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Abstract

In the present paper, the effects of a massed foundation on the nonlinear seismic response of an existing arch dam are investigated. A co-axial
rotating smeared crack approach was used to model the nonlinear behavior of the mass concrete in a 3D space which is able to model cracking/
crushing under static and dynamic conditions. The analysis also considered the opening/slipping of joints. The reservoir was assumed to be
compressible and was modeled using the finite element method with the appropriate boundary conditions. The Dez arch dam was selected for the
case study and excited by a maximum credible earthquake. It was found that assuming a massless foundation leads to the overestimation of the
stresses within the dam body and causes many more crack profiles than the massed foundation model. As a result, in the case of a massed
foundation, no numerical instability was found to exist during the analysis.
& 2016 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Estimating the structural response of existing dams is a
major task in dam engineering. To evaluate the seismic safety
of arch dams, a 3D dynamic analysis of a dam–reservoir–
foundation system, that can consider the following phenom-
ena, is required: (1) dam–foundation interaction, (2) nonlinea-
rities originating from the opening/slipping of the vertical
contraction joints and the cracking/crushing of the mass
concrete, (3) application of boundary conditions as close as
possible to those of the real ones, and (4) application of
eligible earthquake records for analyzing the arch dam located
in a region with significant seismicity. Several researchers have
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studied the linear response of arch dams by ignoring the
foundation inertia (Lau et al., 1998; Mojtahedi and Fenves,
2000; USACE, 2003; Alves, 2004). Hall (1998) proposed a
simple smeared crack model to simulate the contraction and
construction joints in the dynamic analysis of arch dams by
assuming the flexibility of the foundation rock. At the same
time, USBR (1998) evaluated the seismic safety of the Hoover
Dam, a high curved arch gravity dam, by assuming a massless
foundation. Due to the overestimated results of the conducted
analysis, however, an investigation considering the dam–
foundation interaction was conducted (USBR, 2002). The
results showed that for the model with only foundation-rock
flexibility, the stresses were overestimated three times in
comparison to those obtained from the model with the massed
foundation.
The EACD-3D computer program, originally developed by

Fok et al. (1986), employs an analytical procedure for the
three-dimensional seismic analysis of concrete dams including
the effects of the dam–water interaction and the flexibility of
Elsevier B.V. All rights reserved.
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the foundation rock. In EACD-3D-96, the seismic analysis
procedure is extended to include the inertia effect and radiation
damping arising from the mass of the foundation rock (Tan
and Chopra, 1996). The analytical procedure underlying the
program just considers the linear behavior of the dam body and
the surrounding rock. Thus, the potential for concrete cracking/
crushing and for the opening/slipping of the contraction joints
during vibrations are not considered. In Wang and Chopra
(2008), the analysis procedure of the earlier EACD-3D-96 is
extended to consider the spatially varying excitation phenom-
enon along the dam–foundation rock interface.

Sevim et al. (2012) studied the earthquake behavior of an
arch dam using vibration test results assuming a massless
foundation. According to the results, very small damping ratio
values with the massless foundation model in a seismic
analysis lead to an upper-bound estimation of seismically
induced stresses. Chopra (2012) investigated the appropriate
procedures by studying the factors necessary for estimating the
seismic demands on concrete arch dams.

Other researchers have studied the effects of foundation
interaction on the seismic response of concrete dams
(Mirzabozorg et al., 2003a, 2010a; Noorzad et al., 2007).
Ghaemian et al. (2005) studied the effects of foundation shape
and mass on the linear seismic response of arch dams using the
finite element method including the structure–reservoir inter-
action. Mirzabozorg et al. (2007) studied the seismic analysis
of concrete dams in a 3D space using the smeared crack
approach. Wang et al. (2012) investigated the nonlinear
seismic behavior of a high arch dam–water–foundation rock
system. Hariri-Ardebili and Mirzabozorg (2012) considered
the seismic evaluation of concrete arch dams by assuming a
massless foundation. They modeled the joints and material
nonlinearly and separately. However, not much work has been
conducted that considers the effects of massed foundations and
the nonlinearities that originate from the contraction/perimetral
joints and the mass concrete on the seismic response of
arch dams.

Mirzabozorg et al. (2010b) studied the nonlinear seismic
response of arch dams considering the massed foundation
effect. Berrabah et al. (2012) addressed the effect of the
surrounding soil on the linear seismic response of a concrete
gravity-arch dam and found that modeling the massed founda-
tion leads to more conservative results. Nevertheless, based on
the authors' experience, the conclusions presented in that work
are questionable. Hariri-Ardebili and Saouma (2013b) inves-
tigated the effects of near-fault vs. far-field ground motions on
the linear seismic behavior of a concrete arch dam and found
that modeling the massed foundation leads to lower stress
levels within the dam body in each case.

Mirzabozorg et al. (2012) considered the linear and non-
linear behaviors of the coupled system of a reservoir–dam–
foundation in a 3D space under various conditions of the
foundation. They found that a massless foundation over-
estimates the response of the system. Hariri-Ardebili and
Mirzabozorg (2013a) presented a comprehensive study on
the seismic behavior of a high arch dam including a massed
foundation, the application of infinite elements, and absorbing
boundaries on the far-end nodes of the foundation. In that
work, the nonlinear behavior was simulated using the proposed
smeared crack approach by the first author. It was found that a
massed foundation leads to fewer cracks through the dam
body. However, joint nonlinearity and compression crushing
were not considered in that study.
In the present paper, the effects of a massed foundation on

the nonlinear seismic response of an existing arch dam in a 3D
space are investigated. The reservoir–structure interaction is
taken into account by the finite element method. The non-
linearity originating from the mass concrete is modeled with a
co-axial smeared crack approach. The reservoir is assumed to
be compressible, and the opening/slipping of the vertical and
perimetral contraction joints is included in the analysis.
Finally, the viscous condition at the far-end boundary of the
foundation is used to model the radiation effect. It is worth
mentioning that the main novelty of the present investigation,
with respect to previous works by the same authors, is that it
takes into account the effects of a massed foundation in
addition to both the joint and the material nonlinearity, which
have an important impact on the structural response of high
slender arch dams. As is known in the field of dam engineer-
ing, the common approach to designing new dams or to
evaluating existing ones is to assume the massless condition of
the foundation rock surrounding the dam due to the conserva-
tive results and because of some uncertainties encountered
when taking into account the mass effect of the rock. However,
having mass effects can lead to lower stress levels, and
consequently, lower costs for the required retrofitting works
on the dams which are infra-structures with significant impacts
on socio-economical aspects. In the present study, it is shown
that assuming a massed foundation, which is the real state in
nature, leads to more realistic results in a seismic safety
evaluation, which is in contrast to the conclusion drawn from
the traditional assumption in which foundation flexibility is
considered.
2. Foundation interaction and wave propagation

The equations governing P and S wave propagations within
the massed foundation rock are

∂2u
∂ t2

¼ V2
p∇

2u ð1Þ

∂2v
∂ t2

¼ V2
s∇

2v ð2Þ

∂2w
∂t2

¼ V2
s∇

2w ð3Þ

in which, u, v, and w are displacements in the direction of the
wave propagation and the other two orthogonal directions,
respectively, and Vp and Vs are primary and secondary wave
propagation velocities within the rock medium, respectively,
derived as
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Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Er 1�υrð Þ
ρr 1þυrð Þ 1�2υrð Þ

s
ð4Þ

Vs ¼
ffiffiffiffiffiffi
Gr

ρr

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Er

2 1þυrð Þρr

s
ð5Þ

where E, G, υ, and ρ are the modulus of elasticity, the shear
modulus, Poisson's ratio, and density, respectively, and sub-
script r indicates that the parameters are pertinent to the
foundation rock.

One of the main aspects in seismic loading and wave
propagation within a semi-infinite medium, such as the rock
underlying structures, is the prevention of the wave reflection
from the artificial boundary on the far-end nodes into the
provided finite element model. In this study, an appropriate
viscous boundary, which is a non-consistent boundary (some-
times called the local boundary), is applied on the far-end
boundary of the foundation in a 3D space (Lysmer and
Kuhlemeyer, 1969).

s¼ aρrVP _u ð6Þ

τ1 ¼ bρrVS _v ð7Þ

τ2 ¼ bρrVS _w ð8Þ

where s, τ1, and τ2 are the normal and two in-plane shear
stresses in the global directions, respectively, and u, v, and w
are the normal and two tangential displacements, respectively.
Based on the discussion reported in Azmi and Paultre (2002),
it is found that in applying the three boundary conditions stated
in Eqs. (6)–(8), taking the two dimensionless parameters, a,
and b, as equal to unity, can lead to more efficiency in
absorbing the outgoing seismic waves.

Radiation damping, derived from Eqs. (6)–(8) and applied
on the far-end boundary of the foundation, is made up of
dashpots that are added to the global damping matrix of the
structure, [C]. In the present research, these lumped dashpots
Fig. 1. Flowchart for calculating forces in joint
are determined as

Ci
11 ¼ VPρr

Z
Ae

NidA ð9Þ

Ci
22 ¼ VSρr

Z
Ae

NidA ð10Þ

Ci
33 ¼ VSρr

Z
Ae

NidA ð11Þ

where Ci
11, Ci

22, and Ci
33 are the components of lumped

damping applied on the ith node of the surface element on
the far-end boundary of the surrounding rock in normal and
two orthogonal tangential directions, respectively, Ni is the ith
node shape function, and all integrations are applied over the
area of the considered surface of element Ae.
3. Contraction and perimetral joints

In the present study, a special contact element is used to
model the contraction and perimetral joints. The element is
able to model the contact between the two adjacent nodes in
the 3D domain. This contact element supports compression in
the normal direction and shears in the two orthogonal
tangential directions. Fig. 1 presents a flowchart used to
calculate the force in the contact elements in which V is a
vector representing the relative displacements of the coincident
nodes located on the joint surface in the local directions
indicating the contact state in various directions so that Vn, the
normal relative displacement, indicates the open and/or closed
state of the joint. Vr and Vs indicate the state of the considered
contact element in tangential directions (Azmi and Paultre,
2002). Moreover, Fig. 2 depicts the force deflection relations
for both the normal and the tangential status. In this flowchart,
Fn, Fr, and Fs are the local components of the force vector, Fg

is the sliding force in the joint, Ft is the shear force resultant in
the joint, Kn and Kt are the normal and tangential stiffness of
the joint, respectively, and α is the angle between the two
s (Hariri-Ardebili and Mirzabozorg, 2012).



Fig. 2. Force–deflection relations for joint: (a) normal opening; (b) tangential movement (Hariri-Ardebili and Mirzabozorg, 2012).

H. Mirzabozorg et al. / Soils and Foundations 56 (2016) 19–3222
components of the in-plane shear (Hariri-Ardebili and Mirza-
bozorg, 2012).

It should be noted that Fg in Fig. 2(b) is equal to Fn

multiplied by the friction coefficient. As shown, the contact
element cannot endure any tensile force or stress. However,
when it is in compression, it can suffer compression forces
according to its normal stiffness and shear forces according to
its tangential stiffness. When the resultant shear force in the
joint exceeds the joint sliding resisting force, the two nodes of
the element begin sliding with respect to each other. The joint
sliding force is calculated using the Coulomb friction law. In
Fig. 1, c is the cohesion factor and μ is the friction coefficient.
In concrete dams, the cohesion factor is usually assumed to be
zero because of its negligible effect on the results. Also, the
friction coefficient is assumed to be unity so that the friction
angle is 451.
4. Constitutive law for mass concrete

In the present paper, material nonlinearity is modeled
utilizing the smeared crack approach. After the initiation of
the fracture process, determined by suitable criteria, the pre-
cracked material stress–strain relation is replaced by an
orthotropic relation with the material reference axis system
aligned with the fracture direction. The stiffness across the
cracking/crushing plane is eliminated suddenly or a gradual
stress-release criterion is applied. Thus, only the constitutive
relation is updated with the propagation of cracks and the finite
element mesh remains unchanged.

In the model, it is assumed that concrete material is initially
isotropic and linear until it reaches the predefined criteria.
Then, the modulus matrix of concrete is replaced by a modulus
matrix evaluated based on the fracture directions. For instance,
in a one-dimensional space, the updated secant modulus, Es, is
used instead of the linear initial, E, based on the principal
strain reached in the current step. The plasticity-based five-
parameter Willam–Warnke model is utilized to model the
failure surface (Willam and Warnke, 1975). Both cracking and
crushing failure modes are taken into account so that the
criterion for failure of the concrete, due to a multi-axial stress
state, is satisfied (ANSYS, 2007).
In the model, the presence of a crack at a Gaussian point and
in a specified direction is represented by the modification of
the modulus matrix and by the introduction of the shear
transfer coefficient, βt, in the cracked plane. The typical shear
transfer coefficient ranges from 0.0 to 1.0, with 0.0 representing
a smooth crack (complete loss of shear transfer) and 1.0 repre-
senting a rough crack (no loss of shear transfer). This
specification may be made whether the crack is closed or
open (ANSYS, 2007). βt is the open shear transfer coefficient
and defined as the factor that represents the shear strength
reduction across the cracked face. In fact, shear transfer
coefficients make the shear stiffness entities in the modulus
matrix of the cracked Gaussian point. In the present study, the
value for parameter βt is taken to be 0.2. Fig. 3 illustrates the
stress–strain curve utilized to model the mass concrete
behavior during elastic and softening phases (Hariri-Ardebili
and Mirzabozorg, 2012). In this figure, ft is the cracking stress,
ɛck is the strain corresponding to the stress at the level of
tensile strength, Tc is the reduction coefficient of tensile stress
taken to be 0.6 in the current study, and Es is the secant
modulus of elasticity. In the model utilized for tension, it has
been assumed that the fracture strain of concrete is 6 times that
corresponding to the softening initiation, as shown in Fig. 3
and pointed out by Taylor et al. (1976).
If the crack is closed, all compressive stresses orthogonal to

the crack plane can be transmitted. Only shear transfer
coefficient βc is applied to the modulus matrix to reduce the
shear strength relative to the un-cracked case. The value of this
parameter in the present study is taken to be 0.9 based on the
first author's previous works, such as Hariri-Ardebili et al.
(2013c). At last, when a Gaussian point meets the crushing
criterion, its contribution to the modulus matrix is disregarded.
Some important details on the formulation for simulating the
cracking/crushing in mass concrete, corresponding to the
utilized failure surfaces and the relevant constitutive law, can
be found in Appendix A.
Finally, the modulus matrix is transferred to the element

coordinate system by the transform matrix [Tck] as

½Dc� ¼ ½Tck�T ½Dck
c �½Tck� ð12Þ

in which [Dck
c ] is the modulus matrix of the cracked element

aligned to the principal strains and [Dc] is the matrix aligned in



Fig. 3. Stress–strain curvature of mass concrete in tension (Hariri-Ardebili and
Mirzabozorg, 2012).
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the global directions. The above-mentioned transform matrix is
a function of the directions of principal strains and this is the
reason that the utilized smeared crack approach is known as
the rotating crack approach in which the modulus matrix is
aligned with the principal directions in each step of the
analysis. It should be noted that if a Gaussian point is fractured
in the uniaxial, bi-axial or tri-axial case, the mass concrete is
considered as crushed. Hence, the crushed element is com-
pletely eliminated from the stiffness matrix and its force is
allocated to the adjacent elements.
5. Formulation and solution technique

5.1. Fluid–structure-interaction

Considering the coupled dam–reservoir–foundation system,
the governing equation for the reservoir medium is the
Helmholtz equation, namely,

∇2 p ¼ 1

C2

∂2p
∂t2

ð13Þ

where p, C, and t are the hydrodynamic pressure, the pressure
wave velocity in the liquid domain, and time, respectively. The
partial absorptive boundary is applied on the reservoir and the
Sommerfeld boundary is applied on the far-end of the
truncated reservoir. Other boundary conditions, applied to
the reservoir medium to solve Eq. (13), can be found in
Mirzabozorg and Ghaemian (2005) and Mirzabozorg et al.
(2003b). The governing equation for the structure and the
reservoir take the following form:

M½ � 0

ρ Q½ �T G½ �

" #
€U
€P

( )
þ

C½ � 0

0 C0½ �

" #
_U
_P

( )
þ

K½ � � Q½ �
0 K 0½ �

" #

U

P

� �
¼

f 1
� �� M½ � €Ug

� �
Ff g�ρ Q½ �T €Ug

� �
( )

ð14Þ

where [M], [C], and [K] are the mass, damping, and stiffness
matrices of the structure, respectively, including the dam body
and its surrounding foundation rock, and [G], [C0], and [K0] are
the matrices representing the mass, damping, and stiffness
equivalent matrices of the reservoir, respectively. Matrix [Q] is
the coupling matrix, {f1} is the force vector including both body
and hydrostatic force, {P} and {U} are the vectors of hydro-
dynamic pressures and displacements, respectively, and {Üg} is
the ground acceleration vector. {F} is the force vector due to
integration on all the reservoir boundaries. {P

:
} and { €P} are the

first and second time derivatives of the nodal hydrodynamic
pressure vector, respectively, and ρ is the water density.
A quasi-elastic damping model is utilized in which the

cracked elements contribute to the damping matrix with their
updated stiffness. The stiffness and mass proportional damp-
ing, equivalent to 10% of the critical damping based on the
2 Hz and 6 Hz frequencies of the dam–foundation system, are
applied to the structure and the related proportional coefficients
are determined as proposed by Hall (2006).

5.2. Numerical solution

In the present paper, the Newton–Raphson method is used to
update the model stiffness. Newton–Raphson equilibrium
iterations provide convergence at the end of each load
increment within the defined tolerance limits. Prior to each
solution, the Newton-Raphson approach assesses the out-of-
balance load vector, which is the difference between the
restoring forces (the loads corresponding to the element
stresses) and the applied loads. Subsequently, the program
carries out a linear solution using the out-of-balance loads and
checks for convergence. If convergence criteria are not
satisfied, the out-of-balance load vector is reevaluated, the
stiffness matrix is updated, and a new solution is attained. This
iterative procedure continues until the problem converges. In
this study, the convergence criteria are based on force and
displacement for the solid elements with concrete material, and
the convergence criteria are based on pressure for the reservoir
fluid elements. For dynamic analyses, the Newmark-β method
is utilized for the direct integration of Eq. (14) along the
subsequent time steps.

6. Finite element model

Dez is a 203-m-high double curvature arch dam with a
perimetral joint separating the dam body from a concrete
saddle structure called Pulvino. The dam is located in a narrow
gorge on the Dez River in the Khuzestan Province in Iran. It is
about 150 km north of the provincial capital of Ahwaz. The
thickness of the dam at the crest is 4.5 m and its maximum
thickness at the base is 21 m. The finite element model is
presented in Fig. 4. The dam, surrounding rock, and water are
prepared with ANSYS software (ANSYS, 2007).
In arch dams, the dimensions of the foundation are usually

considered as being at least twice as much as the dam height
(consistent with topography of the site) to diminish the effects of
the far-end boundary conditions on the response. This is a
general comment and has been mentioned in several guidelines,
such as FERC (1999) and USACE (1994), (2007). The model



Fig. 4. Finite element model: (a) dam-reservoir-foundation system; (b) contraction and perimetral joints (Hariri-Ardebili and Mirzabozorg, 2012).
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consists of 792 8-node solid elements, to model the concrete
dam and its saddle, and 3770 8-node solid elements, to model
the surrounding foundation rock. The 8-node solid elements
have three translational degrees of freedom at each node. In
addition, water is modeled using 3660 8-node fluid elements
having three translational DOFs and one pressure DOF in each
node. It should be noted that translational DOFs are active only
at nodes that are on the interface with solid elements. In
addition, 956 contact elements are used to model the contraction
and perimetral joints. The material properties for the mass
concrete and the foundation are described in Table 1 (Hariri-
Ardebili et al., 2011).

Normal and tangential stiffness for the contact elements are
taken as 240 GPa/m and 24 GPa/m, respectively, extracted
from sensitivity analyses conducted by the first author in his
previous works. These stiffness coefficients lead to the reason-
able opening/closing/sliding of the contraction joints in com-
parison with the results obtained from joint meters installed in
the central block of the dam (Hariri-Ardebili et al., 2011). The
water density and sound velocity of the reservoir are taken as
1000 kg/m3 and 1440 m/s, respectively. The wave reflection
coefficient for the reservoir around the boundary is conserva-
tively assumed to be 0.8. It is worth noting that the calibration
and validity of the FE model under thermal, self-weight, and
hydrostatic loads was previously considered by the first author
and his co-workers by comparing the results obtained from the
model with those calculated during the monitoring procedure
of the dam body as reported in Hariri-Ardebili et al. (2011).
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Generally, the seismic performance evaluation of arch dams
is considered during a maximum credible earthquake (MCE).
Based on the seismic hazard analysis of the dam site (Behan-
sad Engineering and Consulting Co., 2009), the design
spectrum of the horizontal and vertical components for the
MCE level were extracted considering ξ¼5%. The Manjil
ground motion is selected for the analysis of the dam based on
source characteristics, source-to-site transmission path proper-
ties, site conditions, and a scaled record using the design
response spectra developed for the dam site (see Fig. 5). The
horizontal and vertical PGA's for the scaled record at MCE are
0.43 g, and 0.33 g, respectively.

It should be mentioned that this earthquake is the governing
one based on the results obtained from the conducted analyses;
and therefore, the results corresponding to this earthquake are
represented herein. All three components are applied simulta-
neously to the investigated model at the dam foundation
interface as the free field excitation; and therefore, there is
no change in the input due to the damping characteristics of the
surrounding rock. In addition, the effect of spatially varying
Table 1
Material properties for mass concrete and foundation rock (Hariri-Ardebili
et al., 2011).

Label Static Dynamic

Econcrete (GPa) 40 46
ρconcrete (kg/m

3) 2400 2400
υconcrete 0.20 0.14
f concretet (MPa) 3.40 5.10
f concretec (MPa) 35.0 36.5
Friction factor (μ) 1 1
Cohesion factor (C) 0 0
Erock (GPa) 13–15 13–15
ρrock (kg/m

3) 2600 2600
υrock 0.25 0.25
ρwater (kg/m

3) 1000 1000
Cwater (m/s) 1440 1440

Fig. 5. Manjil ground motion
the ground motion is not considered in the current investiga-
tion. It is worth noting that the summer loading conditions,
which include the reservoir normal water level and the
temperature distribution corresponding to that level, are
applied to all the conducted analyses before exciting the
models using the selected earthquake records.
7. Analyses including joint nonlinearity

In all the analyses, the joint nonlinearity denotes the case in
which the material is assumed to be elastic, and the geometric
nonlinearity due to the opening/sliding of the contraction
vertical and peripheral joints is modeled by the contact
elements. Also, the joint and material nonlinearity denotes the
case in which the joints are modeled, and the nonlinear behavior
of the mass concrete in a 3D space is modeled using a co-axial
rotating smeared crack approach. In this section, a nonlinear
analysis, including joint nonlinearity, is conducted assuming
two types of foundations: (1) where the foundation mass is
disregarded (2) where the massed foundation is considered and
the viscous boundary is on the far-end truncated boundary of the
foundation rock. Fig. 6 presents the non-concurrent envelope of
the first principal stresses (tensile stress) on the upstream and
downstream faces for both the massless and the massed
foundation models, respectively. It should be noted that the
tensile stress is defined as positive in the results. Furthermore,
the non-concurrent envelopes for the third principal stress
(compressive stress) are presented in Fig. 7. As shown in the
plots, the distribution patterns of the stresses are the same for
both models, but the massed foundation model leads to much
lower stress levels within the dam body. According to the
figures, both the intensity and the extension of the tensile
overstressed areas are much more evident in the middle part on
the downstream face, whereas high compressive stressed regions
occur in the upper middle part near the crest cantilever on the
upstream face.
recorded at Abbar station.



Fig. 6. Non-concurrent envelope of the first principal stress on the upstream and downstream faces for MCE in summer conditions (MPa).
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Table 2 presents the maximum tensile and compressive
stresses resulting from the conducted analyses. It is worth
noting that in Figs. 6–8, the positive and negative values for
the line stress contours correspond to tensile and compressive
stresses, respectively, and comparing the numbers on each line
in Fig. 6 to the tensile strength specified in Table 1, it can be
seen that in some areas there are tensile stresses higher than the
dynamic tensile strength of the mass concrete. When the
system is modeled using a massed foundation, the maximum
values for tensile and compressive stresses decreased by 32%
and 25%, respectively, in comparison with the case of a
massless foundation. Considering foundation flexibility with-
out the effect of mass results in a larger response. This
overestimation is due to a decrease in overall damping caused
by ignoring the foundation damping-material and radiation and
by disregarding the inertia effect of the huge mass in the
surrounding rock. Unfortunately, this trend leads to inaccurate
conclusions such that existing dams are unsafe and require
upgrading.
In order to determine the degree of joint nonlinearity of the
system, the results were compared with those obtained from
the linear model considering the massed foundation (presented
in Fig. 8). Comparing Fig. 8 with Figs. 6 and 7, it is observed
that considering the joint nonlinearity leads to higher com-
pressive stresses through the dam body. However, tensile
stresses within the dam body are lower than those obtained
from the linear analysis.

8. Analysis including joint and material nonlinearities

According to the results of the nonlinear analysis, there are
no cracked or crushed Gaussian points due to the self-weight
or hydrostatic loads at the first load step. At later stages, the
system in both models is excited simultaneously in the three
directions using the scaled components of the Manjil Earth-
quake. Fig. 9 presents the crack/crushed profiles on the
upstream and downstream faces when the foundation medium
is assumed to be massless, while Fig. 10 depicts the results



Fig. 7. Non-concurrent envelope of the third principal stress on upstream and downstream faces for MCE in summer conditions (MPa).

Table 2
Maximum values of tensile and compressive stresses within the dam body
in MCE.

Stress Analysis type Foundation state Value (MPa)

Compressive Nonlinear (joint) Massless 34.6
Massed 26

Linear Massed 22
Tensile Nonlinear (joint) Massless 14.6

Massed 10
Linear Massed 12.5
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when the massed foundation and the viscous condition on the
far-end truncated boundary of the foundation are considered.

In the model with the massless foundation, the analysis is
terminated at 12 s due to numerical instability. However,
there is no instability in the model including the massed
foundation, for which it can be argued that after MCE,
sudden abandonment of the water will not occur. Comparing
the crack profiles shown in Figs. 9 and 10, the massed
foundation model leads to many fewer cracked Gaussian
points in comparison to the model with the massless founda-
tion which is a more realistic conclusion. In addition, the
upper half of the dam body is cracked in the model with the
massless foundation. However, in the model with the massed
foundation, only some upper middle parts of the dam body
near the crest cantilever are cracked, which is in good
agreement with the overstressed areas in their counterpart
analysis including joint nonlinearity.
9. Conclusions

In the present paper, the FE model for the Dez dam, an
existing high arch dam located in Iran, including a reservoir
and foundation, was excited using the three components of the
Manjil Earthquake at the dam-foundation interface. The non-
linear behavior of the mass concrete was modeled using a co-
axial rotating smeared crack approach in which a well-known
five-parameter failure criterion was used as the cracking/



Fig. 8. Non-concurrent envelope of the first and third principal stresses on upstream and downstream faces for MCE in summer conditions (MPa) for the
linear model.
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crushing initiation criterion. In addition, node-to-node contact
elements were used to model the contraction/perimetral joints,
as reported in as-built drawings. The Dam–reservoir interac-
tion was accounted for by the finite element method and the
reservoir was assumed to be compressible. The two sets of
analyses were conducted to consider the effects of the massed
foundation on the nonlinear seismic response of the system,
the massless foundation model, and the massed foundation
model with the viscous dampers on the far-end truncated
boundary of the surrounding rock.

Based on the results, it was observed that modeling the
foundation as a massless medium leads to the significant
overestimation of the response of the system. In the nonlinear
analysis, including joint nonlinearity, the maximum tensile and
compressive stresses were reduced by 32% and 25%, respec-
tively, when the foundation was assumed to be massed in
comparison to the results obtained with the massless
foundation model. It was also seen that considering joint
nonlinearity leads to higher compressive stresses and lower
tensile stresses than those obtained from the linear analysis. In
fact, the contraction joints release tensile arch stresses on the
upstream face, leading to the redistribution of the stresses
within the dam body and changes in the arch performance of
the body to the cantilever one in compression. This phenom-
enon leads to more values of compressive stresses, which is the
expected behavior in arch concrete dams.
In the nonlinear analyses, including both joint and material

nonlinearities, modeling the foundation as a massed medium
led to many fewer cracked Gaussian points within the dam
body, which is an important phenomenon in a seismic safety
assessment of existing dams. In addition, in the model with the
massless foundation, the upper half of the dam body was
cracked, while in the model including the massed foundation,
cracking occurred only in upper middle parts near the crest



Fig. 9. Cracking within the dam body for massless foundation.

Fig. 10. Cracking within the dam body for massed foundation.
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cantilever, which was in good agreement with the overstressed
areas in their counterpart analyses including joint nonlinearity.
In addition, there was no instability in the model with the
massed foundation, for which it can be argued that the dam
body is safe in MCE. However, to achieve more realistic
results, other factors such as the spatial variation in ground
motion, should be considered.
Appendix A. Five-parameter Willam–Warnke model

In the current study, the plasticity-based five-parameter
Willam–Warnke model (1975) is utilized as the failure
criterion in mass concrete (ANSYS, 2007). The failure
criterion of concrete due to a multi-axial stress state can be
expressed in the following form:

Ω

f c
�γZ0 ðA:1Þ

where Ω is a function of the principal stress state, fc is the
compressive strength of concrete, and γ is the failure surface
expressed in terms of principal stresses and the five input
parameters defined in Table 3. If Eq. (A.1) is satisfied,
cracking or crushing of the concrete occurs. Whenever one
of the principal stresses is tensile, cracking occurs, and when
all principal stresses are compressive, crushing occurs. The
failure surface is specified with two parameters, fc and ft, and
the other parameters are calculated with the Willam–Warnke
model by default as (ANSYS, 2007)

f cb ¼ 1:2f c



Table 3
Concrete material table (ANSYS, 2007).

Label Description

ft Ultimate uniaxial tensile strength
fc Ultimate uniaxial compressive strength
fcb Ultimate biaxial compressive strength
sah Ambient hydrostatic stress state
f1 Ultimate compressive strength for a state of biaxial compression

superimposed on hydrostatic stress state
f2 Ultimate compressive strength for a state of uniaxial compression

superimposed on hydrostatic stress state
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f 1 ¼ 1:45f c
f 2 ¼ 1:725f c ðA:2Þ

These default values are valid only for stress states where
the following condition is satisfied:���sh���r ffiffiffi

3
p

f c ðA:3Þ

sh, which is equal to sah, is the hydrostatic stress expressed
as

sh ¼
1
3
ðsxpþsypþszpÞ ðA:4Þ

Both function Ω and failure surface γ are expressed in terms
of principal stresses denoted as s1, s2, and s3 as

s1 ¼maxðsxp;syp;szpÞ
s3 ¼minðsxp;syp;szpÞ ðA:5Þ
so that, s1Zs2Zs3

The failure of concrete is categorized into the following four
domains:

1. 0Zs1Zs2Zs3 means compression – compression –
compression state

2. s1Z0Zs2Zs3 means tensile – compression –
compression state

3. s1Zs2Z0Zs3 means tensile – tensile –
compression state

4. s1Zs2Zs3Z0 means tensile – tensile – tensile state

The general function, Ω, and the failure surface, γ, can be
divided into four independent sub-functions in each domain,
which can be found in ANSYS, (2007). Parameters f1, f2, fcb,
and sah are used to form the desired stress functions and failure
surfaces in the above-mentioned domains (see ANSYS, 2007).

In order to apply the above-mentioned constitutive law, it is
assumed that concrete material is initially (before cracking/
crushing) isotropic and linear. The stress–strain matrix is
defined by (A.6) as

Dlinear :½ � ¼ E

ð1þvÞð1�2vÞ
ð1�vÞ v v 0 0 0

v ð1�vÞ v 0 0 0

v v ð1�vÞ 0 0 0

0 0 0 1�2v
2 0 0

0 0 0 0 1�2v
2 0

0 0 0 0 0 1�2v
2

2
6666666664

3
7777777775

ðA:6Þ

where E is the initial isotropic Young's modulus for concrete
and ν is Poisson's ratio. Cracking occurs in concrete when the
principal tensile stress in any direction lies outside the failure
surface. When cracking occurs at an integration point, the
stress–strain relation is replaced by defining a weak plane
normal to the crack direction, which is unable to endure any
tensile stress.
Based on the fact that concrete can be cracked in one, two or

three orthogonal directions, the modulus matrix can be
represented in the following forms:

I) Concrete is cracked in one direction and the crack is open

Dck
c

� 	¼ E

1þv

Esð1þ vÞ
E 0 0 0 0 0

0 1
1� v

v
1� v 0 0 0

0 v
1� v

1
1� v 0 0 0

0 0 0 βt
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 βt
2

2
66666666664

3
77777777775

ðA:7Þ

where Es is the secant modulus of elasticity.
II) Concrete is cracked in one direction and the crack is

closed

Dck
c

� 	¼ E

ð1þvÞð1�2vÞ
ð1�vÞ v v 0 0 0

v ð1�vÞ v 0 0 0

v v ð1�vÞ 0 0 0

0 0 0 βcð1�2vÞ
2 0 0

0 0 0 0 1�2v
2 0

0 0 0 0 0 βcð1�2vÞ
2

2
6666666664

3
7777777775

ðA:8Þ

III) Concrete is cracked in two directions and the cracks are
open:

Dck
c

� 	¼ E

Es
E 0 0 0 0 0

0 Es
E 0 0 0 0

0 0 1 0 0 0

0 0 0 βt
2ð1þ vÞ 0 0

0 0 0 0 βt
1ð1þ vÞ 0

0 0 0 0 0 βt
2ð1þ vÞ

2
666666666664

3
777777777775

ðA:9Þ
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IV) Concrete is cracked in two directions and both cracks are
closed:

Dck
c

� 	¼ E

ð1þvÞð1�2vÞ
ð1�vÞ v v 0 0 0

v ð1�vÞ v 0 0 0

v v ð1�vÞ 0 0 0

0 0 0 βcð1�2vÞ
2 0 0

0 0 0 0 ð1�2vÞ
2 0

0 0 0 0 0 βcð1�2vÞ
2

2
6666666664

3
7777777775

ðA:10Þ

) Concrete is cracked in three directions and the cracks are
open:

Dck
c

� 	¼ E

Es
E 0 0 0 0 0

0 Es
E 0 0 0 0

0 0 1 0 0 0

0 0 0 βt
2ð1þ vÞ 0 0

0 0 0 0 βt
2ð1þ vÞ 0

0 0 0 0 0 βt
2ð1þ vÞ

2
666666666664

3
777777777775

ðA:11Þ

VI) Concrete is cracked in three directions and all cracks are
closed. In this situation, (A.10) can be written again. It
must be noted that all the above stress–strain relations are
written in a local coordinate system that is parallel to the
principal strain directions.

If a Gaussian point meets the failure criterion in compres-
sion, its contribution to the stiffness matrix is disregarded.
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