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1. Introduction 

Soil moisture is a key variable controlling hydrological and energy fluxes at different spatio-temporal 
scales [1,2]. Soil moisture plays an important role in climate dynamics from the regional to the global 
scale by controlling the exchange and partitioning of water and energy fluxes at the land surface. 
Agricultural and irrigation management practices largely depend on a timely and accurate 
characterization of temporal and spatial soil moisture dynamics in the root zone. In addition, soil moisture 
also plays a major role in the organization of natural ecosystems and biodiversity. 
Numerous studies have examined the spatial variability of surface soil water content as a function of the 
mean soil moisture status and of controlling variables related to soil properties, vegetation and 
topography, with varying conclusions. One main generalisation is that as the mean soil moisture 
approaches limiting states, at the dry or wet ends, the absolute spatial variability of soil moisture becomes 
smaller. Between these bounds, however, the trajectories of the spatial variability can be non-unique and 
dependent on climate, soil, vegetation, topography, and antecedent states [3]. Relatively few studies have 
focused on the impact of land use characteristics on the main statistics of soil moisture fields, owing to 
the difficulties in isolating and examining the vegetation contribution with respect to that of the soil 
properties and topography.   

The aim of this work is to analyse the spatial variability characteristics of soil moisture data at the plot 
scale characterized by two different land uses, i.e., grapevine plants and grass. 
A simple dynamic model is used to simulate the two main spatial statistics. The capability of the model to 
simulate the two spatial statistics time series over the two sites is evaluated and discussed. 

2. Study area and observed data 

Soil moisture observations were collected over three years (2006-2008) on a plot (about 200 m2) in 
Grugliasco (Po Plain, Northern Italy) at 290 m a.s.l. (Fig. 1) by means of 21 Time Domain Reflectometry 
probes. A broader description of the study site is reported in Baudena et al. [4]. The probes are vertically 
inserted generating minimal disturbance, owing to the sandy texture and the lack of stones, in the 0-30 cm 
depth. The plot is divided into two subplots: one covered by grapevine plants (monitored with 12 probes), 
the other covered homogeneously by grass (with 9 probes). The terrain slope is about 1%, the soil is 
sandy and around the measurement field there is a buffer grass area about 20 m wide. Precipitation and 
temperature are recorded continuously on site. The characteristics of the site allow to isolate the 
contribution of soil hydraulic properties and land use to soil moisture variability. 

Rainfall climatology in this area is characterized by two maxima, respectively in spring (April–May) 
and fall (October–November), with relatively dry winter and summer [5]. During the three observation 
years the annual precipitation ranged between 755 mm (2007) to 1183 mm (2008), whereas potential 
evapotranspiration (estimated by means of the Hargreaves method) ranged between 935 mm (2008) and 
1001 mm (2007). 

For the purpose of the analysis, soil moisture observations are aggregated at the daily time step, 
retaining the day when at least four instantaneous observations are available. Due to the varying temporal 
sampling over the three years, there is a different availability of daily soil moisture data over the three 
years. Table 1 summarizes the main characteristics of the observed data, including the averages of the 
spatial means and standard deviations. Inspection of the data shows that mean soil moisture is higher for 
vineyard than for the meadow; correspondingly, the average of the spatial variability of soil moisture 
(expressed by the standard deviation) is higher for the meadow than for the vineyard. This is consistent 
with earlier observations [6,7] and indicates that the variability of soil moisture distributions decreases 
when the mean soil moisture value increases. 
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The point-scale soil moisture dynamics is spatially unconnected. Vertical redistribution of soil 
moisture is assumed to occur instantaneously (at the daily time step). The daily water balance for a 
number of independent soil columns is solved following: 
 

)(1 qREST
Zdt

d
 (1) 

where  is the volumetric soil moisture, Z is the depth of the root zone, T the throughfall (i.e., the rainfall 
that is not intercepted by the vegetation), S the root water uptake, E the evaporation from the soil surface, 
R the saturation excess runoff (i.e., the part of T that causes oversaturation of the soil) and q the deep 
drainage. Lateral flow is assumed to be negligible in the root zone. Deep drainage is computed using the 
following parameterization [10]: 

 
32b

skq  (2) 

 
where ks is the saturated hydraulic conductivity, b is the pore size distribution parameter,  is the 
porosity. The vertically integrated root water uptake is thought to be proportional to a maximum 
transpiration rate Ep, a soil moisture stress function ( ) and a function accounting for spatially variable 
response of unstressed transpiration to atmospheric boundary layer conditions [11]. The root water uptake 
is computed as follows: 

 

pr EcfS exp1)(  (3) 
 

where fr is the root fraction in the layer of depth Z,  is a soil moisture stress function, c is a light use 
efficiency parameter,  is the LAI. The factor [1-exp(-c )] allows to account for LAI ( ). Soil moisture 
stress is modelled as: 

 

wc

w;1min;0max  (4) 

 
where c is the critical soil water content and w is the wilting point, which defines the transition between 
unstressed and stressed transpiration.  

LAI ( ) is modelled with a spatial and temporal component [6,8]: 
 

2
2sin1

3

2
11max c

cDOYcc  (5) 

 
where max is the local maximum of , and the parameters c1 and c2 indicate the seasonal variation of .  

Bare soil evaporation is assumed to be small in comparison to the root water uptake over the entire soil 
profile. The root zone depth is assumed equal to 30 cm. During the implementation, the model was 
initialised by using observed soil moisture values. The model was applied at the daily time step, using 
local rainfall and potential evapotranspiration. The model was calibrated based on the time series of mean 
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soil moisture for 2008 and verified over 2006 and 2007. The index of efficiency and the Root Mean 
Square were used to quantify the model adequacy. Values for the calibration and the verification periods 
are reported in Table 2, for both sites. The values show a good predictive capability of the model, 
particularly when considering that 2008 was much wetter than the other two years. The parameters 
identified by means of the calibration process are reported in Table 3, showing a good correspondence 
with similar parameters obtained in the model application exercise described in previous works [4]. The 
comparison between the time series of simulated and observed daily values is reported for the year 2008, 
showing both good simulation performances (particularly during the spring and fall months) and less 
good modelling capability in the late summer season for the meadow site (Fig. 3).  

 

Table 2. Indexes of performance between observed and simulated mean soil moisture data. NS: Nash-Sutcliffe efficiency index; 
RMSE: Root Mean Square Error. 

 
Meadow Vineyard 

2006 2007 2008 2006 2007 2008 

NS 0.80 0.52 0.74 0.82 0.65 0.72 

RMSE 2.05 2.77 2.60 1.78 2.37 2.77 

 
 
 

Table 3. Parameter values used in the simulation. 

Simulation parameters Meadow Vineyard 

k, k 8.6, 0.32 7.8, 0.40 

w 0.19  0.25  

c 0.22   0.31   

,  1.6, 0.1 3.5, 0.6 

c 0.55 0.55 

fr 0.8 0.8 

c1, c2, c3 1, 260, 366 60, 260, 290 

k, k  = mean and standard deviation for spatial distribution of ln(ks) 
 = porosity 
w = wilting point 
c = critical moisture content 
,  = mean and standard deviation for spatial distribution of LAI at its maximum ( max)  

c = light use efficiency parameter  
fr = root fraction in the layer of depth Z (Z = 0.3 m) 
c1, c2, c3 = parameters that specify the seasonal development of LAI 
 



462   Giulia Zuecco et al.  /  Procedia Environmental Sciences   19  ( 2013 )  456 – 464 

Fig. 3. Time se
efficiency index

4. Discussio

Table 4 r
statistics, fo
well the spat

A more 
standard dev

eries of spatial me
x; RMSE: Root M

on and conclu

reports the com
or both meado
tial statistics i
complete repr
viation is repo

ean soil moisture
Mean Square Erro

uding remark

mparison betw
ow and vineya
in the two site
resentation of
orted in Fig. 4

 and rainfall for t
or. 

ks 

ween simulated
ard. Inspection
es.  
f the distribut

4, correspondin

the year 2008 for

d and observe
n of these sta

tion of both t
ng to the peri

r (a) meadow and

ed average val
atistics shows 

the spatial m
od June-Septe

 

d (b) vineyard. NS

lues of soil mo
that the mod

ean values an
ember 2008. T

S: Nash-Sutcliffe

oisture spatial
del reproduces

nd the spatial
The simulated

e 

l 
s 

l 
d 



463 Giulia Zuecco et al.  /  Procedia Environmental Sciences   19  ( 2013 )  456 – 464 

mean soil m
simulation o
two land use
of the values

Table 4. Summ

 

No. of sampling

Mean (%) 

 

Mean of standa

Fig. 4. Boxplot
the 25th and 75t

and the dash lin

While the
the fine cha

moisture repr
of the distribu
es, with a low
s are not well 

mary of soil moistu

g times 

ard deviation (%)

ts of the spatial m
th percentile, the w
ne marks the mea

e results repor
aracteristics o

roduces well 
ution of the sp

wer standard de
reproduced. 

ure statistics over

 

 

 

Observe

Simulate

 

 
Observe

Simulate

mean soil moisture
whiskers indicate
an. 

rted so far sho
of the distrib

the observat
patial standard
eviation for th

r the two land use

2006 

150 

ed 11.6 

ed 12.0 

 

ed 1.1 

ed 1.2 

e and standard de
e the 10th and 90th

ow that there 
ution of the 

tions, for bot
d deviation ca
he vineyard th

es for 2006-2008

Meadow 

2007 

205 

12.9 

13.1 

 

1.2 

1.2 

 

eviation for the pe
h percentile, the h

are limitation
spatial stand

th the meado
aptures the ma
an for the mea

. 

2008 2

291 

13.5 1

13.1 1

 

1.3 

1.3 

eriod June-Septem
orizontal line wit

ns in the mode
dard deviation

ow and the v
ain differences
adow. Howev

Vineya

2006 2007

150 205 

14.4 15.8

15.0 15.2

  

0.9 1.0 

0.9 0.9 

 

mber in 2008. The
thin the box mark

el capability in
n, the model 

vineyard. The
s between the

ver, the ranges

ard 

7 2008 

 291 

8 17.2 

2 15.7 

 

1.0 

1.0 

he boxes indicate 
ks the median 

n reproducing
seems to be

e 
e 
s 

g 
e 



464   Giulia Zuecco et al.  /  Procedia Environmental Sciences   19  ( 2013 )  456 – 464 

adequate to summarise the main differences between the two types of vegetation. On-going investigation 
aims to use the model to identify the role of vegetation, with respect to that of soil characteristics, to 
either create or destroy spatial variance along the year and in relation to the sequence of the precipitation 
events. 
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