
Science of
Computer

ELSEVIER Science of Computer Programming 22 (1994) 3-19
Programming

Calculating path algorithms

Roland C. Backhouse”, J.P.H.W. van den Eijnde, A.J.M. van Gasteren

Department of Mathematics and Computing Science, Eindhoven UniversitJ? of Technology. P.O. Box 513,

5600 MB Eindhoven. Netherlands

Communicated by C. Morgan; revised October 1993

Abstract

A calculational derivation is given of two abstract path algorithms. The first is an all-pairs
algorithm, two well-known instances of which are Warshall’s (reachability) algorithm and
Floyd’s shortest-path algorithm; instances of the second are Dijkstra’s shortest-path algorithm
and breadth-first/depth-first search of a directed graph. The basis for the derivations is the
algebra of regular languages.

1. Introduction

This paper presents a calculational derivation of two algorithms that are abstrac-

tions of path problems on directed labelled graphs, where the labels satisfy the

properties of a regular algebra.’ The fact that the elementary operators involved in

several path-finding algorithms obey the axioms of regular algebra is widely known.

Specific instances of the abstract algorithms are also well-known, such as Warshall’s

(all-pairs) reachability algorithm and Floyd’s shortest-path algorithm for the first

abstract program to be presented, and Dijkstra’s shortest-path algorithm and depth-

first/breadth-first search for the second.

In the present paper, however, the emphasis is on the derivation rather than on the

algorithms themselves. The main distinguishing feature of the derivation is that, by

exploiting the correspondence between the graphs involved and matrices, the algo-

rithms are developed by calculating with matrices rather than matrix elements. Only as

a final step of the derivation is the algorithm operating on matrices transformed into

a program expressed in terms of matrix elements. In our view this leads to a more

compact and more disentangled derivation.

* Corresponding author. E-mail:wsinrbc@win.tue.nl.
’ Sometimes known as the algebra of regular languages.

0167-6423/94/%07.00 0 1994 Elsevier Science B.V. All rights reserved
SSDZ 0167-6423(93)E0019-V

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82695821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 R.C. Backhouse et al. J Science of Computer Programming 22 (1994) 3-19

The first problem dealt with in this paper is the simpler of the two. As the most

elementary illustration of the use of matrix calculation it is included mainly to show

the calculus in action before it is used in a more complicated problem.

2. Problem statement

Given is a (non-empty) set N and an (N (x (N [matrix A, the rows and columns of

which are indexed by elements of N. It is assumed that the matrix elements are drawn

from a regular algebra (S, + , ., *, 0,l). The first problem is to derive an algorithm

computing matrix A+, i.e. A. A*, whereby the primitive terms in the algorithm do not

involve application of the * operator to matrices.

In the second problem, the regular algebra satisfies two additional properties:

Sl. The ordering f induced’ by + is a total ordering on the elements of S.

S2. 1 is the largest element in the ordering.

In addition to N and A, one is given a 1 x (N 1 matrix b. Hereafter, 1 x 1 N 1 matrices

will be called “vectors”, 1 x 1 matrices will be called “elements” and 1 N 1 x 1 N 1 matrices

will be called “matrices”. The second problem is to derive an algorithm to compute the

vector b. A* whereby the primitive terms in the algorithm do not involve any use

whatsoever of the * operator.

3. Interpretations

The relevance and interest of the stated problems is that they abstract from several

path problems on labelled, directed graphs. Let G = (N, E) be a directed graph with

node set N and labelled-edge set E, the labels being drawn from some regular algebra

(S, + , ., *,O, 1). Then (as we deem known, see, for instance, [5,10]), there is a corres-

pondence between edge sets E and (N 1 x 1 N 1 matrices A whereby the (i, j)th element of

A equals the label of the edge from node i to node j in the graph, if present, and

0 otherwise. (For graphs with multiple edges, the correspondence will be adjusted

later; note that absent edges and edges with label 0 are not distinguished.)

Since S forms a regular algebra (S, + , . , *, 0, l), matrix multiplication can be defined

in the usual way with the usual properties. An important theorem is that the set of

square matrices of a fixed size with entries drawn from S itself forms a regular algebra,

with the usual definitions of the zero and identity matrices, matrix addition and

matrix multiplication. The derivation to be presented makes extensive use of this

theorem. (For further discussion see [1,5,9].)

*x<y =x+y=y.

R.C. Backhouse et al.lScience of Computer Programming 22 (1994) 3%I9 5

If the label of a path is defined to be the product of its constituent edge labels (taken

in the order defined by the path), the (i,j)th entry of Ak is the sum of the labels of the

paths of length k from node i to node j. Note that this still holds true if we redefine the

(i, j)th entry of A to be the sum of the labels of all edges from i to j, thus admitting

multiple edges. Similarly, the (i,j)th entry of A* (or A+) is the sum of the labels of all

(all non-empty) paths from node i to nodej. Moreover, if b is a vector that differs from

the zero vector only in its ith entry, for some node i, then the jth entry of b .A* is the

sum of all labels of paths beginning at node i and ending at node j.

Three interpretations of a regular algebra satisfying properties Sl and S2 are given

in Table 1. (Note that property S2 implies that x* = 1 for all x E S. For this reason the

interpretation of * has been omitted.)

The first interpretation is that appropriate to finding shortest paths; the length (i.e.

label) of a path is the (arithmetic) sum of its constituent edge lengths (labels) and for

each node x the minimum (denoted in Table 1 by J) such length is sought to node

x from a given, fixed start node. In this case, the first algorithm we derive finds the length

of all shortest paths through a graph, and is known as Floyd’s algorithm. The second

algorithm we derive is known as Dijkstra’s shortest-path algorithm [7] (the carrier set,

S, being restricted to non-negative reals in order to comply with requirement S2).

The second interpretation is that appropriate to solving reachability problems; the

(i, j)th entry of matrix A is true if and only if there is an edge in E from node i to j, and

the “length” of a path is always true. The first algorithm we derive determines for each

pair of nodes i and j whether i is reachable from j (by a path of non-zero length) and is

known as Warshall’s algorithm. The second algorithm forms the basis of the so-called

depth-first and breadth-first search methods for determining for each node in the

graph whether or not there is a path in the graph to that node from the given start

node. (The choice of ‘breadth-first” or “depth-first” search depends on further refine-

ment steps that we do not discuss in detail.)

The third interpretation is appropriate to bottleneck problems; the edge labels may

be construed as, say, bridge-widths and the “length” of a path is the minimum width of

bridge on that path. Sought is, for each node in the graph, the minimum bridge-width

on a route to the node from - in the case of the first algorithm - all other nodes in the

graph, or -in the case of the second algorithm - a given start node that maximises that

minimum. In this case neither algorithm appears to have any specific name.

For more discussion of these interpretations see [_5].

Table 1

Regular algebras

s + 0 1 <

Shortest paths

Reachability

Bottlenecks

Non-negative 1 + cc 0 2
reals

Booleans ” A false true 5

Reals t 1 --co co G

6 R.C. Backhouse et al. 1 Science of Computer Programming 22 (1994) 3-19

4. Regular algebra

The framework for the current derivation is regular algebra. The axioms of regular

algebra - the algebra of regular languages - are now widely known and publicised.

(See e.g. [3,5,6].) The specific details of the framework are that (S, + , . , *,O, 1) is

a regular algebra. That is, S is a set on which are defined two binary operators + and

. and one unary operator * (written as a postfix of its argument). Addition (+) is

associative, commutative and idempotent. Multiplication (.) distributes over addition

and is associative but is not necessarily commutative. The basic properties of * that we

use here are, for all a, b ES:

a*=l+a.a* A a*=l+a*.a,

u.(b.u)* = (u.b)*.u,

(a + b)t = u*.(b.u*)* A (a + b)* = (u*.b).u*,

(1)

(2)

(3)

1* = 1.

Rule (2) will be referred to as the “leap-frog rule” whilst rule (3) will be called the

“star-decomposition rule”. The main contribution made by Backhouse and Carrt [3]

was to show that these four rules are at the heart of several elimination techniques for

solving shortest-path and other path-finding problems.

A well-known rule of regular algebra identifies a*. b as a least fixed point:

u*.b<x ‘= u.x+bdx.

We do not use this rule in our derivations. Use of this rule is nonetheless implicit in our

claim that the problems we consider are indeed abstractions of the specific path-

finding problems discussed in Section 3.

Two additional rules (which we do use) are the following consequences of the

idempotence of * and +, respectively.

(a+)* = a*, (5)

a*.a*=a*. (6)

5. Selectors

Although the matrices we consider form a regular algebra, they will obviously never

satisfy the requirements Sl and S2, even if their elements do. Given that we wish to

appeal to these properties from time to time, it is important to keep track of which

terms in our calculations denote elements, which denote vectors and which denote

matrices. The rules for doing so are simple and (hopefully) familiar: the product of an

m x n and an n x p matrix is an m xp matrix, and addition and * preserve the

dimension of their arguments. It remains, therefore, to adopt a systematic naming

R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3-19

convention for the variables that we use. This, and a primitive mechanism for forming

vectors, is the topic of this section.

During the course of the development the following naming conventions will be

used.

0 1 x (NJ vector that is everywhere 0,

k,j nodes of the graph (i.e. elements of N),

L,M,P subsets of N,

V, lV,X, Y,Z IN[x (NI matrices,

4 0, w, x 1 x 1 N 1 vectors.

For each node k we denote by k+ the 1 x IN) vector that differs from 0 only in its

kth component which is 1. Such a vector is called a primitive selector vector. The

transpose of k+ (thus, an (N 1 x 1 vector) is denoted by + k. We define the primitive

selector matrix k by the equation

k = +k.k+. (7)

Any sum (including the empty sum, of course) of primitive selector vectors (respective-

ly, matrices) is called a selector vector (respectively, matrix). In fact, in most cases,

instead of using one of these four terms we shall just use the term selector, it being clear

from the context whether the designated selector is primitive or not, and a vector or

a matrix.

This terminology is motivated by the interpretation of the product of a matrix and

a selector. Specifically, j+. Y is a vector consisting of a copy of the jth row of matrix

Y, and j+. Y.+k is the (j,k)th element of Y. Furthermore, there is a (l-l) cor-

respondence between subsets of N and selector matrices given by the function

mapping M to M where, by definition, -

M = C(k:keM:&). - (8)

Note that

(k} = 4. - (9)

This silent “lifting” of a function from elements to sets is not uncommon and very

convenient; it should not be a cause for confusion since we do not mix the two forms,

preferring always to use the shorter form.

For all vectors x and all matrices Y, x. Aj is a copy of x except that all elements of

x with index outside M are zero, and Y. M (respectively, g. Y) is a copy of matrix

Y except that all columns (respectively, r&s) of Y with index outside M are zero.

The derivation that follows is not dependent on knowing these interpretations of

the selectors; rather, we make use of a small number of characteristic algebraic

properties. The first is that matrix product is associative. This is the most important

property and its exploitation is the reason for introducing the primitive selectors.

However, we shall nowhere explicitly mention the use of associativity, in line with the

doctrine that the application of the most important properties should be invisible. The

8 R.C. Backhouse et aLlScience of Computer Programming 22 (1994) 3-19

second property is that 4 (where 4 denotes the empty set of nodes) is the zero element

in the algebra of 1 N (x 1-N [matrices. In particular, for all vectors U,

l4.4=0 (10)

and, for all matrices X,

x.4=4.x=&J (11)

and

x+fp=x. (12)

(These properties are immediate consequences of the definition of the “underlining”

function.) Two other properties are that, for all nodes k,

k+.+k = 1 (13)

and, for all distinct nodes j and k,

j+.+k=O. (14)

It follows, by straightforward calculation, that, for all sets of nodes M and all nodes k,

kcM a (M.+k=+k A M.k=lc) - -- (15)

and, for all sets of nodes L and M,

L.M=LnM. -- - (16)

In particular,

M.M=M -- - (17)

and

LnM=4 * L.M=cp. -- _ (18)

The final property is that all matrices and all vectors are indexed by the given node set

N. This we render by the equations:

X.N=X=N.X (19)

and

x.N=x

for all matrices X and all vectors x.

(20)

6. The Warshall-Floyd algorithm

In this section we deal with the simpler of the two problems, viz. the computation of

A+. The goal is to provide a gentle introduction to the calculational techniques, in

R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3-19 9

particular the use of star decomposition to derive an initial algorithm at matrix level,

followed by the use of the leap-frog rule to convert that algorithm to one in terms of

matrix elements.

6.1. The algorithm

The heuristic underlying the computation is to use star decomposition in order to

build up the given matrix A under the star operator from the null matrix to its final

form. More precisely, we introduce selector matrix L with loop invariant

x = A.(L.A)* (21)

and postcondition

X= A.A*. (22)

The invariant is established by X, L := A, c$, since by (1) we have O* = 1. For & = 1,

i.e. L = N, (21) implies the postcondition, and our aim is to extend L with one node in

each step of the repetition. This results in the following skeleton algorithm.

X,L:= A,c#J

;do L#N-+

k:EN-L

;X:= A,((& + &).A)+

;L:= Lu(k}

od{X=A+}.

In this algorithm only the assignment to X in the body of the repetition needs to be

simplified. Proceeding with the evaluation of its right-hand side, we calculate

A.(& + lc).A)*

= {distributivity)

A.(&. A + &. A)*

= {star decomposition (3))

A.(&. A)*.(&. A.(&. A)*)*

= ((21))

X.(&.X)*.

Thus, the assignment to X in the body can be replaced by

x:= X.(&.X)*.

10 R.C. Backhouse et al. JScience of Computer Programming 22 (1994) 3-19

In order to arrive at an algorithm in which the star operator is applied to matrix

elements only, or, more precisely, to singleton matrices we continue the calculation:

X.&.X)*

= (unfolding (l), distributivity)

x + X.(k.X)**k.X

= {& = +k.k+ (7))

X + X.(,k.k+.X)*.+k.k+.X

= {leap-frog rule (2) for +k}

X + X..k.(k..X.+k)*.k+.X.

Note that in the above calculation the star decomposition rule is used so as to arrive

at the intermediate expression X .(k. X)*, while the leap-frog rule is exploited so as to

transform this expression into the required form: only in the final step of the

calculation do we arrive at an expression in which the star operator is applied to an

element, or more precisely to the singleton matrix k+. X. +k. Rewriting the assignment

to X in the body according to the above and replacing set variable L, using

representation invariant L = [0 . .k) A 0 < k 6 n, we arrive at the following abstract

algorithm:

X,k:= A,Q,

;do k # n-r X:= X + X*.k.(k+*X.+k)t.k+.X

;k:= k+ 1

od{X=A+}.

6.2. Implementation freedom

The algorithm we have obtained is not quite Warshall’s algorithm or Floyd’s

algorithm (even after suitable interpretation of the operators). The reason is that at

element level the assignment in the body of the loop is a simultaneous assignment to all

matrix elements. Spelling this out in detail, premultiplying by i+ and postmultiplying

by +j, the matrix assignment

X:= X + X.+k.(k+.X.+k)*.k+.X

is directly implemented as the simultaneous assignment

sim-for i:=Oton-landj:=Oton-ldo

i*.X.+j:=

(i+.X.+j) + (i..X..k).(k*.X.*k)*.(k*.X.,j).

R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3- I9 11

(Writing i+. X. +j conventionally as xij this takes on the more familiar appearance:

&n-for i:=OtoM-lanclj:=Oton-ldo

xij := xij + xik ’ (Xkk)* . xkj.

But, of course, the problem of the simultaneous assignment remains.)
Exploitation of the, as yet unused, idempotency of addition and star, however, gives

unlimited freedom in the order in which the matrix elements are assigned. They may
be assigned sequentially as in Warshall’s and Floyd’s algorithms, or completely in
parallel! To explain why this is so we take a closer look at the assignments at element
level. The expression assigned to element Xik, for instance, evaluates to

Xik + Xik. Xkk* ’ Xkk

= (distributivity}

= {folding: (l)]

Xik Xkk *

The expression assigned to xkj by symmetry equals Xkk*. xkj, and the expression
assigned to xkk, instantiating the formula above, equals &k+. Since, according to (6)
and (5), respectively, we have &k* xkk* = xkk* and (xkk+)* = Xkk*, it follows that for
the assignment

%j := xij + Xik.(Xkk)*‘Xkj

it is irrelevant whether xik, Xkk, and xkj are changed before or after the assignment to
Xij. Hence the order of the assignments in the sim-for statement can be chosen freely.

An alternative proof of this fact, phrased completely in terms of matrices rather
than matrix elements, can be found in [2]. The proof shows that the function

X t--t X + X.*k.(k*.X.~k)*.k*.X,

which, as we know, is equal to the function

(23)

x H X.(k,X)*, (24)

is a closure operator, and this is sufficient to permit the conversion of the simultaneous
assignment to a parallel assignment, i.e. to a statement in which the individual
assignments can be performed in any order. A proof of the latter is also included in

c21.
This concludes the derivation of the Warshall-Floyd algorithm. Note that the total

calculation (including the discussion of implementation freedom) takes roughly ten
elementary steps which is about what it should be for such a compact algorithm.

12 R.C. Backhouse et al./ Science of Computer Programming 22 (1994) 3-19

7. The second algorithm

In this section we derive an algorithm computing the vector b. A*, given properties
Sl and S2. Since A* = 1 + A’, a possible solution is to take the Warshall-Floyd
algorithm for A’, compute A* and subsequently b. A*. This would lead to an
algorithm that, like the Warshall-Floyd algorithm, is cubic in the size of the matrix.
We shall not do so, however, because properties Sl and S2 are the key to a solution
that is more efficient than the one just proposed: as will be shown next, a consequence
of properties Sl and S2 is that, for any vector x and any matrix Y, at least one element
of x. Y* is easy to compute, which suggests that a gain in efficiency of at least one
order of magnitude might be feasible. (See the end of this section for a more detailed
discussion.)

7.1. The key theorem

A key insight in deriving an algorithm is that, because of properties Sl and S2, for
any vector x and any matrix Y, at least one element of x. YI is easy to compute.
Specifically, choose k such that

V(j:jEN:x.+jd x.+k). (25)

Thus the kth element of x is the largest. (Such a choice can always be made because the
ordering on elements is total.) Then we claim that

x. Y*.+k = x.+k. (26)

In other words, no computation whatsoever is required to compute this one element.
We formulate and prove a slightly more general theorem: first, we abstract from the

irrelevant properties of Y*, using only the fact that Y* >, 1, which follows from (1);
second, in order to comply with conditions on k (k E M, say) we formulate the theorem
for vector U. M rather than vector U. -

Theorem 7.1. For all M E N, k E N, matrices Z and vectors u,

kEM A V(j:jEM:u.+jfu.+k) A Z>hJ

+ u.M.Z.k = u.k. -

Proof. The proof is by mutual inclusion. Assume the antecedent of the implication.
Then,

u.M.Z.k - -

> {assumption: Z 3 I}

u.M.k --

= {assumption: kE M, (15))

u.k

R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3- I9 13

and

u.M.Z.k -

= {definition of Mf -

u.C(i:i~M:j).Z.&

= (definition of j and distributivity)

C(i:iEM:u.d.i+.Z.+k).k+

< (i.. Z. +k is an element, hence by property S2 i+. Z. +k d l}

C(i:iEM:u.+i).k+

< {assumption on k}

u..k.k*

= I(7))

u.k. q

Note that the penultimate step of the above calculation shows how the condition on

k could have been “invented”: it strongly suggests itself, given the one inclusion,

u. M. Z. 14 2 u. 14, and the wish to have an equality. -

7.2. A skeleton algorithm

The algorithm we develop is based on an iterative process in which at each iteration

Theorem 7.1 is used to “process’ one node. At some intermediate stage of the

computation some set L of nodes has been dealt with. These heuristics are captured

formally by postulating as loop invariant

w=b.A*.L A LcN - (27)

and as postcondition

w = b.A*, (28)

where w is a vector. By property (lo), the invariant is established by the assignment

L,w:= q&o.

For the guard of the repetition we choose for the moment the simplest possible

condition, namely L # N. Since N is a finite set, progress towards L = N, and thus

towards termination, is achieved by choosing statement

L:= L u {k}, for k#L

for the loop body. In order to maintain the loop invariant, the assignment to L is

accompanied by the assignment w := b. A*. (L + Q, i.e. by

w:= w + b.A*.k. (29)

14 R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3-19

Thus we have arrived at the following skeleton algorithm

L,w:= @,O

;do L#N-+k.EN-L

; w:= w + b.A*.k

; L := L u {k)

od {w = b.A*}.

Our next concern is to rewrite b. A*. & in order to get rid of the star operator
applied to a matrix. Our tactic is to use star decomposition so as to get into a position
in which the Key Theorem can be invoked.

7.3. Using star decomposition and Key Theorem

For convenience we introduce additional invariant

M=N-L; (30)

in other words, M is the complement of L in N. Thus we have, by invariant (27) and
the fact that M + A = 1, -

b.A* = b.A*.M+ w. - (31)

We now calculate, bearing in mind that b. A*. & = b * A*. M. k, for k E M, --

b.A*.M -

= {star decomposition using . A = V + W for I/ = &. A and W = M. A} -

b.(W*. V)r. W*.M -

= (unfolding (W* . V)* : (1))

R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3-19 15

The driving force in the first four steps of the above calculation was to expose
a selector matrix & immediately after b. A* in order to use the loop invariant. The
decomposition A = 4. A + A4. A appears to be the only option for achieving this -
goal.

So now, with additional invariant

u=b+w.A, (32)

we are in a position to invoke the Key Theorem: since for k E A4 the above calculation
implies

b.A*.& = u,M.(A.M)*.&, - -

application of the Key Theorem yields

kEM A V(j:jeM:u.+j< u.+k) =a b.A*.&= u.6. (33)

As for the invariance of (30) and (32), initializing statement L, w := 4, 0 is augmented
with M, u := N, b; assignment L := L u {k} is extended with M := M - {k}; and state-
ment w := w + U. & is extended with u := u + U. 4. A, since, by (32),

(b+w.A)(w:=w+u.&)=u+u.k.A.

Thus, we have arrived at an algorithm in which the star operator no longer occurs.

L,w,M,u:= +,O,N,b

;do L # N-+ k:keM A V(j:jEM:u.+jd u.+k)

; w,u:= w + u.4, u + l4.k.A

;L,M:=Lu{k), M-(k)

od(w=b.A*}

maintaining

w=b.A*.& A L_cN,

M=N-L,

u=b+w.A.

Note. With regard to the guard L # N, or M # 4, the introduction of variable
u enables us to strengthen it, if so desired, without affecting the postcondition: by (31)
and the derived equality b. A*. M = u * M-(A. M)*, we have, using the invariants - - -

u.M=O =s w=b.A*. - (34)

As a result, the guard can be strengthened to u. M # 0. -

16 R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3-19

7.4. Optimizations

Before dealing with the final task of reexpressing the vector assignments in terms of
elementwise operations, we first investigate possible simplifications of the algorithm
developed so far. First note that guard L # N can be replaced by the equivalent
M # 4; as a result, variable L can be removed from the program. Secondly, from the
invariant (32) (and (1)) it is immediate that

w=b.A* s- u=b.A*, (35)

as a result of which w can be removed from the program provided the postcondition is
replaced by u = b. A+. For later use note that, similarly, using w < b. A* (see (27)), we

can conclude from the invariant (32)

uf b.A*. (36)

A final optimization results from a closer investigation of the values of u. & and u. &.

More precisely we shall show that the assignment to u leaves the values of u .& and
u. k unchanged, viz. from the invariants we shall deduce

(u + u.&.A).& = u.k, (37)

(u + u.k.A).& = u.&. (38)

With regard to property (37), by distributivity and the definition of f , it is equivalent
to

u.k.A.k < ~4.6,

which is valid: using the definition of k and the fact that element k+. A. +k f 1 by
property S2 we derive k. A. k < k. For property (38) we calculate

(u + u.k.A).&= u’&

= {calculusj

u.&.A.&,< u.&

c= (u < b.A*: (36), and & 9 l}

b.A*.A.&<u.L -

-z= {b.A*.A*&< b.A*.L,= w}

E {o introduce new invariant w < U.L}

true.

R.C. Backhouse et aLlScience of Computer Programming 22 (1994) 3-19 17

Invariant w < u. L is established by assignment L, w := 4,O and maintained by the

body of the repetition since

(w < u.&)(w,u,L:= w + U.k, u + u.k.A, Lu {kj)

= {substitution}

w+u.kd(u+u.k.A).(L+14)

e {regular algebra)

w+u.&du.&+u.&

r= {monotonicityj

w<u.L. -

7.5. Elementwise implementation

In this final section we implement the assignment u := u + u. &. A in terms of

elementwise operations. Some remarks on the relationship between the algorithm

presented here and conventional descriptions of Dijkstra’s shortest-path algorithm

and of traversal algorithms are also included.

What the assignment u := u + u. 6. A entails at element level can be ascertained by

postmultiplying by +j for each node j; thus we get

u.+j:= (u + u.k.A).*j.

By properties (37) and (38) derived earlier, this assignment boils down to a skip for

j = k, since +k = k. +k and (u + u. k. A). k = u. &, and similarly for jE L, since

+j = 4. +j. Thus, the element assignments can be restricted to jE M - {k}. In terms of

elements, the value assigned to u. +j is u. +j + u. 6. A. +j, i.e.

(u.+j) + (u.*k).(k+.A.+j),

where the parentheses indicate which subexpressions are elements. Assembling the

results of the previous section with the above, we have arrived at our final algorithm.

M,u:= N,b

;do M#$I+

k:keM A V(j:jeM:u.+j=$ u.+k)

;simfor (j:jeM- {k}: u.+j:= (u.+j) + (u.+k)‘(k*.A.+j))

;M:=M-{k}

od{u=b.A*}.

Note that since k +! M - {k), the simultaneous assignment can be replaced by a se-

quential for -statement.

18 R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3-19

We note that the set L, the complement of M, would conventionally be called the
“black” nodes; see, for example, Dijkstra and Feijen’s account [8] of Dijkstra’s
shortest-path algorithm. The latter also distinguishes “white” and “grey” nodes. The
“grey” nodes are just nodes je M for which u. +j # 0, and the “white” nodes are the
remaining nodes in M. As was shown in (34), another suitable choice for the
termination condition would be u. M = 0, or, in conventional terminology: “the set of
grey nodes is empty”; conventionally, this is, indeed, the choice made.

Such a termination condition u. M = 0 requires the algorithm to keep track of the -
nodes j E M for which u. +j # 0. We will not go into the precise details of such an addition
to the algorithm; suffice it to note that, in the interpretation pertaining to reachability
problems (see Table l), keeping track of the “grey” nodes in a queue leads to a breadth-
first traversal algorithm; using a stack instead of a queue leads to depth-first traversal.

We finish with a few remarks on the efficiency of the above algorithm. Note, first of
all, that if the choice of k in the body of the repetition takes time proportional to the
size of M, the computation time of the algorithm is quadratic in the size of matrix A.

The regular algebra of matrix elements may, however, be such that choosing k takes
constant time only (see, for instance, the regular algebra for reachability). In this case
the time complexity depends on the for statement in the body: note that, in total, each
element of matrix A, is referred to at most once, and that the assignment to US l j
amounts to skip if matrix element (k+ . A. +j) equals 0, in the interpretation: if there is
no edge from node k to node j. Then an implementation taking time linear in the
number of edges is feasible.

8. Commentary and credits

The goal of this paper has been to show how two classes of standard path algorithms
can be derived by algebraic calculation, This is, of course, not the first and nor (we hope)
will it be the last such derivation. (For an earlier derivation of the second algorithm see
[4]; the present derivation was inspired by the second author’s involvement with
similar problems [l 11). The algebraic basis for the calculation given here was laid in
[3], and some of its details were influenced by Carre’s derivation of the same
algorithm [.5]. A great many other authors have described and applied related
algebraic systems to a variety of programming problems; Tarjan’s paper [lo] includes
many references. The main distinguishing feature of the development presented here,
however, is its reliance on calculations with matrices rather than with matrix elements.

Acknowledgements

Thanks go to Wim Feijen and Lambert Meertens for their critical comments and
suggestions for improvement regarding an earlier presentation of the Warshall-Floyd
algorithm.

R.C. Backhouse et al. /Science of Computer Programming 22 (1994) 3- I9 19

Preparation of this paper was expedited by the use of the MATHPAD proof editor

developed by Richard Verhoeven and Olaf Weber.

References

[l] R.C. Backhouse, Closure algorithms and the star-height problem of regular languages, Ph.D. Thesis,

University of London (1975).

[Z] R.C. Backhouse, Calculating the Warshall/Floyd path algorithm, Computer Science Note No. 92/09,

Eindhoven University of Technology, Department of Computing Science, Eindhoven, Netherlands

(1992).

[3] R.C. Backhouse and B.A. Carre, Regular algebra applied to path-finding problems, J. Inst. Math.
Appl. 15 (1975) 161-186.

[4] R.C. Backhouse and A.J.M. van Gasteren, Calculating a path algorithm, in: R.S. Bird, CC. Morgan

and J.C.P. Woodcock, eds., Mathematics of Program Construction, Lecture Notes in Computer

Science 669 (Springer, Berlin, 1993) 32-44.

[S] B.A. Carre, Graphs and Networks (Oxford University Press, Oxford, 1979).

[6] J.H. Conway, Regular Algebra and Finite Machines (Chapman and Hall, London, 1971).

[7] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269-271.

[S] E.W. Dijkstra and W.H.J. Feijen, Een Methode van Programmeren (Academic Service, the Hague,

1984); also: A method of Programming (Addison-Wesley, Reading, MA, 1988).

[9] D. Kozen, A completeness theorem for Kleene algebras and the algebra of regular events, in:

Proceedings 6th Annual IEEE Symposium on logic in Computer Science (1991) 214-225.
[lo] R.E. Tarjan, A unified approach to path problems, 1. ACM 28 (1981) 577-593.
[ll] J.P.H.W. van den Eijnde, Conservative fixpoint functions on a graph, in R.S. Bird, CC. Morgan and

J.C.P. Woodcock, eds., Mathematics of Program Construction, Lecture Notes in Computer Science

669 (Springer, Berlin, 1993) 80-100.

