the operator L corresponding to Eq. (1) as
follows:

L[z](x) = αgz(x) + βk1[z](x) + γ k2[z](x) − f (x), (3)

where, z is a function defined on [0, 1] and

k1[z](x) =

 1

0
k1(x, t, z(t))dt,

k2[z](x) =

 x

0
k2(x, t, z(t))dt,

gz(x) = g(z(x)).

Remark 1. In this paper, it is assumed that g and partial deriva-
tives, k1, k2, are continuous. Also, it is supposed that Eq. (1) has
a unique continuous solution on [0, 1] and a differentiable on
(0, 1), which is denoted by y∗.

Definition 1. ȳn = ā0ϕ0 + ā1ϕ1 + · · · + ānϕn is called a
polynomial of the best approximation of degree, at most n, to
the function y∗, if:

∥ȳn − y∗
∥∞ = inf

yn∈Pn
∥yn − y∗

∥∞, (4)

where:

yn = a0ϕ0 + a1ϕ1 + · · · + anϕn.

Definition 2. LetM be a positive number and sufficiently large,
such that ∥ȳ0 − y∗

∥∞ < M . Define:

Sn = {(a0, a1, . . . , an)| ∥yn − y∗
∥∞ ≤ M}, (5)

where yn = a0ϕ0 + a1ϕ1 + · · · + anϕn.
Definition 3. Suppose {ϕ0, ϕ1, . . . , ϕn} is a basis for the set of
all polynomials of degree, at most, n · y∗

n = a∗

0ϕ0 + a∗

1ϕ1 +· · ·+

a∗
nϕn is called the approximate solution for Eq. (1) if:

∥L[y∗

n]∥p = min
(a0,a1,...,an)∈Sn

∥L[yn]∥p, (6)

where:

yn = a0ϕ0 + a1ϕ1 + · · · + anϕn, (7)

and:

∥L[yn]∥p =


 1

0
|L[yn](x)|pdx

1/p

, if 1 ≤ p < ∞

max
0≤x≤1

|L[yn](x)|, if p = ∞.
(8)

Lemma 1 (Existence). With the above notations, Eq. (1) has the
approximate solution, y∗

n , on Sn in the sense that:

∥L[y∗

n]∥p = min
(a0,a1,...,an)∈Sn

∥L[yn]∥p.

Proof. First of all, continuity of the nonlinear operator, L, results
from:

∥L[yn + ∆n] − L[yn]∥p ≤ |α| ∥gyn+∆n − gyn∥p

+ |β| ∥k1[yn + ∆n] − k1[yn]∥p

+ |γ | ∥k2[yn + ∆n] − k2[yn]∥p. (9)

According to definition Sn, it is clear that (ā0, ā1, . . . , ān) ∈ Sn,
where ȳn = ā0ϕ0+ ā1ϕ1+· · ·+ ānϕn, is the best approximation
for y∗. Therefore, Sn is a nonempty set. Also, Sn is closed and
bounded. Thus, there exists y∗

n = a∗

0ϕ0 + a∗

1ϕ1 + · · · + a∗
nϕn,

such that:

∥L[y∗

n]∥p = min
(a0,a1,...,an)∈Sn

∥L[yn]∥p. �

Theorem 1 (Convergence). There exists a subsequence of {y∗
n}

which is convergent to the exact solution of Eq. (1).

Proof. Without loss of generality, wemay assume that y∗ is not
a polynomial. Therefore, for any n ∈ N, we have:

∥L[y∗

n]∥p > 0. (10)

At first, we prove limn→∞ ∥L[y∗
n]∥p = 0.

∥L[yn]∥p = ∥L[yn] − L[y∗
]∥p ≤ |α| ∥gyn

− gy∗∥p + |β| ∥k1[yn] − k1[y∗
]∥p

+ |γ | ∥k2[yn] − k2[y∗
]∥p. (11)

Since L is continuous, for any given ϵ > 0 there exists a positive
δ, such that:

if ∥yn − y∗
∥∞ < δ, then ∥L[yn]∥p < ϵ. (12)

Also:

ȳn −→ y∗. (13)

Hence, there exists a number, N1 ∈ N, such that if n > N1, then:

∥ȳn − y∗
∥∞ < δ. (14)

According to Relations (12) and (14), for n > N1, we have:

∥L[ȳn]∥p < ε. (15)

Since Sn is nonempty, by Lemma 1, we have:

min
(a0,a1,...,an)∈Sn

∥L[yn]∥p = ∥L[y∗

n]∥p ≤ ∥L[ȳn]∥p. (16)
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Thus:

lim
n→∞

∥L[y∗

n]∥p = 0. (17)

According to definition ∥L[y∗
n]∥p, it is clear that:

∥L[y∗

0]∥p ≥ ∥L[y∗

1]∥p ≥ · · · ≥ ∥L[y∗

n]∥p

≥ ∥L[y∗

n+1]∥p ≥ · · · . (18)

Now, we show that there exists a subsequence of {∥L[y∗
n]∥p}

which is strictly decreasing. To this end, put n1 = 0, we should
find n2 > n1, such that ∥L[y∗

n2 ]∥p < ∥L[y∗
n1 ]∥p. Otherwise, for

any n ∈ N, we have:

∥L[y∗

n]∥p = ∥L[y∗

0]∥p > 0. (19)

Therefore, limn→∞ ∥L[y∗
n]∥p = ∥L[y∗

0]∥p > 0. This contradicts
Eq. (17).

Similarly, there exists n3 > n2, such that ∥L[y∗
n3 ]∥p <

∥L[y∗
n2 ]∥p, and so on. Define:

S = {y∗

n1 , y
∗

n2 , . . . , y
∗

nk , y
∗

nk+1
, . . .} ∪ {y∗

}. (20)

It is clear that S is a bounded (see definition Sn) and closed set
(the uniqueness of the solution of the integral equation). Also,
set S consists of the holomorphic functions in interval (0, 1).
Therefore, S is compact (see [16, p. 32]). Also the restriction of L
on S is a one to one and continuous function. Hence, the inverse
of the restriction of L on S, which is denoted by L|S , does exist.
Therefore

∥L−1
|S

(L[y∗

nk ]) − L−1
|S

(L[y∗
])∥p, (21)

trends to zero as n trends to infinity. Thus

∥y∗

nk − y∗
∥∞ −→ 0. (22)

The proof is completed. �

In practical work, {y∗
nk} and {y∗

n} are exactly the same. There-
fore, the rate of convergence is high.

3. Computational method

In this subsection, we illustrate the calculation method
for the determination of the unknown parameters of the
approximate solution. For simplicity, the approximate solution
is presented as a linear combination of basic functions; ϕi(x) =

xi, (i = 0, 1, . . . , n). Without loss of generality, wemay use the
2-norm. So that, for finding the approximate solution for Eq. (1),
it is enough to solve the following mathematics programming
problem:

min
(a0,a1,...,an)

∥L[yn]∥2 = min
(a0,a1,...,an)

 1

0
(L[yn](x))2dx

1/2

. (23)

Generally, to handle this problem we use the following
approximation;

(∥L[yn]∥2)
2

=

 1

0
(L[yn](x))2dx ∼=

1
N

[(L[yn](x0))2

+ (L[yn](x1))2 + · · · + (L[yn](xN))2], (24)

and we will minimize the following expression:

(L[yn](x0))2 + (L[yn](x1))2 + · · · + (L[yn](xN))2. (25)

Newton’s method is used for minimizing of mathematical
Expression (25). It is obvious that the rate of convergence of
this method depends on a suitable initial point, which will be
discussed in the next section.
3.1. Initial point

By continuity of y∗ and the Weierstrass approximation
theorem, for any ϵ > 0, there exists n = n(ϵ) ∈ N, such that;y∗

−

n
k=0

pnky∗


k
n


∞

≤ ϵ, (26)

where the Bernstein polynomials, pnk(x), are defined as the
following:

pnk(x) =


n
k


xk(1 − x)n−k, x ∈ [0, 1]. (27)

Since y∗ is continuous and usually does not have large oscilla-
tions, there exists a nonnegative 1y∗, such that for any n ∈ N,
we have:

y∗


k
n


= y∗(0) + εk,

|ϵk| ≤ 1y∗, k = 0, 1, 2, . . . , n. (28)

Using Relations (26) and (28), for any ϵ > 0, we have:y∗
− y∗(0)

n
k=0

pnk


∞

≤ ε + 1y∗. (29)

Therefore, in our computationalmethod,wewill select the coef-
ficients of x0, x1, . . . , xn in polynomial y∗(0)

n
k=0 pnk(x) as the

initial point. Assume A0
= (a00, a

0
1, . . . , a

0
n) is the initial point,

since:
n

k=0

pnk(x) = 1. (30)

Therefore, we choose:

a0j =


y∗(0), if j = 0,
0, if j = 1, 2, . . . , n. (31)

According to Theorem 1 and Relation (29), for any ϵ > 0, there
existsm ∈ N, such that:y∗

m − y∗(0)


∞
≤ ε + 1y∗. (32)

Hence:a∗

0, a
∗

1, . . . , a
∗

m


−

y∗(0), 0, . . . , 0

 ≤ ε + 1y∗. (33)

Therefore, the initial point (y∗(0), 0, . . . , 0) is near to (a∗

0, a
∗

1,
. . . , a∗

m) for sufficiently small 1y∗ and largem.

4. Numerical solutions for nonlinear Hammerstein integral
equations of the second kind

Even though the proposed method is applicable for all
nonlinear integral equations of first and second kinds, the
existence of nonlinear terms in the integrand of these equations
will increase the computation time. In order to solve this
problem for nonlinear integral equations of the second kind, in
some special cases, we first linearize the integrand term using a
change of variable and then solve the problem by our method.

Let us consider a special case of Eq. (1) as follows:

g(y(x)) + β

 1

0
k1(x, t)F1(t, y(t))dt

+ γ

 x

0
k2(x, t)F2(t, y(t))dt = f (x). (34)
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Suppose that g−1 exists and rewrite Eq. (34) as follows:

y(x) = g−1


f (x) − β

 1

0
k1(x, t)Z1(t)dt

− γ

 x

0
k2(x, t)Z2(t)dt


, (35)

where:

Z1(x) = F1(x, y(x)), Z2(x) = F2(x, y(x)). (36)

Therefore, Eq. (36) can be rewritten in the following form:

Z1(x) = F1


x, g−1


f (x) − β

 1

0
k1(x, t)Z1(t)dt

−γ

 x

0
k2(x, t)Z2(t)dt


,

Z2(x) = F2


x, g−1


f (x) − β

 1

0
k1(x, t)Z1(t)dt

−γ

 x

0
k2(x, t)Z2(t)dt


.

(37)

Lemma 2. With the above notations, y(x) presented in Eq. (35) is
the solution of Eq. (34) if, and only if, Z1 and Z2 are the solutions of
the system of Eqs. (37).

Proof. It is trivial.
By Lemma 2, it is enough to determine an approximate

solution for the system of Eqs. (37) by using our method as
follows:

min
m
i=1

(∥L1[Z1n, Z2n](xi)∥2
2 + ∥L2[Z1n, Z2n](xi)∥2

2), (38)

where L1[Z1, Z2] = Z1 − F1 and L2[Z1, Z2] = Z2 − F2. Also, Z1n
and Z2n are polynomials of degree n.

Finally, the solution of Eq. (34) is approximated as the
following:

ỹn(x) = g−1


f (x) − β

 1

0
k1(x, t)Z∗

1n(t)dt

− γ

 x

0
k2(x, t)Z∗

2n(t)dt


, (39)

where (Z∗

1n, Z
∗

2n) is the optimum solution of unconstrained
optimization problem (38). Similar to Section 2, it is clear
that (Z∗

1n, Z
∗

2n) −→ (Z1, Z2). Thus, Lemma 2 implies that ỹn
convergences to y. In the next section, we will employ our
method to solve some examples. �

5. Results and discussion

In this section, we will present some numerical examples
in order to investigate the performance and efficiency of the
proposed method. For this purpose, we have compared our
results with those of [3] as well as with the exact solutions. This
comparison is done based on error functions presented as:

en(x) = |y∗

n(x) − y∗(x)|, (40)

and:

ẽn(x) = |ỹn(x) − y∗(x)|, (41)
Table 1: Comparison of the results of Example 1 with those of [3].

xi ẽn(x) in our method ẽn(x) in [3]
n = 8 n = 8

0 2.09690E−12 3.8182E−9
0.1 2.05577E−12 5.2485E−9
0.2 2.21619E−12 7.6313E−9
0.3 2.43920E−12 9.0047E−9
0.4 2.54063E−12 3.4113E−9
0.5 3.01770E−12 5.6989E−9
0.6 3.63401E−12 8.0405E−9
0.7 4.13450E−12 2.0541E−9
0.8 4.95115E−12 3.0202E−9
0.9 5.98211E−12 5.2225E−9
1 7.09833E−12 1.4717E−8

Figure 1: Comparison between absolute errors in two cases: (I) the exact
solution and its best polynomial approximation, (II) the exact solution and
obtained polynomial based on the proposed method for Example 1, n = 12.

with:

∥en∥∞ = max
0<x<1

|en(x)|,

∥ẽn∥∞ = max
0<x<1

|ẽn(x)|, (42)

where y∗
n is the approximate solution obtained by our method

in Section 2 and ỹn is the approximate solution presented in
Section 4. Also, it is assumed that y∗∗

n is the best polynomial
approximation of degree at most n for the exact solution of the
integral equation determined using maple software.

Example 1. Consider the following nonlinear Volterra–Fred-
holm integral equation [3]:

y(x) = 2 cos(x) − 2 + 3
 x

0
sin(x − t)y2(t)dt

+
6

7 − 6 cos(1)

 1

0
cos2(x)(1 − t)(t + y(t))dt, (43)

with the exact solution y(x) = cos(x). Table 1 shows that our
method has smaller errors than those of themethod introdused
in [3]. So, Figure 1 indicates that y∗∗

n and y∗
n are almost the same

and the obtained approximate solution is best.

Example 2. Consider the nonlinear Fredholm integral equation
given in [3] by:

y(x) = 1 + x +


1 −

3
2
ln(3) +

√
3
6

π


x2

+

 1

0
2x2t ln(y(t))dt, (44)
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Table 2: Comparison of the results of Example 2 with those of [3].

xi ỹn(x) in [3] ỹn(x) in our method ỹn(x) in [3] ỹn(x) in our method Exact solution
n = 6 n = 6 n = 6 n = 6

0 1.000000000000 1.000000000000 1.0000000000000000 1.000000000000000000 1
0.1 1.109999994993 1.110000000774 1.1099999999999905 1.109999999999999999 1.11
0.2 1.239999979975 1.240000003099 1.2399999999999620 1.239999999999999998 1.24
0.3 1.389999954945 1.390000006973 1.3899999999999142 1.389999999999999996 1.39
0.4 1.559999919902 1.560000012397 1.5599999999998473 1.559999999999999994 1.56
0.5 1.749999874847 1.750000019370 1.7499999999997610 1.749999999999999991 1.75
0.6 1.959999819780 1.960000027893 1.9599999999996562 1.959999999999999987 1.96
0.7 2.189999754701 2.190000037966 2.1899999999995320 2.189999999999999983 1.19
0.8 2.439999679609 2.440000049588 2.4399999999993890 2.439999999999999977 2.44
0.9 2.709999594506 2.710000062760 2.7099999999992264 2.709999999999999976 2.71
1 2.999999499390 3.0000000774827 2.9999999999990443 2.999999999999999966 3
Table 3: Maximum absolute errors based on our method and the method
introduced in [3] for Example 3.

n ∥ẽn∥∞ in [3] ∥ẽn∥∞ in our method

8 2.09548E−10 6.531195E−12
12 5.06382E−14 6.804417E−16
16 1.47668E−16 8.231327E−20

with the exact solution y(x) = 1+x+x2. Table 2 shows that our
method has smaller errors than those of themethod introduced
in [3].

Example 3. Consider differential equation y′′(x)−exp(y(x)) =

0, with boundary conditions y(0) = y(1) = 0, which is of great
interest in hydrodynamics [17]. This equation can be reformu-
lated as the following nonlinear Fredholm–Hammerstein inte-
gral equation:

y(x) =

 1

0
k(x, t)ey(t)dt. (45)

The exact solution of Eq. (45) is y(x) = − ln(2) + 2 ln

c sec

c(x− 1
2 )

2


, where c is the root of equation

√
2 = c sec

 c
4


,

and:

k(x, t) =


−t(1 − x), t ≤ x,
−x(1 − t), x < t.

In this example, maximum absolute errors for the approximate
solutions are shown in Table 3. Table 3 shows that our method
has smaller errors than those of the method introduced in [3].
Figure 2 shows that in our method the bigger n results in the
higher-precision.

Example 4. Consider the following nonlinear Volterra integral
equation of the first kind: x

0
(xy2(t) + 1) ln(y(t))dt =

−x
4

(1 − e−2x
− 2xe−2x)

−
x2

2
, (46)

with the exact solution y(x) = e−x.
Maximum absolute error by our method in Section 2, is

shown in Table 4. Also, Table 4 indicates that the results of our
method having a rapid rate of convergence.
Figure 2: The absolute error for Example 3, n = 20.

Table 4: Maximum absolute errors based on our method for Example 4.

n ∥y∗
n − y∥∞

3 5.272004E−4
5 1.680973E−6
7 2.622387E−9

10 6.964135E−11

6. Conclusion

In this paper, the approximate solutions of nonlinear integral
equations, including Volterra, Fredholm, Volterra–Fredholm of
first and second kinds, are presented as a linear combinations
of some basic polynomials. The unknown coefficients are
calculated based on the minimization of norm-2 of the residual
function. In addition, the existence and convergence of a
subsequence of approximate solutions are investigated. A great
advantage of our method, from a computational point of view,
is the simplicity and quick reduction of an integral equation
to a nonlinear optimization problem. This problem was solved
by using the approximated norm-2 and Newton’s method with
a suitable initial point. In order to investigate the accuracy of
our method, several numerical examples are presented. It was
observed that the approximate solutions based on the proposed
method in comparison with other existing solutions are more
accurate.
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