
International Journal of Solids and Structures 50 (2013) 3505–3510

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Fractional visco-elastic Euler–Bernoulli beam
0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.06.010

⇑ Corresponding author. Tel.: +39 3204395957.
E-mail address: antonina.pirrotta@unipa.it (A. Pirrotta).
M. Di Paola a, R. Heuer b, A. Pirrotta a,⇑
a Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), Università di Palermo, Viale delle Scienze, Palermo, Italy
b Vienna University of Technology, Center of Mechanics and Structural Dynamics, Vienna, Austria

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 February 2013
Received in revised form 5 June 2013
Available online 21 June 2013

Keywords:
Fractional calculus
Visco-elastic beam
Euler–Bernoulli beam
Quasi-static problems
Virtual work principle
Aim of this paper is the response evaluation of fractional visco-elastic Euler–Bernoulli beam under quasi-
static and dynamic loads. Starting from the local fractional visco-elastic relationship between axial stress
and axial strain, it is shown that bending moment, curvature, shear, and the gradient of curvature involve
fractional operators. Solution of particular example problems are studied in detail providing a correct
position of mechanical boundary conditions. Moreover, it is shown that, for homogeneous beam both cor-
respondence principles also hold in the case of Euler–Bernoulli beam with fractional constitutive law. Vir-
tual work principle is also derived and applied to some case studies.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction the r � e constitutive law is ruled by its inverse operator that is the
In the past the ‘‘classical’’ models as Maxwell and Kelvin–Voigt
one or more complex combinations of such units composed by
springs and dashpots have been used to capture visco-elastic phe-
nomena like relaxation and/or creep (Flügge, 1967; Pipkin, 1972;
Christensen, 1982). Such elementary models show some inconsis-
tencies: (i) experimental relaxation and creep functions are more
or less well fitted by different composition of springs and dashpots.
This is a very serious problem since the inverse of the constitutive
law r = [Le] may not be written as e = L�1[r] where L is a linear dif-
ferential operator, (ii) whatever the number and combinations of
elementary units are, the kernel of hereditary integrals is of expo-
nential type and then for a constant load (creep-test) for t ?1 the
strain takes an asymptotic value. Such a behavior is not observed in
real experiments that show an increasing trend as t ?1.

From these observations we may state that visco-elastic models
based upon combinations of spring and dashpots may capture the
real behavior only for short observation time.

A more realistic description of creep and/or relaxation is given
by a power law function with real order exponent, Nutting
(1921) and Gemant (1936), confirming experimental data, Di Paola
et al. (2011).

As soon as we assume a power law function for creep the
constitutive law relating deformation and stress is ruled by a
Riemann Liouville fractional integral with order equal to that of
the power law, and viceversa, starting from the relaxation function,
Caputo’s fractional derivative.
Moreover also the behavior for t ?1 is captured with a power

law fractional constitutive law. Such a model is called fractional
hereditary model since fractional operators are involved and read-
ers are referred to Samko et al. (1993), Podlubny (1999) and Hilfer
(2000).

For these reasons in the second part of the last century a lot of
researches have been carried out enforcing the knowledge of frac-
tional hereditary materials (Caputo and Mainardi, 1971; Gonsovski
and Rossikhin, 1973; Stiassnie, 1979; Bagley and Torvik, 1983,
1986; Schmidt and Gaul, 2002; Mainardi and Gorenflo, 2007; Mai-
nardi, 2010; Evangelatos and Spanos, 2011).

Once the local visco-elastic behavior is written in local form Eu-
ler–Bernoulli or Timoshenko beam may be treated in a very simple
way. Applications by using the classical models have been studied
in the past (Flügge, 1967; Wang et al., 1997) often by using Laplace
transformations. Very recently Yao et al. (2011) proposed the qua-
si-static analysis of beams described by fractional Kelvin visco-
elastic model using Laplace transformations. Even though the der-
ivations are correct no physical implication of the hereditary model
based upon fractional hereditary materials comes out.

In this paper the problem of fractional Euler–Bernoulli beam
based upon the simplest model is treated operating in time do-
main, in order to highlight a lot of observations that remain hidden
in Laplace domain. First of all, it is shown that for a simple homo-
geneous beam (statically determined or not) both correspondence
principles (see Flügge (1967)) also hold for fractional beams.

As regards, in detail, it will be shown that: in a fractional
visco-elastic beam subjected to loads which are applied simulta-
neously at initial time and then held constant, the stresses are the
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same as those in the purely elastic case, while strains and displace-
ments depend on time and may be calculated from the purely elas-
tic case by simply replacing the elastic modulus with the inverse of
the creep function. Additionally the second version of the afore-
mentioned principle remains valid for a fractional visco-elastic
beam under imposed displacements that remain constant leading
to the same displacements and strains according to the elastic case,
while stresses may be derived from the purely elastic case by sim-
ply replacing the elastic modulus with the relaxation function.

Moreover the virtual work principle for fractional visco-elastic
material is proposed, opening the way for numerical analysis of
frames, Timoshenko beams, and more complex structures.

2. Fractional constitutive law

Let E(t) and D(t) the relaxation and the creep function, respec-
tively. E(t) can be interpreted as the stress history for a unit strain
e(t) = U(t), and D(t) represents the strain history for a unit stress
r(t) = U(t), where U(t) is the unit step function.

At the beginning of the last century, Nutting (1921) observed
that E(t) is well suited by a power law decay

EðtÞ ¼ Eb

Cð1� bÞ t
�b0 < b < 1 ð1Þ

where C(�) is the Euler–Gamma function, Eb/C(1 � b) and b are
characteristic coefficients depending on the material at hand. Once
E(t) is determined in the form expressed in Eq. (1) the function D(t)
is given as

DðtÞ ¼ 1
EbCð1þ bÞ t

b 0 < b < 1 ð2Þ

The result of Eq. (2) is obtained simply taking into account that
E(s)D(s) = s�2 where E(s) and D(s) are the Laplace transform of E(t)
and D(t), respectively, and s denotes the Laplace parameter.

Due to Boltzman superposition principle (compare e.g. Flügge
(1967), Pipkin (1972)), the stress history, for an assigned strain his-
tory e(t) may be easily derived in the form

rðtÞ ¼
Z t

0
Eðt � �tÞ _eð�tÞd�t ð3Þ

Conversely the strain history, for an assigned stress history r is gi-
ven as

eðtÞ ¼
Z t

0
Dðt � �tÞ _rð�tÞd�t ð4Þ

Eqs. (3) and (4) are valid if the system starts at rest at t = 0, other-
wise E(t)e(0) and D(t)r(0) have to be added in Eq. (3) and in Eq.
(4), respectively.

As soon as we assume that the kernel in the convolution inte-
grals (3) and (4) are given as in Eq. (1), respectively, the fractional
constitutive law of the visco-elastic material results in the form

rðtÞ ¼ Eb CDb
0þe

� �
ðtÞ ð5Þ

and

eðtÞ ¼ 1
Eb

D�b
0þr

� �
ðtÞ ð6Þ

where the symbol ðCDb
0þeÞðtÞ is the Caputo’s fractional derivative de-

fined as

CDb
0þe

� �
ðtÞ ¼ 1

Cð1� bÞ

Z t

0

_eð�tÞ
ðt � �tÞb

d�t ð7Þ

While ðD�b
0þrÞðtÞ is the Riemann–Liouville fractional integral defined as

D�b
0þr

� �
ðtÞ ¼ 1

CðbÞ

Z t

0

rð�tÞ
ðt � �tÞ1�b

d�t ð8Þ
Consider that the constitutive laws in Eqs. (7) and (8) interpolate
the purely elastic behavior (b = 0)and the purely viscous behavior
(b = 1), and is represented in literature by springpot element de-
picted in Fig. 1.

It is worth stressing that the Caputo’s fractional derivative coin-
cides with the Riemann–Liouville fractional derivative only for qui-
escent systems or for systems that operate from t = �1. In all other
cases, results in terms of the Riemmann–Liouville or Caputo’s frac-
tional derivative are quite different to each another, and fractional
differential equations involving Riemann–Liouville fractional
derivative show some inconsistencies in terms of initial conditions,
Samko et al. (1993), Podlubny (1999), Hilfer (2000) and Evangela-
tos and Spanos (2011). Contrary, such a problem disappears when
working in terms of Caputo’s fractional derivative. In the remain-
der of the paper fractional operators are performed only with re-
spect to time, thus no distinction between partial fractional
operators in time and space has to be considered.

3. Governing equation of fractional visco-elastic
Euler–Bernoulli beam

Let us consider an isotropic homogeneous visco-elastic Euler–
Bernoulli beam of length L, Fig. 2, and the local constitutive equa-
tions are expressed according to Eqs. (5) and (6). The beam is re-
ferred to the axes (x, y, z) with origin located at the centroid of
the cross section, and (x, y) are principal axes of inertia of the cross
section. All external spatially distributed loads, denoted as qy(z, t),
are assumed to act in y-direction, thus orthogonally to the z-axis,
and the analyzed transverse displacement, v(z, t), is also oriented
in y-direction.

Let Mx(z, t) be the bending moment and Ty(z, t) the shear at ab-
scissa z and at time t.

The conservation of momentum and of moment of momentum
applied to a beam element of length dz are written as

@Tyðz; tÞ
@z

¼ qðzÞ @
2vðz; tÞ
@t2 � qyðz; tÞ ð9Þ

@Mxðz; tÞ
@z

¼ Tyðz; tÞ ð10Þ

where q(z) is the mass per unit length.
The axial strain, e(y, z; t), is related to the stress r(y, z; t) accord-

ing to Eqs. (5) and (6) that, particularized for the underlying con-
tinuous beam problem, are rewritten as

eðy; z; tÞ ¼ 1
Eb

D�b
0þr

� �
ðy; z; tÞ 0 < b < 1 ð11Þ

rðy; z; tÞ ¼ Eb CDb
0þe

� �
ðy; z; tÞ 0 < b < 1 ð12Þ

In virtue of the Euler–Bernoulli hypothesis, the kinematic relation
reads

eðy; z; tÞ ¼ �y
@2vðz; tÞ
@z2 ð13Þ

Since the constitutive law expressed in Eq. (12) contains a linear
operator and e(y, z; t) is also linear with respect to the coordinate
y, the normal stress r(y, z; t) is as well linearly distributed with
respect to y. Proper combination of the equilibrium condition in
axial direction with the definition of the stress resultant Mx(z, t)
leads to
Fig. 1. Springpot element: fractional model.
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Fig. 2. Euler–Bernoulli beam; (a) layout of the beam; (b) free body diagram of a beam element.
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rðy; z; tÞ ¼ Mxðz; tÞ
IxðzÞ

y ð14Þ

where Ix(z) is the moment of inertia of the cross section with respect
to the x-axis.

By inserting Eqs. (13) and (14) into Eq. (11) we obtain

�EbIxðzÞ
@2vðz; tÞ
@z2 ¼ D�b

0þMx

� �
ðz; tÞ ð15Þ

Spatial differentiation of Eq. (15) and taking into account Eq. (10)
results in

�Eb
@

@z
IxðzÞ

@2vðz; tÞ
@z2

" #
¼ ðD�b

0þ TyÞðz; tÞ ð16Þ

The inverse relationships between Mx(z, t), Ty(z, t) and v(z, t) are gi-
ven as

Mxðz; tÞ ¼ �EbIxðzÞ
@2

@z2 CDb
0þv

� �
ðz; tÞ

h i

¼ �EbIxðzÞCDb
0þ

@2

@z2 ½vðz; tÞ�
 !

ð17Þ

Tyðz; tÞ ¼ �Eb
@

@z
IxðzÞ

@2

@z2 CDb
0þv

� �
ðz; tÞ

h i" #
ð18Þ

Finally by using Eqs. (9) and (16) we obtain

qðzÞðD�b
0þ

€vÞðz; tÞ þ Eb
@2

@z2 IxðzÞ
@2vðz; tÞ
@z2

" #
¼ ðD�b

0þqyÞðz; tÞ ð19Þ

where €vðz; tÞ ¼ @2vðz; tÞ=@t2 is the acceleration. The inverse form of
Eq. (19) reads

qðzÞ€vðz; tÞ þ Eb
@2

@z2 IxðzÞ
@2

@z2 CDb
0þv

� �
ðz; tÞ

h i" #
¼ qyðz; tÞ ð20Þ

Equation (19) and (20) are the fractional differential equations for
the visco-elastic Euler–Bernoulli beam. It has to be emphasized that
mechanical boundary conditions will be obtained from Eqs. (17)
and (18) particularized for z = 0 and z = L.

4. Quasi static case and the correspondence principles

Let us suppose that qy(z, t) varies in such a slow way in time that
the inertial forces qðzÞ€vðz; tÞ may be neglected. In this case the
equation of motion is simplified into

Eb
@2

@z2 IxðzÞ
@2vðz; tÞ
@z2

" #
¼ ðD�b

0þ qyÞðz; tÞ ð21Þ

Further, suppose that qyðz; tÞ ¼ �qyðzÞwðtÞ, then the forcing term in
Eq. (21) simplifies into
D�b
0þ qy

� �
ðz; tÞ ¼ �qyðzÞ D�b

0þw
� �

ðtÞ ð22Þ

Since the system is linear, from this equation it may be recognized
that, the visco-elastic Euler–Bernoulli beam in the quasi static case
behaves like a classical beam in which the external load simply var-
ies in time according to the Riemann–Liouville fractional integral of
the load amplifier w(t). It follows that vðz; tÞ ¼ �vðzÞðD�b

0þwÞðtÞ and
then Eq. (21) may be rewritten in the form

Eb
@2

@z2 IxðzÞ
@2 �vðzÞ
@z2

" #
¼ �qyðzÞ ð23Þ

Then the beam response functions may be easily derived since

vðz; tÞ ¼ �vðzÞ D�b
0þw

� �
ðtÞ; @vðz; tÞ

@z
¼ d

dz
�vðzÞðD�b

0þwÞðtÞ ð24aÞ

Mxðz; tÞ ¼ �EbIxðzÞ
d2

dz2
�vðzÞ ¼ MxðzÞ ð24bÞ

Tyðz; tÞ ¼ �Eb
d
dz

IxðzÞ
d2

dz2
�vðzÞ

 !
¼ TyðzÞ ð24cÞ

having taken into account Eqs. (17) and (18).
From Eq. (24) it may be recognized that Mx(z, t) and Ty(z, t) do

not depend on t and then the boundary conditions read

vð0; tÞ ¼ �vð0ÞðD�b
0þwÞðtÞ; @vð0; tÞ

@z
¼ d

dz
�vð0ÞðD�b

0þwÞðtÞ ð25aÞ

Mxð0Þ ¼ �EbIxð0Þ
d2

dz2
�vðzÞ

 !
z¼0

ð25bÞ

Tyð0Þ ¼ �Eb
d
dz

IxðzÞ
d2

dz2
�vðzÞ

 !
z¼0

ð25cÞ

Analogous expressions are readily found in z = L.
Moreover, from Eq. (24) it is apparent that for a homogeneous

beam the distribution of moments and shear may be computed
considering the beam as purely elastic (with an elastic modulus
E = Eb) and the corresponding displacements may be evaluated
amplifying by ðD�b

0þwÞðtÞ the function obtained integrating Eq.
(23) like in the elastic case. Moreover, for more complex load his-
tory of the type

qyðz; tÞ ¼
Xn

j¼1

�qyj
ðzÞwjðtÞ ð26Þ

all previous considerations hold true and the linearity of the system
allows us to affirm that the total response is simply the summation
of the response at each single load �qyj

ðzÞwjðtÞ.



Fig. 3. Fractional Kelvin–Voigt model.
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It is worth stressing that the above considerations lead to the
confirmation of the first correspondence principle even for beam
having a fractional constitutive law.

For the case of classical visco-elastic Euler–Bernoulli beam two
correspondence principles have been stated (Flügge, 1967):

(I) If a visco-elastic beam is subjected to loads which are
applied simultaneously at initial time and then held con-
stant, the stresses are the same as those in the purely elastic
case under the same load, while strains and displacements
depend on time and are derived from the purely elastic case
by simply replacing the elastic modulus with the inverse of
the creep function.

(II) If a visco-elastic beam is subjected, in selected points, to
imposed displacements, which are applied simultaneously
at initial time and then held constant, the displacements of
all points and all the strains are the same as in the corre-
sponding elastic beam, while stresses may be derived from
the purely elastic case by simply replacing the elastic mod-
ulus with the relaxation function.

It will be shown that the two aforementioned principles also
hold considering the fractional constitutive laws. The first corre-
spondence principle may be easily demonstrated since setting
the loads constant it means that w(t) = U(t) and consequentially
the amplifier function ðD�b

0þwÞðtÞ will result

D�b
0þw

� �
ðtÞ ¼ D�b

0þU
� �

ðtÞ ¼ tb

Cð1þ bÞ ¼ EbDðtÞ ð27Þ

Inserting Eq. (27) into Eq. (24), reminding that D(t) is the creep
function one gets that stresses are the same as those in the purely
elastic case, while strains and displacements depend on time and
may be calculated from the purely elastic case by simply replacing
the elastic modulus with the inverse of the creep function.

As regards the second correspondence principle remains valid
too, in fact for a fractional visco-elastic beam under imposed dis-
placements, (vðz; tÞ ¼ �vðzÞUðtÞ) since qy(z, t)=0 and then Eq. (21) re-
verts into a homogeneous equation being the Riemmann–Liouville
fractional integral equal to zero. Then displacement response func-
tion is vðz; tÞ ¼ �vðzÞUðtÞ that means displacements and strains are
the same of the elastic case, while inserting vðz; tÞ ¼ �vðzÞUðtÞ into
Eqs. (17) and (18) we get

Mxðz; tÞ ¼ �EbIxðzÞ
@2

@z2 ½�vðzÞ�ðCDb
0þUÞðtÞ ¼ MxðzÞEðtÞ ð28aÞ

Tyðz; tÞ ¼ �Eb
@

@z
IxðzÞ

@2

@z2 ½�vðzÞ�
" #

ðCDb
0þUÞðtÞ ¼ TyðzÞEðtÞ ð28bÞ

being ðCDb
0þUÞðtÞ ¼ t�b=Cð1� bÞ. The latter results mean that stres-

ses may be derived from the purely elastic case by simply replacing
the elastic modulus with the relaxation function E(t). This is just the
second version of correspondence principle extended to fractional
visco-elastic Euler–Bernoulli beams.

5. Fractional Kelvin–Voigt constitutive law

Another case of relevant interest is related to the fact that a
pure fractional constitutive law described by Eq. (5) leads to the
undesired result that under a hydrostatic pressure at t ?1 the
body will be concentrated in a point and this is in contrast with
the real behavior of any materials. On the other hand if we assume
that rii = keii, that is the hydrostatic stress rii is related to the vol-
umetric component eii, through a Bulk modulus k, the relation be-
tween the longitudinal stress and the corresponding longitudinal
strain e will be enriched of an elastic component E1e(t), that is
rðtÞ ¼ E1eðtÞ þ
Z t

0
Eðt � �tÞ _eð�tÞd�t ð29Þ

and then Eq. (5) reverts into

rðtÞ ¼ E1eðtÞ þ Eb CDb
0þe

� �
ðtÞ ð30Þ

where E1 is the elastic modulus measured at t ?1 during the
relaxation test. The inverse relation expressed in Eq. (29) leads to

eðtÞ ¼ 1
Eb

Z t

0
ðt � �tÞb�1 � E1

Eb
ðt � �tÞ

� �
_rð�tÞd�t ð31Þ

where (�) is the Mittag–Leffler function defined as (Podlubny
(1999))

ðzÞ ¼
X1
k¼0

zk

Cðbkþ 1Þ ð32Þ

By inserting Eq. (31) into Eq. (30) we get

eðtÞ ¼ 1
Eb

X1
k¼0

�E1=Eb

� �k

Cðbkþ 1Þ

Z t

0
ðt � �tÞb�1þk _rð�tÞd�t

¼ 1
Eb

X1
k¼0

�E1=Eb

� �k

Cðbkþ 1Þ Cðbþ kÞ D�ðbþk�1Þ
0þ r

� �
ðtÞ ð33Þ

This is the case of fractional Kelvin–Voigt model depicted in Fig. 3.
Moreover, since Eqs. (13) and (14) remain valid, inserting them

into Eq. (32) the quasi static case returns

Eb
@2

@z2 IxðzÞ
@2vðz; tÞ
@z2

" #
¼
X1
k¼0

ð�E1=EbÞk

Cðbkþ 1Þ Cðbþ kÞðD�ðbþk�1Þ
0þ qyÞ

� ðz; tÞ ð34Þ

Being the system linear, Eq. (33) may be easily derived as previously
seen by supposing that qyðz; tÞ ¼ �qyðzÞwðtÞ.

As in fact in this case Eq. (33) may be written as

Eb
@2

@z2 IxðzÞ
@2vðz; tÞ
@z2

" #
¼ �qyðzÞ

X1
k¼0

ð�E1=EbÞk

Cðbkþ 1Þ Cðbþ kÞðD�ðbþk�1Þ
0þ wÞðtÞ

¼ �qyðzÞQðtÞ ð35Þ

Then, in virtue of the linearity of the system, we may solve Eq. (34)
by assuming that vðz; tÞ ¼ �vðzÞQðtÞ and performing the static
problem

Eb
@2

@z2 IxðzÞ
@2 �vðzÞ
@z2

" #
¼ �qyðzÞ ð36Þ

with the relevant boundary conditions (kinematics and mechanics).
Once Eq. (36) is integrated the response v(z, t) will be obtained by
amplifying the static response �vðzÞ of Q(t). Similar arguments may
be considered for more sophisticated stress–strain fractional consti-
tutive law in which the stress is related to the strain involving a
summation of two fractional derivatives of different order. In this
case inverse relationships involve two parameters Mittag–Leffler
functions (Mainardi and Spada, 2011).



Fig. 4. Clamped-simply supported beam under a bending moment at the hinge.

Fig. 5. Simply supported beam.
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6. Example

In order to elucidate the previous concepts a simple example is
presented. Let be a clamped–simply supported beam depicted in
Fig. 4 loaded by an external moment M(t) = MBU(t).

For simplicity’s sake we suppose that Ix(z) = Ix = const. (uniform
beam).

The elastic solution for such a system and a purely fractional
visco-elastic beam is

�vðzÞ ¼ MB

4LEbIx
z2ðL� zÞ ð37Þ

On the other hand since vðz; tÞ ¼ �vðzÞðD�b
0þUÞðtÞ then

vðz; tÞ ¼ MBz2ðL� zÞtb

4LEbIxCð1þ bÞ ¼
�vðzÞEbDðtÞ ð38Þ

While, from Eq. (24) we get that bending moment and shear coa-
lesce with the elastic ones being

Mxðz; tÞ ¼ �
MB

2
1� 3z

L

� �
UðtÞ; Tyðz; tÞ ¼

3
2L

MBUðtÞ ð39Þ

The above results confirm the first correspondence principle.

7. Virtual work principle

In this section the application to virtual work principle for an
Euler–Bernoulli flexural beam with fractional local constitutive
law is presented.

The virtual work principle in the dual form for a three dimen-
sional body is written asZ

V
drTeðtÞdV ¼

Z
S

dpT
nuðtÞdSþ

Z
V

dbT uðtÞdV ð40Þ
Fig. 6. (a) Principal system
where dr are virtual stress corresponding to equilibrated tractions
dpn on the surface and body forces db. While e(t) and u(t) are kine-
matically compatible strain and corresponding displacements. Eq.
(39) has to be verified at each time instant t.

The virtual work principle exploited for an Euler–Bernoulli
beam in which shear and axial deformation are neglected, taking
into account Eq. (11) is written asZ

L
dMxðz; tÞ

1
EbIxðzÞ

D�b
0þMxðz; tÞdz ¼

Z
L

dqyðzÞvðz; tÞdz ð41Þ

The virtual work principle may be used to evaluate displacement of
a statically determined beams: since in virtue of the correspon-
dence principle the moment distribution along the beam is already
known. Such an example for the simply supported beam in Fig. 5
the displacement at the midspan of the beam may be obtained sim-
ply by loading the beam with an unitary transverse load in L/2, and
in this case dMxðzÞ ¼ 1

2 z, (0 6 z < L=2) and for Ix(z) = Ix , Mx(z, t) is the
same as in the elastic case Mxðz; tÞ ¼ ðqy

L
2 z� qy

2 z2ÞUðtÞ and then

2
EbIxCð1þ bÞ

Z L=2

0

1
2

zðqy
L
2

z�
qy

2
z2Þtbdz ¼ v L

2
; t

� �
ð42Þ

leading to the displacement at the midspan.
Once this result is archived also redundant beam with fractional

visco-elastic constitutive law may be easily derived by using
superposition principle and force method. Such an example for
the clamped–simply supported beam in Fig. 4, an equivalent sys-
tem is that composed of a cantilever loaded by MBU(t) and the
redundant unknown reaction X(t). X(t) has to be selected in such
a way that v(L, t) = 0 "t.

The compatibility condition in L is given

vðL; tÞ ¼ v ð0ÞðL; tÞ þ v ð1ÞðL; tÞXðtÞ ¼ 0 ð43Þ

where v(0)(L, t) is the displacement of the principal system (Fig. 6a)
and v(1)(L, t) is the displacement of the auxiliary system (Fig. 6b)
X(t) = 1. By using Eq. (41) it follows

v ð0ÞðL; tÞ ¼ MBtb

EbIxCð1þ bÞ

Z L

0
ðz� LÞdz

¼ � MBtb

EbIxCð1þ bÞ
L2

2
; 8t P 0 ð44Þ

v ð1ÞðL; tÞ ¼ tb

EbIxCð1þ bÞ

Z L

0
ðz� LÞ2dz

¼ tb

EbIxCð1þ bÞ
L3

3
; 8t P 0 ð45Þ

leading to

XðtÞ ¼ �v ð0ÞðL; tÞ
v ð1ÞðL; tÞ ¼

3
2L

MBUðtÞ ð46Þ

that is the correct result.
With these results in mind extension to arches, frames and

complex structures may be derived in a very simple way.
; (b) auxiliary system.
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8. Conclusions

Euler–Bernoulli beam with fractional constitutive law has been
treated. It has been shown that for the case in which the external
load is splitted into products of spatial and temporal functions
qyðz; tÞ ¼

Pn
j¼1�qyj

ðzÞwjðtÞ the quasi static case solution in terms of
displacements may be readily found as summation of displace-
ments history evaluated for the static load �qyj

ðzÞ performed in
the purely elastic case. Each displacement �v jðzÞ corresponding to
elastic case, has to be amplified by the Riemann–Liouville frac-
tional integral of the load history wj(t).

Moreover it has been demonstrated that both correspondence
principles also hold for the Euler–Bernoulli beam with fractional
constitutive law. In virtue of these principles bending moment
and shear distribution, displacements may properly be derived
from the elastic case. Extension to fractional Kelvin–Voigt constitu-
tive law as well as virtual work principle has been formulated
showing the simplicity of solving redundant beams or for displace-
ment evaluation of Euler–Bernoulli beams under quasi static loads.
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