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Abstract 
The representation paradigm used by a cognitive architecture helps to determine the kind of processes 
that it can perform more efficiently. Vector LIDA is a variation of the LIDA cognitive architecture that 
employs high-dimensional Modular Composite Representation (MCR) vectors as its main 
representation model and Integer Sparse Distributed Memory as its main memory implementation 
technology. The advantages of this new model include a more realistic and biologically plausible 
model, better integration with its episodic memory, better integration with other low level perceptual 
processing (such as deep learning systems), better scalability, and easier learning mechanisms. Here, 
after briefly recapping the LIDA model and MCR, we describe Vector LIDA and argue for its several 
advantages. 
Keywords: Cognitive Architectures, Semantic Vectors, High Dimensional Representations, Modular Composite 
Representation 

1 Introduction 
Several authors (Franklin, 1995; Kanerva, 1988, 2009; Winston, 1992) have pointed out the 

importance of representations to perform tasks efficiently and solve problems. Winston described the 
representation principle in these words: “Once a problem is described using an appropriate 
representation, the problem is almost solved” (1992, p. 18). Franklin (1995, p. 365) discussed the 
importance of representation for both symbolic AI and connectionist models. Kanerva (2009) pointed 
out how a representation can facilitate certain tasks at the expense of others. This is particularly true 
for cognitive architectures.  

Many of the more mature cognitive architectures, e.g., SOAR, ACT-R, are symbolic in nature, 
processing by the manipulation of amodal symbols in the sense of Barsalou (1999). Throughout the 
early decades of its existence, SOAR was essentially a production system depending heavily on 
production rules (productions) as the primary data structure (Laird, Newell, & Rosenbloom, 1987). 
More recently new capabilities have required representations using new data structures (Laird, 2008). 
Although it is also basically a production system, ACT-R also employs spreading activation 
(Anderson et al, 1997), moving it a little in the direction of connectionist models (but see also Lebiere 
& Anderson, 1993). Johnson (1997) points out that “The data structures used for representation in 
these architectures (SOAR, ACT-R) critically affect their capabilities for particular tasks. … Soar can 
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model extremely flexible control, but has difficulty accounting for probabilistic operator selection and 
the independent effects of history and distance to goal on the likelihood of selecting an operator. In 
contrast, ACT-R’s control is well supported by empirical data, but has difficulty modeling task-
switching, multiple interleaved tasks, and dynamic abandoning of sub-goals.” 

Other symbolic architectures utilize different basic data structures, for example Icarus with its 
probabilistic concepts (Langley, McKusick, Allen, Iba, & Thompson, 1991). Still others are hybrid, 
using both symbolic data structures and artificial neural networks, for example CLARION (Sun, 
1997). Langley, Laird and Rogers have provided a very useful review of the state of cognitive 
architecture research (2009). 

High-dimensional vector spaces have interesting properties that make them attractive for 
representation models for cognitive architectures. The distribution of the distances between vectors in 
these spaces, and the huge number of possible vectors, allow a noise-robust representation model 
where the distance between vectors denotes the similarity (or dissimilarity) of the concepts they 
represent. Moreover, these high-dimensional vectors can be used to represent complex structures, 
where each vector denotes an element in the structure. However, a single vector can also represent one 
of these same complex structures in its entirety by implementing a reduced description, a mechanism 
to encode complex hierarchical structures in vectors or connectionist models (Hinton, 1990). These 
reduced description vectors can be expanded to obtain the whole structure, and can be used directly for 
complex calculations and procedures, such as making analogies, logic inference, or structural 
comparison (see Kanerva, 2009; Plate, 2003 for further discussion of these aplications). There are 
some existing projects that employ high-dimensional vectors and reduced descriptions. For example, 
Stewart and colleagues produced an application based on spiking neurons that is capable of reasoning 
and planning. The rules and system states are encoded using reduced description vectors (Stewart & 
Eliasmith, 2011). Also Jones and Mewhort (2007) employ reduced descriptions for BEAGLE, a 
semantic space model that mimics several human memory properties. More recently, the Sigma 
cognitive architecture introduced high dimensional vectors based on the Modular Composite 
Representation (described below) and BEAGLE for representing words (Ustun, Rosenbloom, Sagae, 
& Demski, 2014). However, to the best of our knowledge, there is no cognitive architecture that 
employs these technologies as its primary representation model.  

Vector LIDA is a promising improvement of the LIDA cognitive architecture’s conceptual model 
(Franklin, Strain, Snaider, McCall, & Faghihi, 2012) and its implementation (Snaider, McCall, & 
Franklin, 2011), that employs high-dimensional vectors and reduced descriptions. The previous 
version of the LIDA model utilizes nodes and links in a directed graph-like structure (node structure) 
as its main data structure. This implementation introduces several problems in scalability, flexibility, 
and representation capability. The new implementation described here utilizes high dimensional 
vectors that will help to solve the current problems, and will produce more biologically plausible 
mechanisms. 

The next section will briefly introduce the LIDA architecture. The following sections will describe 
some important concepts and technologies necessary to describe the new representation of the LIDA 
model and its advantages: vector representations, Modular Composite Representation, and Sparse 
Distributed Memory and some of its extensions. We will then describe the changes introduced in 
Vector LIDA and their benefits, and finally we will present some conclusions.  

2 The LIDA Model and its Architecture 
The LIDA model (Baars & Franklin, 2009; Franklin & Patterson, 2006; Ramamurthy, Baars, 

D’Mello, & Franklin, 2006) is a comprehensive, conceptual and computational model covering a large 
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portion of human cognition*. Based primarily on Global Workspace theory (Baars, 1988, 2002) the 
model implements and fleshes out a number of psychological and neuropsychological theories. The 
LIDA computational architecture (Snaider et al., 2011) is derived from the LIDA cognitive model. 
The LIDA model and its ensuing architecture are grounded in the LIDA cognitive cycle. Every 
autonomous agent (Franklin & Graesser, 1997), be it human, animal, or artificial, must frequently 
sample (sense) its environment and select an appropriate response (action). More sophisticated agents, 
such as humans, process (make sense of) the input from such sampling in order to facilitate their 
decision-making. The agent’s “life” can be viewed as consisting of a continual sequence of these 
cognitive cycles. Each cycle constitutes a unit of sensing, attending and acting. A cognitive cycle can 
be thought of as a moment of cognition, a cognitive “moment.” Higher order cognitive processes 
(deliberation, planning, volitional decision making, etc.) are implements as sequences of these 
cognitive cycles. 

We will now briefly describe what the LIDA model hypothesizes as the rich inner structure of the 
LIDA cognitive cycle. More detailed descriptions are available elsewhere (Baars & Franklin, 2003; 
Franklin, Baars, Ramamurthy, & Ventura, 2005). During each cognitive cycle the LIDA agent first 
makes sense of its current situation as best as it can by updating its representation of its current 
situation, both external and internal. By a competitive process, as specified by Global Workspace 
Theory (Baars, 1988), it then decides what portion of the represented situation is the most salient, that 
is, most in need of attention. Broadcasting this portion, the current contents of consciousness†, enables 
the agent to choose an appropriate action and execute it, completing the cycle.   

                                                             
* “Cognition” is used here in a particularly broad sense, so as to include perception, feelings and emotions, and actions.  
† Here “consciousness” refers to functional consciousness Franklin (2003). We take no position on the need for, 
or possibility of, phenomenal consciousness. 

Figure 1. LIDA cognitive model diagram. The boxes represent the different modules of the
model, and the arrows the interactions among them. Each module behaves asynchronously.  
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Thus, the LIDA cognitive cycle can be subdivided into three phases, the understanding phase, the 
attention (consciousness) phase, and the action selection phase. Figure 1 should help the reader follow 
the description. It starts in the upper left corner and proceeds roughly clockwise. 

Beginning the understanding phase, incoming stimuli activate low-level feature detectors in 
Sensory Memory. The output is sent to Perceptual Associative Memory where higher-level feature 
detectors feed in to more abstract entities such as objects, categories, actions, feelings, events, etc. The 
resulting percept moves to the Workspace where it cues both Transient Episodic Memory and 
Declarative Memory producing local associations. These local associations are combined with the 
percept to generate a Current Situational Model, which represents the agent’s understanding of what is 
going on right now. 

Attention Codelets‡ begin the attention phase by forming coalitions of selected portions of the 
Current Situational Model, and moving them to the Global Workspace. A competition in the Global 
Workspace then selects the coalition with the most salient (relevant, important, urgent, novel, 
unexpected, bright, loud, moving, etc.) portion. The contents of this winning coalition become the 
content of consciousness. These conscious contents are then broadcast globally, initiating the action 
selection phase. The action selection phase of LIDA’s cognitive cycle is also a learning phase in which 
several processes operate in parallel (see Figure 1). New entities and associations, and the 
reinforcement of old ones, occur as the conscious broadcast reaches Perceptual Associative Memory. 
Events from the conscious broadcast are encoded as new memories in Transient Episodic Memory. 
Possible action schemes, together with their contexts and expected results, are learned into Procedural 
Memory from the conscious broadcast. Older schemes are reinforced. In parallel with all this learning, 
and using the conscious contents, possible action schemes are recruited from Procedural Memory. A 
copy of each such is instantiated with its variables bound, and sent to Action Selection, where it 
competes to be the behavior selected for this cognitive cycle. The selected behavior triggers Sensory-
Motor Memory to produce a suitable motor plan for the execution of the behavior. Its execution, 
internal or external, completes the cognitive cycle. 

The Workspace requires further explanation. Its internal structure is composed of various input 
buffers and three main modules: the Current Situational Model, the Scratchpad and the Conscious 
Contents Queue (Snaider, McCall, & Franklin, 2012). The Current Situational Model is where the 
structures representing the actual current internal and external events are stored. Structure-building 
codelets are responsible for the creation of these structures using elements from the various 
submodules of the Workspace. The Scratchpad is an auxiliary space in the Workspace where 
structure-building codelets can construct possible structures prior to moving them to the Current 
Situational Model. The Conscious Contents Queue holds the contents of the last several broadcasts, 
and permits LIDA to understand and manipulate time-related concepts (Snaider et al., 2012). 

3 Vector Representations, Reduced Descriptions, and MCR 
In many subfields of computer science vector representations constitute one of the main types of 

data structure. For example in machine learning, a vector of features–often of different data types–
represents an element in a training set. A different approach closer to the focus of this work utilizes 
vectors where all the dimensions share the same data type. The way of calculating or defining the 
vector representation for an item, and the distance or similarity measurement, define the representation 
and its properties. For example, in the last two decades a large number of semantic space models have 
emerged that use high dimensional vectors to represent words and texts. The most representative 
models include Latent Sematic Analysis (LSA) (Deerwester, Dumais, Furnas, Landauer, & Harshman, 
1990) based on statistical analysis; Random Indexing (Sahlgren, 2005), which employs random sparse 

                                                             
‡ A codelet is a small piece of code that performs a specific task in an independent way.   
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vectors and random permutations; and BEAGLE (Jones & Mewhort, 2007), which computes vectors 
using circular convolution. There are recent surveys of semantic space models (Cohen & Widdows, 
2009; Turney & Pantel, 2010). 

In an even more generic view, vectors can represent any concept or element of interest: objects, 
features, rules, constraints, actions, etc. As explained above, when a vector belongs to a high 
dimensional space, interesting properties arise. The distribution of the distances between one given 
vector and the rest of the vectors in the space produces most of these properties. For example, in a 
binary space with 1,000 dimensions, the distribution of Hamming distances can be approximated with 
a normal distribution with mean equal to 500 and standard deviation approximately equal to 15.81. In 
other words, most of the vectors of the space are at a distance of around 500 bits from a given vector. 
For example, the probability of choosing two random vectors in this space with a distance among them 
of 300 bits or less is 4.55 x 10-37, which is almost 0. Kanerva (1988) defines this property as tendency 
to orthogonality, making these vectors good candidates for representing unrelated concepts. 

These spaces offer an enormous number of possible activation patterns with which to represent 
individual items, and the necessity for compact representations becomes less critical. A region of the 
space, instead of just one point, represents an item in a distributed manner, creating a more noise 
robust representation that gracefully degrades as noise increases, and produces desirable properties 
such as pattern completion. 

One frequent criticism of distributed representations (or vector representations) is the difficulty 
they pose in the representation of complex structures. Performing high level cognitive tasks such as 
reasoning, planning, or action selection often involves structures with multiple components. 
Implementations of these tasks frequently utilize structures such as sequences or hierarchies, and 
require variable binding. Moreover, the components of these structures can in turn be complex 
structures themselves. Of course, we can create these structures and use vectors as components. But, in 
that case, the vectors become mere symbols, with a significant loss of expressive power. Hinton 
(1990) introduced the concept of reduced description, a method for encoding complex structures as 
single vectors. The main idea is to have a dual representation: the structure can be represented 
explicitly, with a vector for each component, or as a reduced description, where a single vector 
represents the whole structure. When the system focuses on a particular composite element, its 
constituent structure is represented in full, instantiating all the elements (vectors) that compose it. On 
the other hand, when the element participates in the structure of another element that has the current 
focus, it is represented with a single vector as a reduced description. See Figure 2. 

 

Figure 2. Reduced description.  
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Plate (2003, pp. 19-20) analyses reduced descriptions from four desirable characteristics: 

representation adequacy (full descriptions can be reconstructed from the reduced ones), reduction (the 
reduced descriptions have a size similar to their components), systematicity (the process of 
constructing the reduced description must be well known and deterministic), and informativeness (the 
reduced description encloses information about the whole it represents). He also discussed explicit 
similarity; that is, similar elements have similar representations. 

Many complex structures apply pervasively to processes in cognitive architectures; examples 
include sequences, hierarchies, and predicates (i.e. rules with variable binding). These structures, and 
probably others, can be constructed out of even simpler primitives such as binding and grouping. 
Binding is the assignment of one element, which is called the filler, to a particular role or position in 
the structure. Grouping is forming a set (or collection) of elements. To create a reduced description 
model, we need to define binding and grouping operations, and a distance or similarity measure. 
Kanerva (2009) introduced more abstract names for these operations; he uses multiplication for 
binding, and sum for grouping, which simplifies the operations’ notation. We will use this same 
convention here. 

Modular Composite Representation 
Modular Composite Representation (MCR)(Snaider & Franklin, in press) is a new reduced 

description model that employs long integer vectors. This representation paradigm has properties 
similar to Spatter Code (Kanerva, 1994), which uses binary vectors, and to Holographic Reduced 
Representations (HRR) (Plate, 1995, 2003), based on vectors of real or complex numbers. Spatter 
Code uses binary vectors, which limit the model’s expressiveness. Some of its required operations, 
such as normalization, introduce excessive noise into the vectors that can diminish the performance of 
the model. Holographic Reduced Representation (HRR), on the other hand, has a rich representation 
capability, but requires complex operations such as circular convolution. Moreover, the vectors must 
follow a normal distribution for each dimension, which further complicates its use. MCR is an 
intermediate point between these two models, balancing representational expressiveness and 
implementational simplicity. Since MCR is a key component of the Vector LIDA project introduced in 
Section 5, we will describe here its main operations and characteristics. For a more detailed 
description and analysis see (Snaider & Franklin, in press). 

Modular integer vectors have a defined integer range of possible values for each dimension. For 
example, the range of values can be {–8, 7} or {0, 15}. Although any range of values is possible, for 
simplicity in the notation, we will use ranges with 0 as the lower bound and r – 1 as the upper bound, 
and only even values of r. In more formal notation, MCR employs vectors within a multidimensional 
space, , where n is the number of dimensions of the space and r is the size of the range of 
values for each dimension. 

Modular Composite Representation 
Two basic operations, grouping and binding, constitute the heart of the reduced description 

models. Grouping (or sum) operation is used to create sets or groups of elements, and binding (or 
multiplication) creates representations for bonds among elements, such as in the role-filler case. Given 
that the required properties of these operations are responsible for the behavior and characteristics of 
the reduced description models, each model can define these operations according to the 
characteristics of its vector space. In this way, we can abstract the reduced description model ideas and 
its basic operations to explore problems and applications independently of the reduced description 
implementation. For example, consider the following expression that represents a red circle: 
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where circle, Shape, red, and Color are vectors, and the symbols ⊗ and + represent the binding and 
grouping operations respectively. This expression can work in any reduced description model with 
appropriate definitions for grouping and binding.  

The distance measure employed by MCR is a variation of the Manhattan distance that 
complements the modular arithmetic characteristic of the dimensions of the space: 

   

 

3.1.1 MCR Binding 
The binding (or multiplication) of modular integer vectors is defined as the modular sum in each 

dimension. For example, the multiplication of two vectors A and B , with values for dimension i 
equal 10 and 12 respectively, produces a new vector C with dimension i equals to 6.  

   

This operation resembles the bitwise XOR used in Spatter Code.§ 
The unbinding operation is simply the modular subtraction in each dimension, or the modular sum 

of the first operand with the complement of the second operand in each dimension. This leads to the 
definition of the inverse vector in this model. The inverse of the vector A is another vector A-1 such 
that each dimension i of A-1 is the complement of the value of A in the same dimension: 

   

This multiplication operation is associative, commutative, distributive over the sum (see below), 
preserves distances 

 ,  

and produces vectors that tend to differ from the operands.  

   

where  denotes dissimilarity.  
   

3.2.1 MCR Grouping 
The grouping (or sum) utilizes a mechanism similar to the sum operation defined for HRR in the 

frequency domain (Plate, 2003, p. 146). Let us consider each possible value as a vector of unit length 
in a plane, called an equivalent vector. The center of the circle in Figure 3 corresponds to the 
coordinate’s origin in this plane. For example, the equivalent vector for the value zero is (0, 1) and the 
value seven corresponds to the equivalent vector . This sum operation involves two steps to 

                                                             
§ Actually, XOR is a special case of the modular sum when r = 2. 
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calculate the value of each dimension i: the equivalent vector sum and the normalization. The first step 
consists of calculating the rectangular sum (i.e. their vector sum) of the equivalent vectors 
corresponding to the values of each operand for dimension i. Second, the normalization process 
calculates the value of each dimension of the group vector as the closest value corresponding to the 
resultant vector normalized to length one. Since the dimensions have only r possible values, a table 
with the equivalent vectors’ components and the tangent of their angles can speed up the calculation 
and normalization processes. Figure 3 shows the representation of the equivalent vectors and a couple 
of examples of grouping. 

We can extend the definition of this sum for the case of more than two operands by simply 
summing, in each dimension, all the equivalent vectors of the operands for each dimension before 
normalizing. Grouping several operands in this way produces more consistent results than summing 
and normalizing in each individual group operation between two operands. Figure 3 depicts the result 
for combining three vectors that have values 0, 7, and 13 respectively for a given dimension. 

 
The most important characteristic of the grouping operation is producing vectors similar to its 

operands. This similarity allows identifying a composed vector from some of its elements, and vice 
versa, a fundamental property of reduced description models. The grouping operation is also 
commutative. These properties (and the properties of the binding operation) are responsible for the 
behavior and characteristics of the reduced description model. (See Kanerva, 2009; Snaider & 
Franklin, in press for a detailed discussion of this subject.) 

4 Sparse Distributed Memory and its Extensions 
Some of the MCR operations produce approximate versions of the vectors on which they operate. 

An auto-associative cleanup memory that stores the vectors known by the system (i.e., all the vectors 
used in the representations) can retrieve the original (clean) vectors. Integer Sparse Distributed 
Memory, an extension of the original Sparse Distributed Memory (SDM) that works with modular 
integer vectors, is a good option for cleanup memory for the MCR model. Moreover, the innate 

Figure 3. Equivalent vectors and examples of grouping. 
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characteristics of this memory make it an attractive option for implementing memory modules in 
Vector LIDA.  

First proposed by Kanerva (1988, 1993), SDM is a biologically inspired mathematical model of 
human long term memory based on large binary vectors. This memory has several desirable 
properties. It is distributed, auto-associative, content addressable, and noise robust. Moreover, it 
exhibits one-shot learning, is resilient to damage, and its contents degrade gracefully. It also possesses 
interesting psychological characteristics as well (interference, knowing when it doesn’t know, the tip 
of the tongue effect), that make it an good candidate with which to model episodic memory (Baddeley, 
Conway, & Aggleton, 2001; Franklin et al., 2005). Implementations of SDM are ongoing for various 
applications (Bose, Furber, & Shapiro, 2005; Furber, Bainbridge, Cumpstey, & Temple, 2004; Jockel, 
2009; Mendes, Coimbra, & Crisóstomo, 2009; Meng et al., 2009). Several improvements and 
variations have been proposed for SDM; for example Ramamurthy and colleagues introduced 
forgetting as part of an unsupervised learning mechanism (Ramamurthy, D'Mello, & Franklin, 2006; 
Ramamurthy & Franklin, 2011). Furthermore, SDM’s structure is ideal for parallel processing or 
hardware implementation. 

Extended SDM increases the hetero-associativity feature of the memory. A novel mechanism using 
this extension is particularly effective for sequence learning (Snaider & Franklin, 2011; Snaider & 
Franklin, 2012a). The main idea of this new memory structure is the use of vectors with different 
lengths for the addresses and for the words. A word has a longer length than the address in which it is 
stored. Each address has n dimensions while each word has m dimensions with n < m. Moreover, the 
address vector is included in the word vector. Formally, a word of length m and an address with length 
n, the first n bits of the word compose the address. 

Conceptually, this memory is a mix of auto-associative and hetero-associative memories. The 
address part of the word is auto-associative whereas the rest of the word is hetero-associative. This 
allows us to preserve, and even to improve, the desirable characteristics of the SDM. First, with an 
initial vector as address to cue the memory, it is possible to retrieve the corresponding word, even if 
the initial vector is a noisy version of the stored one. This means that ESDM maintains the noise 
robustness characteristic of SDM. Second, the data of each vector is stored in a number of hard 
locations in a distributed way. So, it is also robust in the case that some hard locations are corrupted or 
lost. Third, the previously discussed psychological characteristics in SDM are also present in ESDM. 
Finally, the hetero-associative part of the words in ESDM allows storing other data related with the 
address data, but without interfering with it. For a complete description of this memory ant its 
improved sequence learning mechanism see (Snaider & Franklin, 2012a). 

The original SDM uses binary vectors for both addresses and data words. This usage results in 
several limitations. First, real data are not always Boolean, making representations using more than 
two values desirable. A possible solution for this limitation is to use several dimensions of the word 
vectors to represent one feature, but this approach does not fit very well with the structure of SDM. 
Mendes and colleagues (2009) studied this problem in detail. They evaluated several binary encodings 
to use with SDM in robot navigation tasks, and reported their difficulties and limitations. Another 
disadvantage of binary vectors is the loss of information due to the noise introduced into the 
representation by the normalization used in combining vectors. Vectors can be summed up dimension 
by dimension (for this operation, vectors belonging to {0; 1}n are replaced by vectors of {-1; +1}n). 
This operation produces a vector belonging to n, the space of integer vectors with n dimensions. The 
normalization process reduces the resultant to a vector that is also in {-1; +1}n but with significant loss 
of information. See for example (Kanerva, 2009; Snaider & Franklin, 2011; Snaider & Franklin, 
2012a). 

A variation of SDM, Integer Sparse Distributed Memory (Integer SDM) (Snaider & Franklin, 
2012b), is also based on large vectors, on the order of thousands of dimensions, where in this case 
each dimension has a range of possible integer values. This memory has properties similar to the 
original one, noise robustness, auto-associativity and being distributed. A further extension of Integer 
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SDM permits words and addresses of different lengths, which is particularly useful for the reliable 
storage of sequences and other data structures. In addition, this memory avoids the limitations 
imposed by binary representation, as described above, allowing a better encoding of non-binary data 
and alleviating the normalization problem when combining several vectors. 

The benefits of both models are retained when merging this model with Extended SDM into a 
combined ESDM model that uses integer vectors, has better hetero-associativity support, and 
improves sequence learning. These models can be further expanded, for instance with the forgetting 
mechanism (Ramamurthy, D'Mello, et al., 2006), which can be expected to improve the unsupervised 
learning capabilities of the memory. 

5 Vector LIDA 
A promising change in the LIDA conceptual model and its implementation, called Vector LIDA, 

would intensively utilize the technologies presented in the previous sections. This new version 
implements the LIDA architecture (Franklin & Patterson, 2006; Snaider et al., 2011) using MCR 
vectors as its main representation for data structures, and the various extensions of SDM described 
here for its main memory mechanisms. Figure 1 depicts the structure of the LIDA model, including its 
modules and their interactions. 

The previous version of the LIDA model utilizes nodes and links in a directed graph-like structure 
(node structure) as its main data structure. This implementation introduces several problems. First, 
comparing node structures can be computationally expensive. Moreover, some of LIDA’s processes 
require approximate comparisons of the node structures, which can be even harder to compute. MCR 
vectors can represent information such as that contained in node structures, but unlike node structures, 
MCR vectors have an innate approximate comparison property, as explained in Section 3.  

Second, some modules in the LIDA model, such as perceptual associative memory, episodic 
memory, and procedural memory, require the implementation of learning mechanisms. These 
mechanisms must be able to learn new node structures in an instructionalist learning mode, and 
reinforce previous ones via reinforcement learning. The previous model uses a value attached to each 
node and link, called base level activation, that helps to implement reinforcement learning. However, 
the model does not have a generic strategy for the learning of new elements, and the current 
implementations of several modules do not scale well. The SDM variations described here have both 
the required learning mechanisms (instructionalist and reinforcement) integrated into their basic 
functionality. Learning new vectors (instructionalist learning) simply consists of storing the vector in 
the memory using its standard storage procedure. When the same vector is stored several times 
(reinforcement), the hard locations’ counters corresponding to the values of each dimension of this 
vector will have larger counts, making it resistant to interference by other vectors stored in the 
memory. This effect would improve implementing a forgetting mechanism. 

Moreover, the original implementation of the episodic memory module in LIDA already employs a 
SDM memory as its base implementation. The problem of translating back and forth from node 
structures to vectors in episodic memory disappears when using MCR vectors as the main data 
structure of LIDA. Furthermore, the sequence storage mechanism of Extended ISDM enables the 
episodic memory module to store composite events, sequences of simpler events, improving the event-
learning capability of the episodic memory module. 

Third, MCR vectors have the potential of implementing directly Barsalou’s perceptual symbol 
system (1999), which uses symbols grounded in sensory and motor information. Although the original 
LIDA model employs a version of perceptual symbols, it does not exploit their capability for 
expressiveness, and they have a limited impact on the functionality of the whole system. Nodes in 
LIDA are grounded in sensory data. The activation of a node depends on the activation of its child 
nodes, which ultimately are activated from sensory data. However, a node (without considering its 
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children) does not represent any specific sensory or motor information by itself, so its grounded 
feature is seldom employed in the LIDA model processes. Moreover, the simulator idea, central to the 
perceptual symbol system theory, is hard to implement using nodes and node structures. On the other 
hand, constructing MCR vectors from sensory and motor information using hyperdimensional 
computing operations (Kanerva, 2009) would produce representations that have many of the 
perceptual symbols’ characteristics described by Barsalou (1999). Similar sensory information would 
yield similar representations, and the holistic processing operations of MCR could facilitate the 
implementation of the simulators described in his model. Interestingly, MCR vectors with role-filler 
components for each modality have the potential to integrate several modalities in a single 
representation, addressing the so-called binding problem. For example, the MCR vector B 

 
   

 
represents the integration of the data from the visual and auditory modalities. Notice that the vectors 
birdImage and birdSong would be in turn reduced descriptions also. 

Moreover, the homogeneous representation of different levels of abstraction in a hierarchy of 
concepts, or even in the representation of sequences, plans, and other cognitive entities, may simplify 
the implementation of high-level cognitive processes such as metacognition, theory of mind, and 
deliberation. For example, a single MCR vector a can represent an event, and another vector b can 
represent “thinking about that event”. The vector a can be a component of vector b.  

Fourth, in recent years, several models of the so-called deep learning systems, such as HMAX 
(Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007), HTM (George, 2008), DeSTIN (Arel, Rose, & 
Coop, 2009), and deep belief nets (Hinton, 2007; Hinton, Osindero, & Teh, 2006), have emerged. 
These models, based on the hierarchical organization of the neocortex and particularly of the visual 
cortex, focus on learning and recognition of spatial and temporal patterns. They detect pattern 
invariances in space and (in some models) in time in each level of the hierarchy. The output of a lower 
layer provides the input for the higher ones. The higher the layer, the more abstract are the features 
they capture of the data. These hierarchical networks provide biologically plausible mechanisms with 
which to perceive both spatial and temporal patterns from low level sensory data, making them 
attractive for modeling low level perception between sensory memory and perceptual associative 
memory (PAM) in LIDA (see Figure 1). Since these models in general produce high dimensional 
vectors as output, interfacing them with Extended Integer SDM memories for implementing PAM 
would be simpler, more scalable, and more noise robust than with the current implementation. HMAX 
(Serre et al., 2007) is probably the most biologically realistic hierarchical model for this function, 
since their authors designed it following the biological data as accurately as possible, but other models 
such as HTM (George, 2008) or DeSTIN (Arel et al., 2009) are also possible options. Furthermore, 
these hierarchical models have the potential of detecting spatial-temporal patterns in other modules, 
such as the workspace or perceptual memory, and they would seamlessly integrate with MCR vectors. 
For example, attention and structure-building codelets (see Figure 1) can be implemented with these 
hierarchical networks so as to detect patterns in the workspace, and build coalitions and complex 
structures, respectively, with these patterns. A similar implementation for procedural memory, using 
hierarchical networks, could improve the detection and learning of temporal patterns that eventually 
became sequences of actions or behavior streams (D'Mello, Ramamurthy, Negatu, & Franklin, 2006). 
These hierarchical network models, combined with MCR vectors and Extended Integer SDM, have the 
potential to provide a primary biological plausible and efficient detection algorithm in LIDA. McCall 
implemented a variation of HTM’s Cortical Learning Algorithm aimed at integrating it into the LIDA 
architecture (McCall, 2014). Fifth, using MCR vectors would produce a more biologically plausible 
model through its synergy with other models, such as the hierarchical networks mentioned above, 
Barsalou’s perceptual symbols, Fuster’s cognits (2006), and several neurodynamical theories (Franklin 
et al., 2012). We have already described (see above) how to implement perceptual symbols, and how 
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their construction addresses the binding problem. A discussion follows of the relationship between 
MCR vectors and both cognits and neurodynamical theories. 

 Fuster described a cognit as an abstraction of a network of neurons. Its representation power 
comes from the activity of the neurons that compose it and specially the relationship between its 
component neurons. He extensively describes how different memory types (e.g., episodic, perceptual, 
motor, etc.) can be interpreted as hierarchies of cognits. He pointed out that cognits in one level of this 
hierarchy can be a composition of other cognits from several levels in the hierarchy. MCR vectors 
may be used as an abstraction of the cognit model. They are also distributed, can combine elements of 
various levels of the memory hierarchy in a single vector, and their hyperdimensional operations can 
combine and associate cognits represented as vectors. 

Franklin and colleagues (2012) have compared several neurodynamical theories with the LIDA 
model. By interpreting the brain as a dynamical system, the representations would be trajectories in 
the phase space (pattern of activation space) of one or several cell assemblies. These trajectories can in 
turn interfere with and influence the trajectory in the phase space of other cell assemblies. A MCR 
vector would model not only a pattern of activation of a cell assembly, but also a trajectory of these 
patterns. For example, if a single neuron in a cell assemble has a sequence of activations in a trajectory 
of 4 steps (e.g., 1011, where one and zero mean high firing rate and low firing rate respectively), we 
may code this sequence as a single value (11 in the example) and assign this value to one dimension in 
our MCR vector. Employing the same procedure for each neuron in the cell assembly, produces a 
MCR vector that represent the trajectory of the pattern. Using an Integer SDM as a cleanup memory 
can produce a previously stored vector from a partial vector, which would model the oscillatory and 
self-organizing properties of the dynamical system interpretation. Using random permutation or 
multiplication produces a new vector that would model the influence from one cell assembly on 
another. Although these ideas are still under development, using MCR vectors and the memories 
proposed herein are good candidates to model representations and cognitive processes in a more 
biologically plausible way. 

Moreover, the vector nature of these models makes them ideal for being implemented in new 
parallel technologies such as multicore processors and GPUs, which have the potential to speed up 
these algorithms by several orders of magnitude. For example, our first experiments with GPU’s 
implementations of Extended SDM showed a speedup of 49 times the performance of the mono-
processor implementation (Snaider, 2012). 

Several pieces of this new implementation have already been implemented, including the MCR 
vector operations, the Extended ISDM, and the basic data structure of the model (which replaces the 
previous node-structure implementation). Various experiments involving these modules were reported 
in previous papers (Snaider & Franklin, 2012a, 2012b, in press). Integration of vector representation 
into the different modules of the LIDA model is currently in progress.  

6 Conclusions 
The representation paradigm employed by a system greatly influences the kind of problems that it 

can efficiently solve. The features of high-dimensional vectors and reduced description models make 
them good candidates for a representation paradigm for cognitive architectures. In particular, they 
allow a noise-robust representation model where the distance between vectors measures the similarity 
(or dissimilarity) of the concepts they represent, using reduced description models. This includes 
complex structures such as hierarchies and sequences. The approximate similarity comparisons and 
the pattern matching intrinsic operations of these vectors are clear advantages over other more brittle 
representations such as nodes and links. 

The changes in the LIDA cognitive architecture aim to exploit the characteristics of high-
dimensional vector representations. In particular, the MCR model, a reduced description model 
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instantiation, balances representational expressiveness and implementation simplicity. The Integer 
SDM (and its combination with Extended SDM) described here, which employs the same vectors as 
MCR, can be used as cleanup memory for this model. Moreover, this memory exhibits useful 
properties, such as noise robustness and one shot learning, that make it attractive for implementation 
technology of several memory modules in LIDA. 

Some of the advantages of Vector LIDA over the current implementation include a more realistic 
and biologically plausible model, including a representation better grounded in sensory and motor 
data, better integration with its episodic memory, better integration with deep learning architectures 
such as the variations of CLA proposed by McCall for LIDA (2014) or HMAX (Serre et al., 2007), 
better scalability, and easier learning mechanisms. 
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