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Given any irreducible polynomial (1 of degree n over the field with two elements. 
there is a sequence of polynomials p,,, p,, , , . . . . p,] with p, = 4. with pU = I, with the 
degree of p, equal to i, and with p, -pz L (mod p, , ). In other words, given an 
irreducible 4 there is a p* relatively prime to y, with degree one less and such that 
the degrees of the remainders in Euclid’s Algorithm for the greatest common divisor 
of p and y go down by exactly I at each step. ( 1987 Academtc Press. Inc 

STATEMENT OF RESULTS 

Let F be the finite field with two elements, and let K be the field F((x ‘)) 
of all formal power series in .Y - I over F. Every element f of K has a con- 
tinued fraction expansion f = a,, + l/(a, + I/(a2 + . .)) which we denote by 
f=C%;~,,%... ] (see Sect. 1 of [ 1 J for a discussion of the continued frac- 
tion theory for K). The elements of K which are in the field of rational 
functions, F(x), have finite continued fraction expansions; these are the 
elements we will be concerned with in this paper. We will show that for 
every irreducible polynomial q over F with degree n, there is a polynomial 
p with degree < IZ for which the partial quotients of the continued fraction 
expansion [O; a,, u2, . . . . a,] of p/q all have degree one (so nz = n). In fact, 
we will show that for each irreducible denominator, q, there are exactly two 
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such numerators. This result is equivalent to the following: Given any 
irreducible polynomial q of degree n over F, there is a sequence of 
polynomials pm, pn ~ , , . . . . p. with p,, = q, with p. = 1, with the degree of p, 
equal to i, and with p, -plPz (mod p,.. ,). In other words, given q there is a 
p such that the degrees of the remainders in Euclid’s Algorithm for the 
greatest common divisor of p and q go down by exactly 1 at each step. 

The proof uses results of Baum and Sweet [2], and it can be modified to 
prove the following. Suppose that q has IYI distinct irreducible factors 
different from .Y and x + 1. If there is a polynomial p for which 
p/q = [O; a,, . . . . a,,] with degree (a,) = 1 for all i, then there are 2”’ such p. 
For example, q = X(X~ +x + I )I (.u3 + .r + 1) has 4 polynomials p if it has 
one. 

We wish to thank Dave Robbins at the Institute for Defense Analyses in 
Princeton. The present result was suggested during discussions with him 
about our conjecture that every polynomial is the denominator of an 
expression p/q which has partials quotients of degree 1 or 2. This more 
general conjecture (for non-irreducible q) is still open. 

PROOF 

In this section we establish the result, by showing that given an 
irreducible q over F with degree n there is a polynomial p for which the 
partial quotients of p/q all have degree 1. For a candidate numerator p, 
write 

Note that the binary sequence fi, fi, satisfies the recursion q, i.e., if 
q = .I? + q,, , x” ’ + ... +qo, then 

f,,+r=qrr~lfrl~,+r+4n~z.f,,-2+,+ “’ t-&J;> i3 1. (1) 

From the remark on p. 577 of [2] all partial quotients ai will have degree 
one if 

fl = 1 

.L+f2i+f*i+,=O for i= 1, 2, . . . . n - I (2) 

f,,+.L+f2,1+, = 1 

and, of course, the f, satisfy the recursion q. We will use the following 
lemma to reduce these to linear equations involving only the initial 
variables f,,f2,...,fn: 
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LEMMA. Let h,, bz, . . . . b, be in F. Then 

f bixp’ ~0 (mod q) 

if and only f jtir all 2” initial choices off, , f2, . . . . f,, in the recursion ( 1) we 
have 

(The proof is by induction on d and does not require that q be irreducible.) 
Now consider the PI + 1 by n matrix A obtained by reducing the n + 1 

polynomials 

for i= 1, 2, . . . . n (3) 

modulo q. Using the lemma, we see that solving (2) is equivalent to solving 
the linear system 

Au = (1, 0, 0, . . . . 0, 1)’ (4) 

where I; = (,f’, , . . . . j;, )‘, and where the exponent t stands for transpose Thus 
the rational expression p/q will have degree one partial quotients if there 
exists a solution vector v to Eq. (4). The f, for i > n are obtained from u by 
applying the recursion in Eq. (1). 

Let B be the n by II matrix consisting of the last n rows of A. The 
polynomial corresponding to the ith row of b is 

wKl- 1 + p ’ +x2’ (mod q). 

Therefore, again by the lemma, it follows that the matrix equation 

is equivalent to the congruence 

r(x) + xr(x)’ + x2r(x)2 = 0 (mod q), 

where r(.v)=u, +u,.u+ ... +u,x” ‘, 

since r(x)’ = r(x’). This congruence has a unique non-zero solution because 
we are assuming that q is irreducible. The solution is the inverse of X(X + 1) 
modulo q. Thus the row rank of B is n - 1. 

Similarly by the lemma, the matrix equation 

M’A = 0, 11’, = 1 
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corresponds to the congruence 

r(x) + XT(X)’ + x~Y(x)~ = 1 (mod q), 

or equivalently 

1+~(~)+x(.~.+1)r(x)~=(1+x~(.~))(1+(x+l)r(x))-O (modq). 

Again, since q is irreducible, this polynomial has exactly two distinct 
solutions. So there are exactly two solutions wl, w* of wA =0 with wr = 1. 
The two solutions come from xr(x) = 1 (mod q) and (x+ 1) T(X) = 1 
(mod q), and therefore must have the coefficient of xnP’ in T(X) non-zero. 
so W;+,=w;+l= 1. The solution ~2’ + w* is thus non-trivial and does not 
involve the first or last row of A. Thus these middle rows are dependent 
and, since the rank of B is n - 1, the last row of B is independent of the 
other rows. This means that if we adjoin the column (0, 0, . . . . 0, 1)’ to B 
then the row rank, and therefore also the column rank, does not change. 
Therefore the system 

Bo = (0, 0, . . . . 0, 1)’ 

has two solutions. Because we know the first row of A is the sum of the last 
row of B and some other rows of B, these solutions are also solutions of 

Au = (1, 0, 0, . ..) 0, 1)‘. 

This shows the existence of two numerators, p, as claimed. 

We now give a simple example. Take q =x5 +x3 +x2 +x+ 1 which is 
irreducible over F. The matrix A found by reducing equations (3) is 

1 0 0 0 0 
11100 
0 1 0 1 1 

A= 1 0 1 0 1 
0 1 0 0 1 

-10 0 10 

This matrix does indeed have rank 4. The two solutions of Eq. (4) are 
(fi,f2,f3,f4,f5)=(1,0, LO,O) and (fi,f2,f3,f4,f5)=(1, LO,@ 1). 
These correspond to the polynomials p, = x4 + x and p2 = x4 + x3 + x2 + 1 
which can be found by multiplying q by frx-’ + f,x-*+f3xp3 + 
f4xp4 + f5xm5 and taking only non-negative powers of x. We have pJq = 
[O; x, x, x, x + 1, x + l] and p2/q = [O; x + 1, x + 1, x, x, x]. Note that the 
continued fraction expansion for pJq is the expansion for p2/q backwards. 
This is always true for the two solutions and is an elementary continued 
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fraction result. If we take the continued fraction expansion for any other p 
then at least one partial quotient will have degree larger than 1, for exam- 
ple, if p = x4 + 1 then p/q = [O; x, x + 1, X, .x2 + x]. 
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