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Abstract 

A calculational derivation is given of two abstract path algorithms. The first is an all-pairs 
algorithm, two well-known instances of which are Warshall’s (reachability) algorithm and 
Floyd’s shortest-path algorithm; instances of the second are Dijkstra’s shortest-path algorithm 
and breadth-first/depth-first search of a directed graph. The basis for the derivations is the 
algebra of regular languages. 

1. Introduction 

This paper presents a calculational derivation of two algorithms that are abstrac- 

tions of path problems on directed labelled graphs, where the labels satisfy the 

properties of a regular algebra.’ The fact that the elementary operators involved in 

several path-finding algorithms obey the axioms of regular algebra is widely known. 

Specific instances of the abstract algorithms are also well-known, such as Warshall’s 

(all-pairs) reachability algorithm and Floyd’s shortest-path algorithm for the first 

abstract program to be presented, and Dijkstra’s shortest-path algorithm and depth- 

first/breadth-first search for the second. 

In the present paper, however, the emphasis is on the derivation rather than on the 

algorithms themselves. The main distinguishing feature of the derivation is that, by 

exploiting the correspondence between the graphs involved and matrices, the algo- 

rithms are developed by calculating with matrices rather than matrix elements. Only as 

a final step of the derivation is the algorithm operating on matrices transformed into 

a program expressed in terms of matrix elements. In our view this leads to a more 

compact and more disentangled derivation. 

* Corresponding author. E-mail:wsinrbc@win.tue.nl. 
’ Sometimes known as the algebra of regular languages. 
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The first problem dealt with in this paper is the simpler of the two. As the most 

elementary illustration of the use of matrix calculation it is included mainly to show 

the calculus in action before it is used in a more complicated problem. 

2. Problem statement 

Given is a (non-empty) set N and an (N ( x (N [ matrix A, the rows and columns of 

which are indexed by elements of N. It is assumed that the matrix elements are drawn 

from a regular algebra (S, + , ., *, 0,l). The first problem is to derive an algorithm 

computing matrix A+, i.e. A. A*, whereby the primitive terms in the algorithm do not 

involve application of the * operator to matrices. 

In the second problem, the regular algebra satisfies two additional properties: 

Sl. The ordering f induced’ by + is a total ordering on the elements of S. 

S2. 1 is the largest element in the ordering. 

In addition to N and A, one is given a 1 x (N 1 matrix b. Hereafter, 1 x 1 N 1 matrices 

will be called “vectors”, 1 x 1 matrices will be called “elements” and 1 N 1 x 1 N 1 matrices 

will be called “matrices”. The second problem is to derive an algorithm to compute the 

vector b. A* whereby the primitive terms in the algorithm do not involve any use 

whatsoever of the * operator. 

3. Interpretations 

The relevance and interest of the stated problems is that they abstract from several 

path problems on labelled, directed graphs. Let G = (N, E) be a directed graph with 

node set N and labelled-edge set E, the labels being drawn from some regular algebra 

(S, + , ., *,O, 1). Then (as we deem known, see, for instance, [5,10]), there is a corres- 

pondence between edge sets E and (N 1 x 1 N 1 matrices A whereby the (i, j)th element of 

A equals the label of the edge from node i to node j in the graph, if present, and 

0 otherwise. (For graphs with multiple edges, the correspondence will be adjusted 

later; note that absent edges and edges with label 0 are not distinguished.) 

Since S forms a regular algebra (S, + , . , *, 0, l), matrix multiplication can be defined 

in the usual way with the usual properties. An important theorem is that the set of 

square matrices of a fixed size with entries drawn from S itself forms a regular algebra, 

with the usual definitions of the zero and identity matrices, matrix addition and 

matrix multiplication. The derivation to be presented makes extensive use of this 

theorem. (For further discussion see [1,5,9].) 

*x<y =x+y=y. 
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If the label of a path is defined to be the product of its constituent edge labels (taken 

in the order defined by the path), the (i,j)th entry of Ak is the sum of the labels of the 

paths of length k from node i to node j. Note that this still holds true if we redefine the 

(i, j)th entry of A to be the sum of the labels of all edges from i to j, thus admitting 

multiple edges. Similarly, the (i,j)th entry of A* (or A+) is the sum of the labels of all 

(all non-empty) paths from node i to nodej. Moreover, if b is a vector that differs from 

the zero vector only in its ith entry, for some node i, then the jth entry of b .A* is the 

sum of all labels of paths beginning at node i and ending at node j. 

Three interpretations of a regular algebra satisfying properties Sl and S2 are given 

in Table 1. (Note that property S2 implies that x* = 1 for all x E S. For this reason the 

interpretation of * has been omitted.) 

The first interpretation is that appropriate to finding shortest paths; the length (i.e. 

label) of a path is the (arithmetic) sum of its constituent edge lengths (labels) and for 

each node x the minimum (denoted in Table 1 by J ) such length is sought to node 

x from a given, fixed start node. In this case, the first algorithm we derive finds the length 

of all shortest paths through a graph, and is known as Floyd’s algorithm. The second 

algorithm we derive is known as Dijkstra’s shortest-path algorithm [7] (the carrier set, 

S, being restricted to non-negative reals in order to comply with requirement S2). 

The second interpretation is that appropriate to solving reachability problems; the 

(i, j )th entry of matrix A is true if and only if there is an edge in E from node i to j, and 

the “length” of a path is always true. The first algorithm we derive determines for each 

pair of nodes i and j whether i is reachable from j (by a path of non-zero length) and is 

known as Warshall’s algorithm. The second algorithm forms the basis of the so-called 

depth-first and breadth-first search methods for determining for each node in the 

graph whether or not there is a path in the graph to that node from the given start 

node. (The choice of ‘breadth-first” or “depth-first” search depends on further refine- 

ment steps that we do not discuss in detail.) 

The third interpretation is appropriate to bottleneck problems; the edge labels may 

be construed as, say, bridge-widths and the “length” of a path is the minimum width of 

bridge on that path. Sought is, for each node in the graph, the minimum bridge-width 

on a route to the node from - in the case of the first algorithm - all other nodes in the 

graph, or -in the case of the second algorithm - a given start node that maximises that 

minimum. In this case neither algorithm appears to have any specific name. 

For more discussion of these interpretations see [_5]. 

Table 1 

Regular algebras 

s + 0 1 < 

Shortest paths 

Reachability 

Bottlenecks 

Non-negative 1 + cc 0 2 
reals 

Booleans ” A false true 5 

Reals t 1 --co co G 
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4. Regular algebra 

The framework for the current derivation is regular algebra. The axioms of regular 

algebra - the algebra of regular languages - are now widely known and publicised. 

(See e.g. [3,5,6].) The specific details of the framework are that (S, + , . , *,O, 1) is 

a regular algebra. That is, S is a set on which are defined two binary operators + and 

. and one unary operator * (written as a postfix of its argument). Addition (+) is 

associative, commutative and idempotent. Multiplication ( .) distributes over addition 

and is associative but is not necessarily commutative. The basic properties of * that we 

use here are, for all a, b ES: 

a*=l+a.a* A a*=l+a*.a, 

u.(b.u)* = (u.b)*.u, 

(a + b)t = u*.(b.u*)* A (a + b)* = (u*.b).u*, 

(1) 

(2) 

(3) 

1* = 1. 

Rule (2) will be referred to as the “leap-frog rule” whilst rule (3) will be called the 

“star-decomposition rule”. The main contribution made by Backhouse and Carrt [3] 

was to show that these four rules are at the heart of several elimination techniques for 

solving shortest-path and other path-finding problems. 

A well-known rule of regular algebra identifies a*. b as a least fixed point: 

u*.b<x ‘= u.x+bdx. 

We do not use this rule in our derivations. Use of this rule is nonetheless implicit in our 

claim that the problems we consider are indeed abstractions of the specific path- 

finding problems discussed in Section 3. 

Two additional rules (which we do use) are the following consequences of the 

idempotence of * and +, respectively. 

(a+)* = a*, (5) 

a*.a*=a*. (6) 

5. Selectors 

Although the matrices we consider form a regular algebra, they will obviously never 

satisfy the requirements Sl and S2, even if their elements do. Given that we wish to 

appeal to these properties from time to time, it is important to keep track of which 

terms in our calculations denote elements, which denote vectors and which denote 

matrices. The rules for doing so are simple and (hopefully) familiar: the product of an 

m x n and an n x p matrix is an m xp matrix, and addition and * preserve the 

dimension of their arguments. It remains, therefore, to adopt a systematic naming 
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convention for the variables that we use. This, and a primitive mechanism for forming 

vectors, is the topic of this section. 

During the course of the development the following naming conventions will be 

used. 

0 1 x (NJ vector that is everywhere 0, 

k,j nodes of the graph (i.e. elements of N), 

L,M,P subsets of N, 

V, lV,X, Y,Z IN[ x (NI matrices, 

4 0, w, x 1 x 1 N 1 vectors. 

For each node k we denote by k+ the 1 x IN) vector that differs from 0 only in its 

kth component which is 1. Such a vector is called a primitive selector vector. The 

transpose of k+ (thus, an (N 1 x 1 vector) is denoted by + k. We define the primitive 

selector matrix k by the equation 

k = +k.k+. (7) 

Any sum (including the empty sum, of course) of primitive selector vectors (respective- 

ly, matrices) is called a selector vector (respectively, matrix). In fact, in most cases, 

instead of using one of these four terms we shall just use the term selector, it being clear 

from the context whether the designated selector is primitive or not, and a vector or 

a matrix. 

This terminology is motivated by the interpretation of the product of a matrix and 

a selector. Specifically, j+. Y is a vector consisting of a copy of the jth row of matrix 

Y, and j+. Y.+k is the (j,k)th element of Y. Furthermore, there is a (l-l) cor- 

respondence between subsets of N and selector matrices given by the function 

mapping M to M where, by definition, - 

M = C(k:keM:&). - (8) 

Note that 

(k} = 4. - (9) 

This silent “lifting” of a function from elements to sets is not uncommon and very 

convenient; it should not be a cause for confusion since we do not mix the two forms, 

preferring always to use the shorter form. 

For all vectors x and all matrices Y, x. Aj is a copy of x except that all elements of 

x with index outside M are zero, and Y. M (respectively, g. Y) is a copy of matrix 

Y except that all columns (respectively, r&s) of Y with index outside M are zero. 

The derivation that follows is not dependent on knowing these interpretations of 

the selectors; rather, we make use of a small number of characteristic algebraic 

properties. The first is that matrix product is associative. This is the most important 

property and its exploitation is the reason for introducing the primitive selectors. 

However, we shall nowhere explicitly mention the use of associativity, in line with the 

doctrine that the application of the most important properties should be invisible. The 
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second property is that 4 (where 4 denotes the empty set of nodes) is the zero element 

in the algebra of 1 N ( x 1-N [ matrices. In particular, for all vectors U, 

l4.4=0 (10) 

and, for all matrices X, 

x.4=4.x=&J (11) 

and 

x+fp=x. (12) 

(These properties are immediate consequences of the definition of the “underlining” 

function.) Two other properties are that, for all nodes k, 

k+.+k = 1 (13) 

and, for all distinct nodes j and k, 

j+.+k=O. (14) 

It follows, by straightforward calculation, that, for all sets of nodes M and all nodes k, 

kcM a (M.+k=+k A M.k=lc) - -- (15) 

and, for all sets of nodes L and M, 

L.M=LnM. -- - (16) 

In particular, 

M.M=M -- - (17) 

and 

LnM=4 * L.M=cp. -- _ (18) 

The final property is that all matrices and all vectors are indexed by the given node set 

N. This we render by the equations: 

X.N=X=N.X (19) 

and 

x.N=x 

for all matrices X and all vectors x. 

(20) 

6. The Warshall-Floyd algorithm 

In this section we deal with the simpler of the two problems, viz. the computation of 

A+. The goal is to provide a gentle introduction to the calculational techniques, in 
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particular the use of star decomposition to derive an initial algorithm at matrix level, 

followed by the use of the leap-frog rule to convert that algorithm to one in terms of 

matrix elements. 

6.1. The algorithm 

The heuristic underlying the computation is to use star decomposition in order to 

build up the given matrix A under the star operator from the null matrix to its final 

form. More precisely, we introduce selector matrix L with loop invariant 

x = A.(L.A)* (21) 

and postcondition 

X= A.A*. (22) 

The invariant is established by X, L := A, c$, since by (1) we have O* = 1. For & = 1, 

i.e. L = N, (21) implies the postcondition, and our aim is to extend L with one node in 

each step of the repetition. This results in the following skeleton algorithm. 

X,L:= A,c#J 

;do L#N-+ 

k:EN-L 

;X:= A,((& + &).A)+ 

;L:= Lu(k} 

od{X=A+}. 

In this algorithm only the assignment to X in the body of the repetition needs to be 

simplified. Proceeding with the evaluation of its right-hand side, we calculate 

A.(& + lc).A)* 

= {distributivity) 

A.(&. A + &. A)* 

= {star decomposition (3)) 

A.(&. A)*.(&. A.(&. A)*)* 

= ((21)) 

X.(&.X)*. 

Thus, the assignment to X in the body can be replaced by 

x:= X.(&.X)*. 
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In order to arrive at an algorithm in which the star operator is applied to matrix 

elements only, or, more precisely, to singleton matrices we continue the calculation: 

X.&.X)* 

= (unfolding (l), distributivity) 

x + X.(k.X)**k.X 

= {& = +k.k+ (7)) 

X + X.(,k.k+.X)*.+k.k+.X 

= {leap-frog rule (2) for +k} 

X + X..k.(k..X.+k)*.k+.X. 

Note that in the above calculation the star decomposition rule is used so as to arrive 

at the intermediate expression X .(k. X)*, while the leap-frog rule is exploited so as to 

transform this expression into the required form: only in the final step of the 

calculation do we arrive at an expression in which the star operator is applied to an 

element, or more precisely to the singleton matrix k+. X. +k. Rewriting the assignment 

to X in the body according to the above and replacing set variable L, using 

representation invariant L = [0 . .k) A 0 < k 6 n, we arrive at the following abstract 

algorithm: 

X,k:= A,Q, 

;do k # n-r X:= X + X*.k.(k+*X.+k)t.k+.X 

;k:= k+ 1 

od{X=A+}. 

6.2. Implementation freedom 

The algorithm we have obtained is not quite Warshall’s algorithm or Floyd’s 

algorithm (even after suitable interpretation of the operators). The reason is that at 

element level the assignment in the body of the loop is a simultaneous assignment to all 

matrix elements. Spelling this out in detail, premultiplying by i+ and postmultiplying 

by +j, the matrix assignment 

X:= X + X.+k.(k+.X.+k)*.k+.X 

is directly implemented as the simultaneous assignment 

sim-for i:=Oton-landj:=Oton-ldo 

i*.X.+j:= 

(i+.X.+j) + (i..X..k).(k*.X.*k)*.(k*.X.,j). 
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(Writing i+. X. +j conventionally as xij this takes on the more familiar appearance: 

&n-for i:=OtoM-lanclj:=Oton-ldo 

xij := xij + xik ’ (Xkk)* . xkj. 

But, of course, the problem of the simultaneous assignment remains.) 
Exploitation of the, as yet unused, idempotency of addition and star, however, gives 

unlimited freedom in the order in which the matrix elements are assigned. They may 
be assigned sequentially as in Warshall’s and Floyd’s algorithms, or completely in 
parallel! To explain why this is so we take a closer look at the assignments at element 
level. The expression assigned to element Xik, for instance, evaluates to 

Xik + Xik. Xkk* ’ Xkk 

= (distributivity} 

= {folding: (l)] 

Xik Xkk * 

The expression assigned to xkj by symmetry equals Xkk*. xkj, and the expression 
assigned to xkk, instantiating the formula above, equals &k+. Since, according to (6) 
and (5), respectively, we have &k* xkk* = xkk* and (xkk+)* = Xkk*, it follows that for 
the assignment 

%j := xij + Xik.(Xkk)*‘Xkj 

it is irrelevant whether xik, Xkk, and xkj are changed before or after the assignment to 
Xij. Hence the order of the assignments in the sim-for statement can be chosen freely. 

An alternative proof of this fact, phrased completely in terms of matrices rather 
than matrix elements, can be found in [2]. The proof shows that the function 

X t--t X + X.*k.(k*.X.~k)*.k*.X, 

which, as we know, is equal to the function 

(23) 

x H X.(k,X)*, (24) 

is a closure operator, and this is sufficient to permit the conversion of the simultaneous 
assignment to a parallel assignment, i.e. to a statement in which the individual 
assignments can be performed in any order. A proof of the latter is also included in 

c21. 
This concludes the derivation of the Warshall-Floyd algorithm. Note that the total 

calculation (including the discussion of implementation freedom) takes roughly ten 
elementary steps which is about what it should be for such a compact algorithm. 
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7. The second algorithm 

In this section we derive an algorithm computing the vector b. A*, given properties 
Sl and S2. Since A* = 1 + A’, a possible solution is to take the Warshall-Floyd 
algorithm for A’, compute A* and subsequently b. A*. This would lead to an 
algorithm that, like the Warshall-Floyd algorithm, is cubic in the size of the matrix. 
We shall not do so, however, because properties Sl and S2 are the key to a solution 
that is more efficient than the one just proposed: as will be shown next, a consequence 
of properties Sl and S2 is that, for any vector x and any matrix Y, at least one element 
of x. Y* is easy to compute, which suggests that a gain in efficiency of at least one 
order of magnitude might be feasible. (See the end of this section for a more detailed 
discussion.) 

7.1. The key theorem 

A key insight in deriving an algorithm is that, because of properties Sl and S2, for 
any vector x and any matrix Y, at least one element of x. YI is easy to compute. 
Specifically, choose k such that 

V(j:jEN:x.+jd x.+k). (25) 

Thus the kth element of x is the largest. (Such a choice can always be made because the 
ordering on elements is total.) Then we claim that 

x. Y*.+k = x.+k. (26) 

In other words, no computation whatsoever is required to compute this one element. 
We formulate and prove a slightly more general theorem: first, we abstract from the 

irrelevant properties of Y*, using only the fact that Y* >, 1, which follows from (1); 
second, in order to comply with conditions on k (k E M, say) we formulate the theorem 
for vector U. M rather than vector U. - 

Theorem 7.1. For all M E N, k E N, matrices Z and vectors u, 

kEM A V(j:jEM:u.+jfu.+k) A Z>hJ 

+ u.M.Z.k = u.k. - 

Proof. The proof is by mutual inclusion. Assume the antecedent of the implication. 
Then, 

u.M.Z.k - - 

> {assumption: Z 3 I} 

u.M.k -- 

= {assumption: kE M, (15)) 

u.k 
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and 

u.M.Z.k - 

= {definition of Mf - 

u.C(i:i~M:j).Z.& 

= (definition of j and distributivity) 

C(i:iEM:u.d.i+.Z.+k).k+ 

< (i.. Z. +k is an element, hence by property S2 i+. Z. +k d l} 

C(i:iEM:u.+i).k+ 

< {assumption on k} 

u..k.k* 

= I(7)) 

u.k. q 

Note that the penultimate step of the above calculation shows how the condition on 

k could have been “invented”: it strongly suggests itself, given the one inclusion, 

u. M. Z. 14 2 u. 14, and the wish to have an equality. - 

7.2. A skeleton algorithm 

The algorithm we develop is based on an iterative process in which at each iteration 

Theorem 7.1 is used to “process’ one node. At some intermediate stage of the 

computation some set L of nodes has been dealt with. These heuristics are captured 

formally by postulating as loop invariant 

w=b.A*.L A LcN - (27) 

and as postcondition 

w = b.A*, (28) 

where w is a vector. By property (lo), the invariant is established by the assignment 

L,w:= q&o. 

For the guard of the repetition we choose for the moment the simplest possible 

condition, namely L # N. Since N is a finite set, progress towards L = N, and thus 

towards termination, is achieved by choosing statement 

L:= L u {k}, for k#L 

for the loop body. In order to maintain the loop invariant, the assignment to L is 

accompanied by the assignment w := b. A*. (L + Q, i.e. by 

w:= w + b.A*.k. (29) 
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Thus we have arrived at the following skeleton algorithm 

L,w:= @,O 

;do L#N-+k.EN-L 

; w:= w + b.A*.k 

; L := L u {k) 

od {w = b.A*}. 

Our next concern is to rewrite b. A*. & in order to get rid of the star operator 
applied to a matrix. Our tactic is to use star decomposition so as to get into a position 
in which the Key Theorem can be invoked. 

7.3. Using star decomposition and Key Theorem 

For convenience we introduce additional invariant 

M=N-L; (30) 

in other words, M is the complement of L in N. Thus we have, by invariant (27) and 
the fact that M + A = 1, - 

b.A* = b.A*.M+ w. - (31) 

We now calculate, bearing in mind that b. A*. & = b * A*. M. k, for k E M, -- 

b.A*.M - 

= {star decomposition using . A = V + W for I/ = &. A and W = M. A} - 

b.(W*. V)r. W*.M - 

= (unfolding ( W* . V)* : (1)) 
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The driving force in the first four steps of the above calculation was to expose 
a selector matrix & immediately after b. A* in order to use the loop invariant. The 
decomposition A = 4. A + A4. A appears to be the only option for achieving this - 
goal. 

So now, with additional invariant 

u=b+w.A, (32) 

we are in a position to invoke the Key Theorem: since for k E A4 the above calculation 
implies 

b.A*.& = u,M.(A.M)*.&, - - 

application of the Key Theorem yields 

kEM A V(j:jeM:u.+j< u.+k) =a b.A*.&= u.6. (33) 

As for the invariance of (30) and (32), initializing statement L, w := 4, 0 is augmented 
with M, u := N, b; assignment L := L u {k} is extended with M := M - {k}; and state- 
ment w := w + U. & is extended with u := u + U. 4. A, since, by (32), 

(b+w.A)(w:=w+u.&)=u+u.k.A. 

Thus, we have arrived at an algorithm in which the star operator no longer occurs. 

L,w,M,u:= +,O,N,b 

;do L # N-+ k:keM A V(j:jEM:u.+jd u.+k) 

; w,u:= w + u.4, u + l4.k.A 

;L,M:=Lu{k), M-(k) 

od(w=b.A*} 

maintaining 

w=b.A*.& A L_cN, 

M=N-L, 

u=b+w.A. 

Note. With regard to the guard L # N, or M # 4, the introduction of variable 
u enables us to strengthen it, if so desired, without affecting the postcondition: by (31) 
and the derived equality b. A*. M = u * M-(A. M)*, we have, using the invariants - - - 

u.M=O =s w=b.A*. - (34) 

As a result, the guard can be strengthened to u. M # 0. - 
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7.4. Optimizations 

Before dealing with the final task of reexpressing the vector assignments in terms of 
elementwise operations, we first investigate possible simplifications of the algorithm 
developed so far. First note that guard L # N can be replaced by the equivalent 
M # 4; as a result, variable L can be removed from the program. Secondly, from the 
invariant (32) (and (1)) it is immediate that 

w=b.A* s- u=b.A*, (35) 

as a result of which w can be removed from the program provided the postcondition is 
replaced by u = b. A+. For later use note that, similarly, using w < b. A* (see (27)), we 

can conclude from the invariant (32) 

uf b.A*. (36) 

A final optimization results from a closer investigation of the values of u. & and u. &. 

More precisely we shall show that the assignment to u leaves the values of u .& and 
u. k unchanged, viz. from the invariants we shall deduce 

(u + u.&.A).& = u.k, (37) 

(u + u.k.A).& = u.&. (38) 

With regard to property (37), by distributivity and the definition of f , it is equivalent 
to 

u.k.A.k < ~4.6, 

which is valid: using the definition of k and the fact that element k+. A. +k f 1 by 
property S2 we derive k. A. k < k. For property (38) we calculate 

(u + u.k.A).&= u’& 

= {calculusj 

u.&.A.&,< u.& 

c= (u < b.A*: (36), and & 9 l} 

b.A*.A.&<u.L - 

-z= {b.A*.A*&< b.A*.L,= w} 

E {o introduce new invariant w < U.L} 

true. 
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Invariant w < u. L is established by assignment L, w := 4,O and maintained by the 

body of the repetition since 

(w < u.&)(w,u,L:= w + U.k, u + u.k.A, Lu {kj) 

= {substitution} 

w+u.kd(u+u.k.A).(L+14) 

e {regular algebra) 

w+u.&du.&+u.& 

r= {monotonicityj 

w<u.L. - 

7.5. Elementwise implementation 

In this final section we implement the assignment u := u + u. &. A in terms of 

elementwise operations. Some remarks on the relationship between the algorithm 

presented here and conventional descriptions of Dijkstra’s shortest-path algorithm 

and of traversal algorithms are also included. 

What the assignment u := u + u. 6. A entails at element level can be ascertained by 

postmultiplying by +j for each node j; thus we get 

u.+j:= (u + u.k.A).*j. 

By properties (37) and (38) derived earlier, this assignment boils down to a skip for 

j = k, since +k = k. +k and (u + u. k. A). k = u. &, and similarly for jE L, since 

+j = 4. +j. Thus, the element assignments can be restricted to jE M - {k}. In terms of 

elements, the value assigned to u. +j is u. +j + u. 6. A. +j, i.e. 

(u.+j) + (u.*k).(k+.A.+j), 

where the parentheses indicate which subexpressions are elements. Assembling the 

results of the previous section with the above, we have arrived at our final algorithm. 

M,u:= N,b 

;do M#$I+ 

k:keM A V(j:jeM:u.+j=$ u.+k) 

;simfor (j:jeM- {k}: u.+j:= (u.+j) + (u.+k)‘(k*.A.+j)) 

;M:=M-{k} 

od{u=b.A*}. 

Note that since k +! M - {k), the simultaneous assignment can be replaced by a se- 

quential for -statement. 
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We note that the set L, the complement of M, would conventionally be called the 
“black” nodes; see, for example, Dijkstra and Feijen’s account [8] of Dijkstra’s 
shortest-path algorithm. The latter also distinguishes “white” and “grey” nodes. The 
“grey” nodes are just nodes je M for which u. +j # 0, and the “white” nodes are the 
remaining nodes in M. As was shown in (34), another suitable choice for the 
termination condition would be u. M = 0, or, in conventional terminology: “the set of 
grey nodes is empty”; conventionally, this is, indeed, the choice made. 

Such a termination condition u. M = 0 requires the algorithm to keep track of the - 
nodes j E M for which u. +j # 0. We will not go into the precise details of such an addition 
to the algorithm; suffice it to note that, in the interpretation pertaining to reachability 
problems (see Table l), keeping track of the “grey” nodes in a queue leads to a breadth- 
first traversal algorithm; using a stack instead of a queue leads to depth-first traversal. 

We finish with a few remarks on the efficiency of the above algorithm. Note, first of 
all, that if the choice of k in the body of the repetition takes time proportional to the 
size of M, the computation time of the algorithm is quadratic in the size of matrix A. 

The regular algebra of matrix elements may, however, be such that choosing k takes 
constant time only (see, for instance, the regular algebra for reachability). In this case 
the time complexity depends on the for statement in the body: note that, in total, each 
element of matrix A, is referred to at most once, and that the assignment to US l j 
amounts to skip if matrix element (k+ . A. +j ) equals 0, in the interpretation: if there is 
no edge from node k to node j. Then an implementation taking time linear in the 
number of edges is feasible. 

8. Commentary and credits 

The goal of this paper has been to show how two classes of standard path algorithms 
can be derived by algebraic calculation, This is, of course, not the first and nor (we hope) 
will it be the last such derivation. (For an earlier derivation of the second algorithm see 
[4]; the present derivation was inspired by the second author’s involvement with 
similar problems [l 11). The algebraic basis for the calculation given here was laid in 
[3], and some of its details were influenced by Carre’s derivation of the same 
algorithm [.5]. A great many other authors have described and applied related 
algebraic systems to a variety of programming problems; Tarjan’s paper [lo] includes 
many references. The main distinguishing feature of the development presented here, 
however, is its reliance on calculations with matrices rather than with matrix elements. 
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