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S U M M A R Y

Objectives: Many studies focusing on changes in the host following Shigella spp invasion have been

reported in recent years. However, the key factors required for the adaptation of these pathogens to host

niches have usually been neglected.

Methods: In this study, a comparative proteomic analysis was performed to examine changes in the

protein expression profile of Shigella flexneri within the host using a rabbit ileal loop model to reveal

proteins that are associated with pathogenic adaptation.

Results: The protein expression profiles of bacteria isolated from the ileum and colon were very similar,

although they differed slightly from that of bacteria isolated from the cecum. When compared with the

sample in vitro, the expressions of seven proteins were found to be upshifted in vivo (OmpA, YgiW, MglB,

YfiD, MetK, TktA, and AhpF), while two proteins were down-regulated (ElaB and GlnH).

Conclusions: The abundance of nine proteins changed in vivo, suggesting that these proteins may

contribute to adaptation to the intestinal lumen.

� 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

Four species of Shigella (S. flexneri, S. sonnei, S. dysenteriae, and S.

boydii) cause bacillary dysentery in humans and primates.1 Within
each species, there is a large variety of serotypes based on the
structure of the O-antigen repeats that comprise the polysaccha-
ride moiety of the lipopolysaccharide.2 The endemic form of
shigellosis is primarily caused by S. flexneri and S. sonnei.3 Given
that the genome of the S. flexneri 2a strain 301 has been sequenced4

and that it has the ability to invade epithelial cells,5 this strain is an
ideal candidate for microbial proteomic analyses in an animal
model.

Extensive studies have examined the interactions between
Shigella spp and different types of host, including piglets,6,7 guinea
pigs,8 rabbits,9,10 macaques,11,12 and mice.13 However, these
studies have mostly focused on the disease phenotypes of the
host, such as infection assessments, weight loss, diarrhea, fever,8
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and pathological changes in the intestinal mucosa.9,10 In fact, the
physiological changes in pathogens in the intestinal environment
are equally important for understanding the interactions between
bacteria and their hosts. Pieper et al. reported a comprehensive
proteomic analysis of S. dysenteriae and found that the abundance
of 1061 distinct gene products changed in a bacterial sample
isolated from the large bowel of infected gnotobiotic piglets.6

Pieper et al. also analyzed the proteome of S. flexneri within the
epithelial cell cytoplasm and discovered that the levels of glycogen
biosynthesis enzymes and mixed acid fermentation enzymes were
much higher than they were in vitro.14 These data indicate that
many intracellular proteins play a crucial role in Shigella
pathogenicity, in addition to key effectors encoded by the large
virulence plasmid.

Regarding animal models, rabbits are more commonly used
than gnotobiotic piglets because of their convenience and
affordability. For example, using a ligated gastrointestinal (GI)
loop model, Marteyn et al. demonstrated that available oxygen in
vivo could activate the type III secretion system (T3SS) of S. flexneri

at the tips of intestinal villi.9 Interestingly, a virulent S. flexneri

strain could not successfully colonize the colon or cause colitis in
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rabbits following colonic inoculation without cecal bypass
(ligation of the distal cecum).15 This result suggests that the
cecum plays an important role in Shigella infections.

As an enteric pathogen, Shigella can sense environmental
changes, including pH, osmolarity, temperature, oxygen tension,
magnesium, reactive oxygen species (ROS), and nitrogen oxide
(NO), and adjust its own proteome to adapt to different
environmental niches. In this study, a modified rabbit ligated GI
loop model was adopted to analyze the changes in bacterial protein
expression profiles in vivo on a global level. In particular, three
parts of the rabbit intestinal tract (the ileum, cecum, and colon)
were included in these experiments. The biological functions of
differentially expressed proteins are discussed.

2. Materials and methods

2.1. Bacterial strains and culture conditions

S. flexneri 2a strain 301 was grown routinely on Luria–Bertani
(LB; 10 g tryptone, 5 g yeast extract, and 10 g of NaCl per liter) agar
plates. The inoculum for animal experiments was prepared by
selecting a typical colony from LB plates and inoculating it into
liquid LB medium, followed by incubation at 37 8C with shaking.
One hundred milliliters of bacterial culture (optical density at
600 nm (OD600) = 3.0) was harvested by centrifugation at 5000 � g,
washed twice with ice-cold phosphate-buffered saline (PBS), and
then suspended in 40 ml of PBS. Half of the suspension was used for
animal experiments and the other half was left in a sealed
centrifuge tube, which was maintained at 39 8C, as a control.

2.2. Animal experiments and isolation of S. flexneri from rabbit

intestines

Japanese white rabbits were anesthetized with 10% (w/v)
chloral hydrate (2 ml/kg) via the auricular vein. Dialysis bags
(molecular weight cutoff 15 000 Da) filled with bacteria (sus-
pended in 20 ml of PBS) were surgically placed into the ileum,
cecum, and colon. As a control, the same volume of bacteria was
placed in a sealed centrifuge tube that was incubated at 39 8C,
which is equal to the normal rectal temperature of the rabbits,
without shaking. About 7 h after the bacterial inoculation, the
animals were killed and the dialysis bags were removed for
bacterial protein extraction.

2.3. Preparation of cell lysates

S. flexneri cell pellets were harvested by centrifugation at
5000 � g, washed twice with ice-cold PBS, and then suspended in
lysis buffer (7 M urea, 2 M thiourea, 4% (w/v) CHAPS, and 1% (w/v)
DL-dithiothreitol (DTT)) containing Complete Protease Inhibitor
Cocktail (Roche Applied Science, Penzberg, Germany). After
ultrasonic lysis, to digest nucleic acids, 0.5% immobilized pH
gradient (IPG) buffer, DNase I (10 mg/ml), and RNase A (10 mg/ml)
were added and incubated with gentle agitation for 1 h at 20 8C.
The lysate was centrifuged at 40 000 � g for 30 min at 4 8C, and the
supernatant was collected as the protein sample for the subse-
quent analyses. To standardize the protein contents of different
samples, the protein concentration of all samples was measured
using the PlusOne 2-D Quant kit (GE Healthcare, Chalfont St. Giles,
UK), and 800-mg aliquots were stored at �80 8C.

2.4. Two-dimensional gel electrophoresis (2-DE) of the protein

samples

The 2-DE procedure and in-gel protein digestion were
performed as described previously.16 IPG strips of pH 4–7 and
pH 6–11 were used for loading acidic and basic proteins,
respectively. Briefly, each 800-mg protein sample was used to
rehydrate an 18-cm IPG strip for 12 h at 20 8C. After focusing, the
strips were equilibrated with DTT and iodoacetamide for 15 min in
equilibrium buffer (2% sodium dodecyl sulfate (SDS), 50 mM Tris–
HCl (pH 8.8), 6 M urea, and 30% glycerol). Then, 12.5% SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) was used for the
second dimension. Protein spots were carefully excised from
Coomassie-stained 2-DE gels, destained, washed, and then
digested for 13 h with modified sequencing grade trypsin (Roche
Applied Science). Peptides from the digested proteins were used
for the matrix-assisted laser desorption/ionization dual time-of-
flight (MALDI–TOF/TOF) analysis.

2.5. Mass spectrometry analysis

MALDI–TOF/TOF mass spectrometry (MS) measurements were
performed on a Bruker Ultraflex III MALDI–TOF/TOF MS (Bruker
Daltonics, Billerica, MA, USA) operating in reflectron mode. A
saturated solution of a-cyano-4-hydroxycinnamic acid in 50%
acetonitrile and 0.1% trifluoroacetic acid was used as the matrix.
The SNAP algorithm in FlexAnalysis 3.4 was used to identify the
150 most prominent peaks. The subsequent tandem MS (MS/MS)
analysis was performed in a data-dependent manner, and the five
most abundant ions were subjected to high-energy, collision-
induced dissociation analysis. The collision energy was set to
1 keV; nitrogen was used as the collision gas.

2.6. Data interpretation and database searching

The program Mascot 2.1 (Matrix Science Ltd, Boston, MA, USA)
was used to search the MS data against the S. flexneri 2a strain
301 database to eliminate redundancies resulting from multiple
members of the same protein family, and the results were checked
against the non-redundant database of the National Center for
Biotechnology Information. The search parameters were as
follows: trypsin digestion with one missed cleavage, carbamido-
methyl modification of cysteine as a fixed modification, oxidation
of methionine as a variable modification, +0.2 Da maximum
peptide tolerance, +0.6 Da maximum MS/MS tolerance, a peptide
charge of 1, and monoisotopic mass.

3. Results

3.1. The proteome of S. flexneri recovered from the rabbit ileum

A preliminary proteomic analysis of acidic proteins showed
that the protein expression profiles of bacteria recovered from
the rabbit ileum and the colon were so similar that no
significant difference could be detected (data not shown). Thus,
the difference in expression between the protein samples
isolated from bacteria recovered from the terminal ileum and
those that were isolated from bacteria that were incubated in
vitro were mainly compared and analyzed. The acidic (loaded
onto the pH 4–7 strips) and basic (loaded onto the pH 6–11
strips) proteins expressed by bacteria recovered from the ileum
and those that were expressed by bacteria that were grown in
vitro were separated by isoelectric focusing (18 cm) in the first
dimension, and then by 12.5% SDS-PAGE in the second
dimension. As shown in Figure 1, the 2-DE gels of the two
samples are comparable to each other, and more than
1000 spots were detected in each sample by colloidal
Coomassie staining. After an abundance comparison, the
expression of two proteins (ElaB (spot ID 5) and GlnH (spot
ID 9)) was found to be down-regulated in vivo, while the



Figure 1. Comparison of two-dimensional gel electrophoresis profiles of bacteria recovered from the rabbit ileum (A and C) and bacteria grown in vitro (B and D). Acidic

proteins (A and B) and basic proteins (C and D) were separated and analyzed. Identified proteins are indicated with arrows.
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expression of seven other proteins (YgiW, YfiD, OmpA, MglB,
MetK, TktA, and AhpF) was up-regulated.

3.2. The proteome of S. flexneri recovered from the rabbit cecum

Given the potential role of the cecum in Shigella infections, the
protein samples from the rabbit cecum were also prepared in a
second surgical operation. The whole-cell proteins were extracted,
separated, and analyzed as described above (Figure 2). Only three
proteins were differentially expressed in bacteria recovered in the
cecum compared with those that were isolated from bacteria that
were grown in vitro. Among these proteins, the abundance of two
proteins (OmpA (spot ID 10) and YgiW (spot ID 11)) increased
in vivo, while the abundance of the other protein (GlnH (spot ID
12)) decreased.

3.3. Identification of selected proteins

A total of 12 protein spots representing nine differentially
expressed proteins were identified reproducibly by MS. Enlarged
images of 2-DE gels highlighting selected differentially expressed
proteins are shown in Figure 3. The database search results of these
proteins are summarized in Table 1. The detailed functional
categories and cellular localization of these proteins, as predicted
by the PSORTb algorithm, are also described.
4. Discussion

Because the colon and terminal ileum are sites of coloniza-
tion and invasion for Shigella, it is reasonable that the whole-cell
protein samples recovered from bacteria isolated from these
tissues exhibited similar expression profiles according to the
present 2-DE results, while the difference between the protein
profiles of bacteria recovered from the ileum and cecum
indicated that there might be small differences in the
microenvironmental niche between different parts of the
intestinal tract. Although the cecum is located at the junction
between the colon and terminal ileum, some special environ-
mental signals might suppress the activation of Shigella. In
particular, more differentially expressed proteins were identi-
fied in the samples isolated from the colon and terminal ileum.
The functions of these proteins are related to oxygen tension and
oxidative stress (discussed below), which reflect the different
microenvironments in the cecum and ileum.

S. flexneri is a facultative intracellular pathogen that invades and
propagates in epithelial cells. To discriminate between proteins
associated with bacterial adaptation in different host niches and
those that are required for intracellular survival, the bacteria were
encased in a dialysis bag before placing them into the gut, rather
than directly incubating them in the gut. Thus, known virulence-
related proteins, such as the key effectors of the T3SS, were not



Figure 2. Comparison of two-dimensional gel electrophoresis profiles of bacteria recovered from the rabbit cecum (A and C) and bacteria grown in vitro (B and D). Acidic

proteins (A and B) and basic proteins (C and D) were separated and analyzed. Identified proteins are indicated with arrows.
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identified in this study because of the lack of direct contact
between the bacteria and the intestinal epithelium.

The microenvironment, including the oxygen tension, osmotic
pressure, and ROS, of the intestinal tract differs from that in vitro.
Importantly, oxygen is limited in the intestinal lumen. Thus,
pathogens should rely mainly on anaerobic respiration rather than
aerobic respiration to obtain energy. In this study, under low
oxygen tension conditions in the intestinal lumen, FNR,9 one of the
main global regulators at the aerobic/anaerobic interface, was
activated, and the expression of a series of anaerobic respiration-
related enzymes, including YfiD, a pyruvate–formate lyase, whose
expression was very low in vitro, increased by several hundred-
fold in vivo. This phenomenon is consistent with a previous study
of S. dysenteriae in the piglet model.6 Meanwhile, YfiD might
function to maintain acid homeostasis in bacteria growing under
hypoxic conditions.17 Furthermore, the transketolase TktA, which
was identified as an up-regulated protein, is a key enzyme that
connects glycolysis and the pentose phosphate pathway,18 and it
plays an important role in anaerobic fermentation in hypoxic
environments.

Although the S. flexneri incubated in the dialysis bag could not
directly contact intestinal epithelium cells, they could still secrete
some harmful low-molecular weight substances, such as antigens
or virulence factors. These could pass through the dialysis
membrane and stimulate the host intestinal tract, thereby causing
epithelial cells to release ROS and NO,19 which in turn places
oxidative stress on the pathogens. As a result, the expression of
hydrogen peroxide resistance-associated proteins, such as YgiW
and AhpF, also increased in this study. The former is a periplasmic
protein with an amino-terminal signal peptide, and it is reported to
be involved in the cellular response to hydrogen peroxide and
cadmium stress.20 The AhpF component of alkyl hydroperoxide
reductase belongs to the family of pyridine nucleotide-disulfide
oxidoreductases, which are thought to have a role in the reduction
of hydroperoxide.

Additionally, three proteins (OmpA,21 MetK,22 and YgiW20) that
were up-regulated in vivo have been reported to be associated with
biofilm formation in Escherichia coli. The outer membrane protein
OmpA is believed to be a non-specific diffusion channel, whose
function may be very important for bacteria to sense extracellular
signals and stimuli.23 YgiW is a member of the bacterial
oligonucleotide/oligosaccharide binding fold family.24 A homolo-
gous protein, VisP, of Salmonella enterica serovar Typhimurium is a
virulence-related protein that binds to peptidoglycan and interacts
with the lipid A-modifying enzyme LpxO.25 Methionine adenosyl-
transferase (MetK) is an important and unique bacterial enzyme
that catalyzes the formation of the sulfonium compound S-
adenosylmethionine.26 All of the above three proteins have been



Table 1
Detailed information for the proteins identified

Sample ID Score gi Gene Localization COG(s) Expression patterna

Ileum 1 166 gij30042631 ygiW Periplasmic COG3111S +

2 134 gij30042236 yfiD Cytoplasmic COG3445R +

3 465 gij30040740 ompA Outer membrane COG2885M +

4 447 gij30041846 mglB Periplasmic COG1879G +

5 265 gij30041952 elaB Cytoplasmic COG4575S �
6 185 gij30042515 metK Cytoplasmic COG0192H +

7 185 gij30042505 tktA Cytoplasmic COG0021G +

8 185 gij30040308 ahpF Cytoplasmic COG3634O +

9 602 gij30040540 glnH Periplasmic COG0834ET �
Cecum 10 468 gij30040740 ompA Outer membrane COG2885M +

11 162 gij30042631 ygiW Periplasmic COG3111S +

12 90 gij30040540 glnH Periplasmic COG0834ET �

COGs, clusters of orthologous groups.
a The expression pattern of the proteins identified refers to the relative abundance of the protein in the in vivo sample compared to that in the in vitro sample. A ‘+’ symbol

means that the protein had a higher abundance in vivo than in vitro; a ‘�’ symbol means the opposite.

Figure 3. Abundance comparison of selected differentially expressed proteins. (A) Enlarged images of two-dimensional electrophoresis gels of proteins from bacteria isolated

from the rabbit ileum. (B) Enlarged images of two-dimensional electrophoresis gels of proteins from bacteria isolated from the rabbit cecum. (C) Bar graph representing the

abundance ratios (in vivo/in vitro) of selected proteins.
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reported to be associated with biofilm formation. Although
Shigella is very closely related to E. coli, it is rarely reported to
generate biofilms. The mechanism underlying the changes in
abundance of these proteins is still not clear, although it is possible
that pathogenic bacteria experience several types of environmen-
tal pressures in vivo and activate a self-protective process that is
similar to biofilm formation.

In conclusion, this is the first extensive proteomic survey of S.

flexneri recovered from different parts of the rabbit intestinal
tract. First, it was demonstrated that S. flexneri efficiently sensed
and responded to different microenvironments in the cecum,
colon, and terminal ileum. Second, the abundance of nine proteins
differed between cells recovered from the rabbit intestine and
those grown in vitro. The bacterial response to hypoxic conditions
required higher expression levels of enzymes involved in
anaerobic fermentation, such as YfiD and TktA. Proteins
associated with resistance to ROS (YgiW and AhpF) also had a
role in the adaptation of bacteria to environmental niches of the
host. YgiW, MetK, and OmpA might participate in a self-
protective process that is similar to biofilm formation. The
results of this proteomic survey will increase our understanding
of host–pathogen interactions.
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