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In the literature several authors describe methods to construct simplified models of net-
works. These methods are motivated by the need to gain insight into the main properties
of medium sized or large networks. The present paper contributes to this research by set-
ting focus on weighted networks, the geographical component of networks and introduc-
ing a class of functions to model how the weights propagate from one level of abstraction
to the next. Hierarchies of network models can be constructed from reordering of the adja-
cency matrix of the network; this is how ‘‘hypernodes” are derived in the present paper.
The hypernode algorithm is explored and it is shown how it can be formulated to handle
weighted networks. Weighted networks enable handling the uncertainty or the strength of
the components which make up the network. The hypernode algorithm can be run in an
iterative manner so that a hierarchy of simplified models of the network can be derived.
Some case studies demonstrate the hypernode algorithm. In the first case the algorithm
is compared with a similar implementation described in the literature. In the second case
an airline dataset is analysed. This study shows that when networks are embedded in the
geographical space hypernodes may relate to clusters in the spatial domain. The selection
of the visual variables to illustrate the strength of the edges and nodes in a weighted net-
work is discussed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

1.1. The problem domain

Graphs, subsequently also called networks, are often used in the modelling of real world phenomena or abstract concepts
in many disciplines involving information sciences, geographical information systems, military applications and threat
detection, social sciences, biology, mathematics, among others [1–8]. In this paper a real airline routes network will be used
as a case study.

Börner et al. [9], which give a comprehensive introduction to network science, classify networks by their size as (1) small,
less than 100 nodes, (2) medium sized, between 100 and 1000 nodes, and (3) large, more than 1000 nodes. Often in large
networks neither all nodes and edges can be shown at once. Even for small networks there may be structures which are hard
to detect in a visualization without generalization, i.e., reduction of the number of nodes and edges. In order to keep the
important characteristics of the network structure, this reduction must follow rules that maintain the underlying structure
of the network in the visualization. This kind of problem is well known in geographical information systems, for example,
. All rights reserved.

x: +47 33 04 78 34.
e).
d Technology, Norwegian University of Life Sciences (UMB), P.O. Box 5003, 1432 Ås, Norway.

https://core.ac.uk/display/82695624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijar.2009.09.003
mailto:jan-terje.bjorke@ffi.no
http://www.sciencedirect.com/science/journal/0888613X
http://www.elsevier.com/locate/ijar


276 J.T. Bjørke et al. / International Journal of Approximate Reasoning 51 (2010) 275–293
when data are to be visualized as maps. The present paper addresses the problem stated, i.e., how to make generalized mod-
els of networks so that the analyst can get a holistic view of the network and superior in-depth understanding of its main
properties.

The term hypernode will be used to denote a node which represents an aggregation of nodes. In order not to confuse with
the established theory of hypergraphs [8,10], we will not use the terms hyperedge and hypegraph. In the forthcoming hyper-
nodes will be defined, their application to network visualization explored and an algorithm to generate hypernodes will be
described. When constructing the network of hypernodes, the strength of the nodes and the edges should be considered.
Therefore, different weight propagation models will be defined. In some cases there may exist an implicit geographical com-
ponent in the network, i.e., a geographical clustering which can be explored from the hypernodes. A case study will demon-
strate this kind of geographical nearness.

Since the present paper considers weighted networks, also strategies to visualize the weights will be discussed, i.e., colour
coding or grey value coding.
1.2. Related work

Our work is inspired by the research of NATO-group IST-059/RTG-025 [3]. This group has identified key issues of the visu-
alization of networks. As a part of the work in this group Bjørke [4] did show how hypernodes enable networks to be visu-
alized at higher levels of abstraction. From reordering of the adjacency matrix of the network the groups of nodes which form
the hypernodes, can be derived.

The concept of reordering the adjacency matrix of a network was first introduced by Bertin [11], although Hartigan pre-
sented in 1972 a method to clustering a data matrix [12]. The method of Bertin starts with mapping the data to an image
which is termed the reorderable matrix. Then the rows, or the columns, of this image are interchanged to generate different
views of the data. In this way meaningful patterns in the data can be detected by visual interpretation of the reordered im-
age, see for example [13]. Automatically reordering rows and columns of matrices try to optimize an objective criterion, but
no polynomial time approximation exists for the exact solution. An overview of different approaches to this problem can be
found in [9,14–17].

Flake et al. [18] introduce graph clustering methods based on minimum cuts within a graph and define an expansion of a
cut. In a forthcoming section we will show how this index fits into a class of similar measures. Huang and Lai [19] construct
hierarchical clusters of nodes in graphs by applying an adjacency matrix of node similarities. In a forthcoming section our
implementation of node clustering will be compared with a case study derived by Huang and Lai.

The novelty of the present paper is related to: (1) the focus on the geographical component in the case studies, (2) the
development of a class of indices to measure the strength of the edges between hypernodes, (3) the application of informa-
tion theory to explain the difference between different visualization methods, and (4) the demonstration of hierarchical node
clustering to analyze and visualize real world network data.
2. Selection of visual variables

When visualizing weighted networks, the question of how the strength of the edges and nodes can be visualized, must be
answered. Since we in the forthcoming sections will present several figures of weighted networks, visualization issues will
be elaborated upon before the hypernode algorithm is presented and discussed.

The visualization of a weighted network should map the weights to an appropriate visual variable. Bertin [11] argues that
quantitative information should be mapped to visual variables that are able to reflect the ordering of the data. According to
Bertin the appropriate visual variables for visualizing a weighted network are size and grey value, see Fig. 1. Here, the
weights are divided into three classes and a grey value associated to each class.

Since hue is a qualitative property of colours, Bertin argues that hue cannot offer an intuitive relation to a quantitative
information variable. However, colour hue is a very selective visual variable. Therefore, the traffic light symbology (red, yel-
low, green) offers well separation between three weight classes, see window D in Fig. 2. It is intuitive and offers a clear inter-
pretation/understanding. An alternative to showing all weight classes in a single display, they can be shown in different
display windows; one window for each class. This provides valuable information about the individual sub-network struc-
tures and how they relate to each other in the whole network, see windows A, B and C in Fig. 2.

The different visualization methods can be characterized in terms of information theory. Information theory computes
the entropy H(X) of an information source X as
HðXÞ ¼ �
X
x2X

pðxÞlog2ðpðxÞÞ;
see [20], for example, for a discussion on how information theory can be applied to evaluation of visualizations. The entropy
formula can be applied to compare the visualization in Figs. 1 and 2. There are 19 strong edges, 22 medium strong edges and
1 weak edge, totally 42 edges in the network. If all the edges are equally visible, the entropy formulae can be written as
HðXÞ ¼ log2ðNÞ, where N is the number of events. If we assume that the colours red, yellow and green as applied in Fig. 2,
have equal visibility, we can argue that the entropy of the perceived network in window D is HðXÞ ¼ log2ð42Þ ¼ 5:39. For
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Fig. 1. Applying the visual variable grey scale to illustrate the strength of the edges in a network.

Fig. 2. A network is visualized in four windows; three windows for each of the weight classes and one window with the whole network.
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windows A, B and C in the figure, the entropy is lower than in window D. This follows from HðXÞ ¼ log2ðNÞ, and that N is
reduced when several windows are applied.

Alternatively, grey value can be used as visual variable, but since the dark lines get higher visibility than the light grey
lines, grey value has the property of not equal visibility. In order to compute the entropy of the perceived network in
Fig. 1, a model that reflects the visibility of the lines is to be set up. First, we will define the visibility of the different lines
on the scale 0–1. The black line has maximum contrast to the white background and its visibility l1 can be set to 1. The grey
value of the medium strong edge is more similar to the background than the black colour and we set its visibility l2 ¼ 0:5.
For the last grey class we set l3 ¼ 0:25. In order to consider the limit case when all the edges have colour similar to the back-
ground colour, the background can be introduced as an element of the image, i.e., its visibility is set to 1. In the further com-



278 J.T. Bjørke et al. / International Journal of Approximate Reasoning 51 (2010) 275–293
putations we will not consider this limit case and only look at the main case, i.e., we assume there are visible edges in the
image. The visibility measures introduced must be normalized in order to be used in the entropy formulae. Therefore, we
derive the probabilities from
pðxÞ ¼ lðxÞP
x2XlðxÞ

:

This gives the probability of detecting a black, a grey and a light grey edge as 0.0331, 0.0165, 0.0083, respectively. The en-
tropy of the network in Fig. 1 is therefore 5.30, i.e., lower than in the traffic light case. Generally, the entropy has its max-
imum value when all the events are equally probable.

The contribution of the different grey value classes to the entropy of the image can be computed. The contribution from a
black line bi is hðbiÞ ¼ �0:0331log2ð0:0331Þ ¼ 0:16. For the group of black lines we get HðbÞ ¼ hðbiÞ19 ¼ 3:04. For an edge gi

of medium grey colour hðgiÞ ¼ 0:10 and HðgÞ ¼ hðgiÞ22 ¼ 2:20. Similarly, the light grey edges li give hðliÞ ¼ 0:06 and
HðlÞ ¼ hðliÞ1 ¼ 0:06. Since hðbiÞ– hðgiÞ– hðliÞ, from an information theoretic point of view we can argue that the visual var-
iable grey value alters the visual importance of the edges in the network. Moreover, since HðbÞ > HðgÞ > HðlÞ the black lines
will dominate the entropy of the perceived image.

Lessons learned 1. In a grey value visualization of a weighted network the different weight classes will have different visibility,
i.e., the edges will be moved towards the front of the image according to the contrast between the background colour and the as-
signed grey value. Applying grey value to visualize a weighted network will reduce the entropy of the perceived image compared
with applying the visual variable colour hue.

Which method to select is a question about: (1) equal visibility, for example, the traffic light symbology; (2) mapping the
weights into an ordered visual variable; (3) bringing some of the elements to the front of the image, for example, the visual
variable grey value; (4) being able to study each weight class separately, i.e., apply several windows; or (5) getting a holistic
view, i.e., map all information into one single window.

Thorough exploration of the link between information theory and the visualization problem considered, is outside the
scope of the present paper, but a direction will be sketched. In information theory the difference between the entropy of
an image and the amount of misinterpretations is computed as
R ¼ HðYÞ � HðYjXÞ;
where R is termed useful information, H(Y) is the entropy of the interpreted image and HðYjXÞ is the degree of visual con-
fusion in the interpreted image Y when source image X is presented. The computation of R requires knowledge of the con-
ditional probabilities that the different lines visually are mixed. The degree of misinterpretation, i.e., HðY jXÞ, of a network
visualization depends on the number of presented nodes and edges. Therefore, a reduction of the complexity of the image
will effect R. Since this reduction also changes the entropy of the image, the maximal value of R, i.e., the channel capacity,
represents a balance between the complexity of the image and the degree of misinterpretations. Bjørke and Sæheim [21]
show how the channel capacity of a map can be computed. The computation of the level of detail that corresponds to the
channel capacity, can serve as a method to derive an optimal presentation of a network.

3. Basic definitions and notation

Consider a graph G = (V, E) with jV j ¼ n nodes (vertices) and jEj ¼ m edges, where V is a set of nodes and E a set of edges
between the nodes. An adjacency matrix of G is defined as R ¼ ðwi;jÞn�n, where wi;j is a weight, i.e., a real valued function,
associated to the edge going from node i to node j. The weight of a node is modelled as the self-connecting edge w(i, i). Asso-
ciating a weight to a node can be useful when we interpret the weights as uncertainties, for example.

Definition 1. A partition P of a graph is a disjoint collection of subsets of graph nodes whose union is the whole node set.

From the definition it follows that P ¼ fV1;V2; . . . ;Vng define a partition of V when the subsets V1;V2; . . . ;Vn of V satisfy
V1 [ V2 [ � � � [ Vn ¼ V , and Vi \ Vj ¼ ; for i – j.

Definition 2. Let P1 and P2 be partitions of a network G. If every element p 2 P1 is a subset of an element of P2; P1 is called a
refinement of P2. We say that P1 is finer than P2, and P2 is coarser than P1.

The set of partitions of a network is partially ordered under refinement.
For any graph G the partition P0 consisting of singleton subsets, is called the trivial partition. The trivial partition is finer

than every other partition of G. The simple partition is the partition with only one element, namely the whole node set. This is
denoted by PG. The simple partition is coarser than any other partition of G.

Definition 3. A sequence of partitions of a graph is called nested, or hierarchical, if every element of the sequence is coarser
than the previous element.

Definition 4. The elements of the non-trivial partitions in a nested sequence are called hypernodes.

Definition 5. The set of edges between two subsets Vi and Vj of a partition of V is denoted as Ei;j and defined from ðp; qÞ as
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Ei;j ¼ [ðp; qÞ; p 2 Vi and q 2 Vj:
A certain hypernode represents a collapse from a set of nodes into one single node. Since hypernodes correspond to a par-
tition of V, and the sets in a partition are none overlapping, Definition 4 implies that hypernodes represent disjoint subsets of
V. Huang and Lai [19] apply a similar definition, but they use the terms abstract node, supernode and metanode. For edges
among abstract nodes they use the term abstract edge.

An alternative to our term hypernode might be abstract node, but the graph itself is an abstraction of some features in the
real world. From this perspective the term abstract node is not appropriate. Metanode is another term we have evaluated,
but in geographical information science (GIS) one talks about meta-information, i.e., information about information. There-
fore, metanode can give false associations in the literature dealing with GIS. Supernode or aggregated node are probably the
best alternatives, but the term hypernode is already used in the work of NATO-group IST-059/RTG-025 [3]. For the reasons
stated, we keep the term hypernode, but in order not to confuse with the established theory of hypergraphs [8,10], we will
not use the terms hypergraph, hypernetwork or hyperedge.

From the hypernodes a generalized graph, i.e., a coarser graph, G1 of graph G0 can be constructed. This procedure can be
repeated in a recursive manner. In this way a hierarchy T of graphs can be derived as
T ¼ fG0;G1; . . . ;Gkg where jGij > jGiþ1j and jGkjP 1:
Here, jGj is the number of nodes of G, G0 denotes the original graph and Gk the top level, i.e, the most generalized version of
the graph.

Since a hypernode represents a generalized view of a set of nodes, information about the graph is lost during the mapping
from one level in the hierarchy to the next. This is the price to be paid for the reduction of complexity. The question to be
raised, is what type of information in the graph need to be maintained.

3.1. The weight of the edges between the hypernodes

In the forthcoming a class of views to the computation of the weight of the edges between hypernodes will be identified.
Assume two sets Vi and Vj of a partition P and their corresponding hypernodes hi and hj. If we regard all the edges be-

tween Vi and Vj to participate in the computation of the strength of the edge between hi and hj, the arithmetic mean value
w1ð�Þ represents one view, i.e.,
w1ðhi;hjÞ ¼
1
jEi;jj

X
e2Ei;j

wðeÞ:
Flake et al. [18] measure the strength of the edge between abstract nodes as
wf ðhi;hjÞ ¼
1

minðjVij; jVjjÞ
X
e2Ei;j

wðeÞ:
Here, the average is weighted as the inverse of number of nodes. The relation between the measure of Flake et al. and the
arithmetic mean value, can be written as wf ð�Þ ¼ bw1ð�Þ, where b ¼ jEi;jj = minðjVij; jVjjÞ. In the case that jEi;jj ¼minðjVij; jVjjÞ;
wf ð�Þ ¼ w1ð�Þ.

Another approach is to select the minimum or maximum value, i.e.,
w�1ðhi;hjÞ ¼minðwðeÞ j e 2 Ei;jÞ
or
wþ1ðhi;hjÞ ¼maxðwðeÞ j e 2 Ei;jÞ:
In the case of computing the average value w1ð�Þ, the question about the uncertainty of w1ð�Þ can be raised.
According to the Gaussian error propagation the variance r̂2 of the average value of some uncorrelated observations

X ¼ fx1; x2; . . . ; xng is computed as r̂2 ¼
Pn

i¼1r2
i =n2.

The strength q, i.e., the weight of an observation, is computed as the inverse of its variance. This enables us to identify
1=q̂ ¼

Pn
i¼11=qi

� �
=n2. By reorganizing we get
q̂ ¼ n2Pn
i¼11=qi

¼ n
nPn

i¼11=qi

¼ bwðQÞ;
where b ¼ n; wðQÞ the harmonic mean of the weights and Q ¼ fq1; q2; . . . ; qng. A Gaussian weight wgð�Þ of the edges between
the hypernodes can therefore be defined as
wgðhi;hjÞ ¼ bw�1ðeje 2 Ei;jÞ; where b ¼ jEi;jj;
and w�1ðeÞ the harmonic mean of the weights of the edges.
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The Gaussian model yields when the uncertainty of the average value is to be computed, but we also propose it as a met-
aphor for the computation of the weights of the edges between hypernodes in general. This enables us to identify a class of
average operators defined by the generalized mean wað�Þ as
Table 1
Compu

b

1
jEi;j j
jEi;j j

F

Table 2
Compu

b

1
jVij
wðhi; hjÞ ¼ bwaðhi;hjÞ ¼ b
1
jEi;jj

X
e2Ei;j

wðeÞa
2
4

3
5

1=a

; wðeÞ > 0 ð1Þ
where a 2 R and b is a modifier defined in Table 1.
When a! �1; wað�Þ corresponds to the minimum operator, a ¼ �1 defines the harmonic mean, a! 0 in the limit case

approaches the geometric mean, a ¼ 1 the arithmetic mean and a!1 the maximum operator. An example in Fig. 3 illus-
trates how the generalized mean relates to a.

The Gaussian model considers the number of edges between Vi and Vj. For example, if all the edges between Vi and Vj

have weights equal to one, the strength of an edge between two hypernodes is equal to the number of edges connecting
Vi and Vj, i.e., wðhi;hjÞ ¼ jEi;jj.

Eq. (1) does not define restrictions on the combinations of a and b. For example, a ¼ �1 and a ¼ þ1 combined with
b ¼ jEi;jj can be said to represent a pessimistic and an optimistic view of the Gaussian model, respectively.
3.2. The weight of the hypernodes

The weight of the hypernodes can be computed in a similar way as the weight of the edges between the hypernodes as
wðhi; hiÞ ¼ bwaðhi;hiÞ ¼ b
1
jVij

X
e2Ei;i

wðeÞa
2
4

3
5

1=a

; wðeÞ > 0; ð2Þ
where Ei;i denotes the self-connecting edges in Vi, i.e., wðeje 2 Ei;iÞ defines the weight of the nodes in Vi, a 2 R and b is a mod-
ifier defined in Table 2.
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ig. 3. Example on how the generalized mean relates to parameter a. The example is based on data vector a ¼ ½0:1; 0:2; 0:3;0:4; 0:5; 0:9;1:0�.

tation of the weight of the hypernodes; values of b and their interpretation.

Interpretation

The number of nodes is not considered; simple average model when a ¼ 1
Consider the number of nodes; Gaussian weight model when a ¼ �1
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4. Algorithm to compute the hypernodes

Our algorithm to derive the hypernodes is based on the reordering of the adjacency matrix R of a weighted network G, see
Fig. 4 for an illustration of a weighted network and its adjacency matrix. The reordering of R is the first step in the algorithm
and the second step is partitioning the reordered matrix into similar groups, i.e., finding the hypernodes of the initial net-
work. Huang and Lai [19] also base their algorithm on finding similar rows in a matrix representation of the network, but
the matrix in their case is not an adjacency matrix, but a node similarity matrix. They measure the similarity between
the nodes by the Jaccard coefficient. The Jaccard coefficient J(A,B) for two sets A and B, see [22] for example, is defined as
the size of the intersection divided by the size of the union of two sets as
Fig. 4.
generat
JðA;BÞ ¼ jA \ Bj
jA [ Bj :
Since Huang and Lai only deal with unweighted graphs, the Jaccard coefficient can be applied.
In order to find the global best ordering of the rows or columns, all combinations of rows or columns should be investi-

gated and global similarity measures introduced. The computational complexity of this algorithm can be reduced to polyno-
mial time by searching for an approximation to the global best ordering. The k-means cluster technique can be applied to the
reordering, but this method requires that seed nodes are defined, see for example [19]. A method which does not require a
priori information about the clusters, but which is more time consuming than k-means clustering, is applied in our
implementation.

In the first step the row vector with maximum length is searched. The length l(p) of a vector p with n elements is com-
puted as
green when w( ) > 0.8
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lðpÞ ¼
Xn

i¼1

jpij: ð3Þ
Then the row with maximum l(p) and row 1 are swapped. Thereafter, the Manhattan distance is used as a metric in the reor-
dering. The Manhattan distance between two vectors p and q of length n is defined as
dðp; qÞ ¼
Xn

i¼1

jpi � qij: ð4Þ
An overview of similarity and distance measures is given in [22], for example.
The idea is to reorder R so that d(p, q) is as small as possible for any two adjacent rows in R. When the reorderable matrix

is regarded as a grey value image, reordering the rows, or the columns, can be regarded as minimizing the entropy of the
image [13]. A pseudo code of the implementation is shown in Table 3. Since local measures are applied, the question about
the robustness of the reordering can be raised. If it should happen that similar rows appear distant in the reordered matrix,
they may be assigned different hypernodes; but nodes which are not aggregated at a certain level in the hierarchy of hyper-
nodes, have the possibility to be aggregated at a higher level. Therefore, the hierarchy of hypernodes introduces some kind of
robustness.

The time complexity of the algorithm is OðnÞ3. Therefore, if the algorithm is to be applied to huge networks, for example if
n� 1000, the computing time should be considered, i.e., implement methods to limit the exponential growth of the com-
puting time. However, the problem of fast computing is outside the scope of the present paper.

In the second step clusters of similar rows in the reordered matrix is to be computed. Table 4 shows a pseudo code of the
grouping algorithm. Since this grouping represents a critical step in the creation of the hypernodes, the analyst should be
code to reorder the adjacency matrix.

der the rows (or the columns) of the adjacency matrix

nitions:
P is the set of rows of the initial adjacency matrix R

n is the number of rows in P

P(i:j) denotes the set of rows in P with index from i to j

p(i) is row number i

l(q) is the length of a vector computed from Eq. (3) Manhattan distance is defined by Eq. (4)

swap p(1) and the row p(q) in P with maximum length l(q)

for i=2 to n do

find the row p(q) in P(i:n) which has minimum Manhattan distance to p(i-1)

swap p(q) and p(i)

end

code to define groups of rows in the reordered adjacency matrix.

ute groups of rows (or columns) in the reordered adjacency matrix

nitions:

P is the set of rows of the initial adjacency matrix R

n is the number of rows in P

P(i:j) denotes the set of rows in P with index from i to j

p(i) is row number i

f is a user specified factor that defines the strength of the group membership

Tanimoto coefficient is defined by Eq. (5)

j=1

finished=false

repeat

for i=j+1 to n do

compute the Tanimoto coefficient T for

row p(j) and p(i)

if T < f

create group P(j:i-1)

j=i

go to step (5)

end if

end do

if j=n or i=n

create group P(j:n)

finished=true

end if

until finished
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able to control the grouping criteria. Therefore, an index that measures the distance between rows in the interval [0,1] is
appropriate. When p and q are real valued vectors, the Tanimoto coefficient, which is an extended Jaccard coefficient, can
be applied to compute the similarity between the vectors. The Tanimoto coefficient is defined as
Tðp; qÞ ¼ ðp; qÞ
kpk2 þ kqk2 � ðp; qÞ

; ð5Þ
where (p,q) is the standard inner product on Rn, and kpk2 ¼ ðp; pÞ, see [22], for example.
The Tanimoto coefficient can also be written as
Tðp; qÞ ¼ ðp; qÞ
kp� qk2 þ ðp; qÞ

:

Some might react to the presence of negative elements in this formula, but this form simplifies the analysis of the coefficient.
From the rewritten Tanimoto coefficient it is easily seen that Tðp; qÞ ¼ 1 when p = q and Tðp; qÞ ¼ 0 when ðp; qÞ ¼ 0. When the
components are restricted to positive values only, T is bounded by zero and one. If the vector components can have negative
values, it can be shown that T is bounded above by one and below by �1/3.

Fig. 4 demonstrates the algorithm. The initial network and its adjacency matrix are shown. After reordering of the matrix,
the sequence of nodes is 1, 4, 5, 2, and 3. With the group factor f = 1, nodes 1 and 4 form a hypernode, i.e., hypernode H1.
Nodes 5, 2, and 3 cannot be merged to any other node with f = 1. The similarity between nodes 1 and 5, 1 and 2, 1 and 3
is Tð1;5Þ ¼ 0:90, T(1,2) = 0.80 and T(1,3) = 0.69. Therefore, if the group factor is lowered to 0.8, nodes 1, 4, 5, and 2 are merged
into a single hypernode, see Fig. 4. This demonstrates the significance of the group factor to the creation of the hypernodes.
The group factor is vital to the creation of the hypernode and therefore careful consideration must be made. Furthermore, the
group factor is an application dependent parameter.
5. Demonstrations of the algorithm

An implementation of the present algorithm will be demonstrated in three case studies. The first two cases are gathered
from the literature, the third is based on open source data about flight traffic in USA.
Initial network,
level 0, 38 nodes

9

4

6

7
66

19

Huang Lai level 1,
6 nodes

Huang Lai level 2,
3 nodes

4

15

1

2

3

4

5

6 7

8 9

10
11

12
13

14
15

16
17

18
19

2021

22

23
24

25
26

27
28

29

30

31

32

33

34
35

36

38
37

Fig. 5. Hierarchy generated by Huang and Lai [19, p. 239].



284 J.T. Bjørke et al. / International Journal of Approximate Reasoning 51 (2010) 275–293
5.1. Network used by Huang and Lai

Our implementation is tested against an example given by Huang and Lai [19], see Fig. 5. The initial network is composed
of 38 nodes. All the edges have the same weight. Huang and Lai show that their algorithm can generate 2 levels of hyper-
nodes as shown in Fig. 5. Our algorithm handles the same network as depicted in Fig. 6. Here, the ordinary weight compu-
tation is used and the group factor is set to 0.5. The computed hierarchy consists of 5 levels. At the top level all the nodes are
aggregated into one single hypernode.

Our level three with seven hypernodes is similar to Huang-Lai level one with six nodes, i.e, our model has one hypernode
more. The Huang-Lai model level two has three nodes and is similar to our level four with four nodes. The most striking dif-
ference between the two hierarchies is that our hierarchy has more levels than Huang-Lai, i.e., our algorithm allows the net-
work to grow more gradually from the initial network to the one hypernode at the top level of the hierarchy.

Fig. 7 shows how the selection of the Gaussian weight model effects to the hierarchy. At each level the weights are nor-
malized, i.e., they are assigned a number in the interval ½0;1�. As seen from Fig. 7 the green edges have more subedges than
the yellow and red edges. Therefore, the green edges have higher weights than the yellow and red edges. All the green, yel-
low and red edges at level 1 have three, two and one sudedges, respectively.

In the initial network all the edges have equal weights. Therefore, at level 1 the Gaussian model assigns weights propor-
tional to the number of subedges between the hypernodes. At level 1 the hypernodes are identical in the two cases, simple
and Gaussian weight model, since the effect of the weight model takes place at first from level 2.

The main difference between the two models is that the Gaussian model considers the number of subdedges, whereas the
simple model does not. This can be seen at level 3 in Fig. 7. Here, the nodes 18, 19, 20 and 21 in the initial network are
grouped into a hypernode which have only one subedge that connects it to the rest of the network, see the yellow edge from
hypernode A at level 3. In the Gaussian model this weak connection is detected and therefore this group of nodes must wait
to be merged to the rest of the network until a higher level in the hierarchy, i.e., at level 5. This demonstrates how the Gauss-
ian model considers the number of subedges when the hypernodes are generated.

The Gaussian weight model gives a hierarchy that matches the Huang-Lai computation slightly better than the simple
weight model. Level 5 in the Gaussian model is identical to level 2 in the Huang-Lai model, whereas our level 4 model is
almost identical to Huang-Lai level 1. The two models deviate with respect to the clustering of our hypernode A, see level
3. The Gaussian model has considered the weak edge from hypernode A and not aggregated this node at level 4.
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Fig. 6. Hierarchy of hypernodes based on ordinary weight computation, i.e., a ¼ 1 and b ¼ 1. The group factor is set to 0.5. The number of subnodes in each
hypernode is given.
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respectively.
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5.2. Network used by Estrada and Rodríguez-Velázquez

Estrada and Rodríguez-Velázquez [5] define centrality indices on hypergraphs which they demonstrate on the network in
Fig. 8. According to their index SCðiÞH ([5], p. 588) nodes 10 and 2 are ranked at the top, i.e., the two nodes play an important
role for the connectivity of the network. At a certain level of the hierarchy of hypernodes three nodes are generated where
one of them is composed of subnodes 10 and 2 in the original network.

From Fig. 8 it is easily seen that at a certain level of abstraction the network can be regarded as a chain composed of three
nodes. Therefore, if the hypernode in the middle of the chain is eliminated, the network will be separated into two disjoint
sub-networks, see Fig. 8. To arrive at the hypernodes shown in the case considered, an appropriate selection of the group
factor is necessary. In our case the factor 0.8 is selected. The strength of the hypernode method is its ability to visualize
the network structure at higher levels of abstraction. Centrality measures are used to rank the nodes, but lack a tight con-
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nection to visualization of the network structure. In closing, the hypernode approach provides additional salient information
about networks.
5.3. Flight traffic in USA

Data from open source offered by the US Bureau of Transportation Statistics [23] is used. From this database traffic infor-
mation about 468 airports in USA for a certain period was gathered. In this example data the number of traffic routes, i.e., the
edges, in the network is 16292. Fig. 9 illustrates the problem of visualizing a network with that amount of edges. The airport
with the highest number of edges in the network, i.e., ATL, with its 195 edges is selected for the illustration. Fig. 10 shows
ATL

Fig. 9. The 195 edges connected to airport ATL.
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Fig. 10. Illustration of the density of edges in the network. The three airports SEA, ORD and SAN are selected.
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three typical airports, SEA, ORD and SAN, where a large number of edges is observed. From the examples it is clear that sim-
plified models of the network must be applied in order to understand the networks.

After the end nodes are moved to their mother node, the network is reduced from 468 to 420 nodes. Fig. 11 shows some
examples of the end nodes, i.e., the blind alleys in the network. The reduced network serves as the starting point for creating
the hierarchy of hypernodes.

For each route eij between any two airports i and j we have information about the number nij of passengers. From this
information a weight wðeijÞ is derived and associated to the edge. The weights are normalized, i.e., given a number in the
interval [0,1]. A median filter is applied so that a passenger number greater than the median is transformed to weight 1, else
a linear relationship is applied as
wðeijÞ ¼
nij

m for nij < m

1 else;

(

where m is the median of nij for all edges in the network. In the forthcoming examples the Gaussian model is applied for the
edges between the hypernodes, and the simple weight computation is used for the hypernodes, i.e, a ¼ �1 and a ¼ 1,
respectively.
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Fig. 11. Totally there are 68 blind alleys in the network. The figure shows some of them.
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420 subnodes

Level 20, 1 node
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Level 16, 20 nodes

Fig. 12. Four levels of the hierarchy of hypernodes. At level 20 all the nodes are clustered into one hypernode.
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When the group factor is set to 0.2, the hierarchy of hypernodes in Fig. 12 is derived. Four levels in the hierarchy are se-
lected for the visualization. At the top level all the subnodes are merged into one hypernode. This shows that the network is
not composed of disconnected groups, i.e., there is a path from one node to any other node in the network.

Since the network is geographically located, it is of interest to investigate how the hypernodes relate to the geography, see
Fig. 13. In order to maintain the clarity of the figure, only the four most dominating hypernodes are selected for visualization
at each level of the hierarchy. All the other airports are shown by the yellow + symbol.

The geographical grouping of the nodes is conspicuous. At level 3 a group of black circles can bee seen in the north. South-
west of this group there is a blue group and in west a red group stands out. The green group grows gradually from level to
Level 3, 90 hypernodes,
w=-1, group factor 0.2

Level 9, 52 hypernodes

Level 16, 20 hypernodes

Fig. 13. The hierarchy of the hypernodes illustrated by colour coding the subnodes of the four largest hypernodes. The geographical clustering of the groups
is striking.
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level in the hierarchy. This group starts at level 3 with a dissemination mainly in the east, but there are also some members
of the group in the west.

Fig. 14 zooms into the four most dominating hypernodes at level 3. Here, airports like BOS, EWR, BUF, ORD, ATL, MIA,
HOU, DEN, LAS, SAN and SEA belong to the green group, i.e., airports close to the large cities in the US. The black group in
the north has members like DVL, TVF and EAU. The blue group in the middle of US is made up of airports in the neighbour-
hood of SAF, LBF, GCC and ISN. In the south-west we find that SBA, BOI and GEG are members of the red group. The black,
blue and red groups characterize small cities in the US. At level 9 a new distinct geographical group stands out, i.e., the red
group (mainly Alaska and Hawaii).

Not all levels of the hierarchy are shown in Fig. 14, for example the lowest level of hypernodes. This level differs from level
3 in the way that the group of green nodes at level 3 are separated into four groups (one large and smaller groups). Despite
this separation the geographical clustering is evident.

Lessons learned 2. The lesson learned from the airport case so far is that for networks embedded in the geographical space, the
spatial concentration of the subnodes of the hypernodes should be offered attention when tools for network visualization is
developed.

The two parameters group factor and level in the hierarchy can be used to answer questions about which nodes are most
similar or which nodes are different from the main group. In both cases we can talk about anomalies. For threat detection, for
example, anomalies can represent important information. Some examples will clarify the use of the two parameters
considered.

At first, the level in the hierarchy will be elaborated upon. Fig. 15 shows details of the hypernodes at level 16. The nodes
that still are separated at a this level, are very different from the main group. If this were not the case, the nodes would have
been merged at a lower level. The network is at level 16 reduced from 420 to 20 nodes and can be described as a star
network.
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Fig. 14. Zoom into the four most dominating hypernodes at level 3, group factor 0.2.
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marked with a black circle will be used for further references. The three nodes GGW, LNK and LEB are selected for detailing.
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The hypernode with 31 subnodes corresponds to the red group at level 16 in Fig. 13, i.e., the Alaska/Hawaii group. Since
this group is not merged to the main group at a high level in the hierarchy, the Alaska/Hawaii group is very different from the
main group. Details of the tree nodes GGW, LNK and LEB are shown in Fig. 15. This illustrates that the hypernodes of the star
are loosely connected to the node in the center. For LNK we can count 22 edges, but compared with the 195 edges of ATL, for
example, LNK represents a node with few edges. Therefore, LNK is moved to the central hypernode first at the top level of the
hierarchy.

Some of the hypernodes of the star considered, are also illustrated in Fig. 16. The details of the group marked with the
character A, i.e., the group with four subnodes close to MRY in the south-west, shows how the nodes of the group are inter-
nally connected and how they are loosely connected to the surrounding nodes.

There is also a geographical perspective here. From Fig. 16 it can be derived that the hypernodes form spatial clusters. This
observation confirms the previous proposition that for networks embedded in the geographical space, tools to visualize spa-
tial properties of the hypernodes are useful in developing knowledge about the network structure. From the study about
anomalies, the following proposition can be set out.

Lessons learned 3. Nodes in the US flight network which are very different from the main group, may define geographical
clusters.

The next question we will ask is about which nodes are most similar. To answer this question a high similarity factor is
selected. When factor 0.8 is used, the hierarchy reaches its maximum hight at level 3, i.e., only a few number of very similar
nodes can be merged into hypernodes with the selected group factor. Fig. 17 shows the hypernodes in this case. The model
consists of 15 hypernodes with at least two subnodes. Due to graphical limitations only ten of the hypernodes are shown in
the figure.

The hypernodes are composed of mostly two subnodes, but two of them have four subnodes, i.e, {EUG MFR ACV RDD} and
{DAL AUS SAT HOU}.

The traffic pattern of two of the airports in the last group is illustrated in Fig. 17. The visual impression verifies the high
similarity of the two nodes. Among the hypernodes with two subnodes the following hypernodes can be mentioned: {LGA
EWR}, {TPA FLL}, {YAK CDC}, {BON PSE}, and {ROC SYR}. The geographical nearness of the subnodes of the hypernodes is
evident.

Lessons learned 4. Airports in the US flight network which have very similar traffic patterns, are located close to each other.
This verifies the importance of considering the spatial nearness when analyzing networks which are embedded in a geographical
space.
6. Discussion

Three parameters play an important role in controlling and guiding the creation of the hypernodes: (1) the group factor f,
(2) the level in the hierarchy, and (3) the weight model used to compute the strength of the edges and the nodes.
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Therefore, in an implementation of the system tools should be provided so that the user can compare the different set-
tings of the parameters. In the airline case, for example, different settings of f was used to find anomalies in the network, i.e.,
very similar nodes or groups of nodes that are very unlike the other nodes in the network. User guides that hints the con-
sequence of the different settings can be helpful.

The reordering proposed in Table 3 is based on local optimization. Since global measures are not applied, it may happen
that nodes with similar topologies are not merged at a certain level in the hierarchy, but at a higher the level the two nodes
may be aggregated into the same hypernode.

A hypernode does not provide detailed information about its subnodes and their connections. Therefore, there is a need to
implement the panning and zooming functionalities to allow the global and detail view of the network, i.e., tools to visualize
information about the underlying subnodes and their connections.

When the network is embedded in a geographical space, the possible geographical grouping of the nodes should be con-
sidered. Tools to visualize the geographical nearness of the subnodes in the hypernodes are therefore of interest in explora-
tion and hypothesis generation about the geographical component of the network.

The mapping of the network to a position in the plane is not obvious when the network is embedded in the geographical
space, i.e., the hypernodes have no natural point location since they are aggregates of nodes and therefore are related to a
geographical area. The question is therefore: Where to position the hypernodes? One solution to this problem is to compute
the position of a hypernode as the average position of its subnodes. This method was used in the airline case.

Fabrikant et al. [24] use the term spatialization when mapping non spatial data to an information display. Information
spatialization is inspired by the analogy that the strength of relatedness in the data space should be mapped to neighbour-
hood in the information display, such that semantically similar nodes are placed closer to one other than less similar ones. An
empirical study suggests that the distance-similarity metaphor applies to network spatializations by equating metric dis-
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tance along network lines to similarity. They also find that line size, colour value and hue, modify the distance-similarity
metaphor in subtle yet logical ways. An implementation of the spatialization principle is not straight forward, since the map-
ping of a weighted network to a two-dimensional plane cannot allays guarantee that the strength of the edges is mapped to
neighbourhood in the plane.

The time complexity of the proposed implementation is Oðn3Þ, where n is the number of nodes in the network. Therefore,
when the size of the network passes a certain threshold, for example 1000 nodes, strategies to reduce the computing time
should be considered. The scalability of the algorithm is highly related to whether the adjacency matrix is sparse or not. A
matrix of size n� n takes Oðn2Þ time to traverse. If the number of edges from the nodes is small, i.e., the adjacency matrix is
sparse, the node-list representation of the matrix will reduce the storage space of the matrix as well as the computing time to
traverse the matrix. Huang and Lai [19] claim that their algorithm has computing time Oðn2Þ, but this seems to presume that
the number of hypernodes is small compared with the number of nodes in the initial network, i.e., few clusters and that the
adjacency matrix is sparse.

The interpretation of the hypernodes is a domain specific task. Therefore, to associate meaning to the hypernodes and
their edges the context and weights given to the edges and nodes in the network should be considered.

7. Conclusions

The hypernode algorithm on weighted networks is described and demonstrated on real world airline data. The airline
case demonstrates that the clusters of nodes in the network have a geographical assosiation. Therefore, hypernodes can
be a useful concept to detect geographical patterns.

The algorithm allows networks to be studied at different levels of abstraction. In that way a high level understanding of
the network can be obtained. Therefore, the hierarchical graph clustering presented has applications in many areas outside
networks embedded in the geographical space.

A class of indices to measure the strength or uncertainty of the edges between hypernodes is developed. This enables the
analyst to select different weight models by manipulating a few parameters.

Hypernodes can be utilized to study the effect on the network when groups of nodes or groups of edges are eliminated
from the network. For example, one can ask what happens to a network when a certain hypernode is destroyed. In that way
information about the vulnerability of the network can be studied.

A topic for further research is to apply the algorithm to real situations of massive data sets. This requires that the time
complexity of the algorithm is considered, i.e., eventual sparsity of the adjacency matrix must be utilized.
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