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1. INTRODUCTION 

In recent years, particularly by the work of Palais and Smale, considerable 
progress was made in extending the Morse Theory of critical points of real- 
valued functions defined in a finite dimensional space to functions defined 
in a Hilbert space. Surveys of this development may be found in [19, Chap. 
IV] and in [2]. 

The present paper deals with the following situation: let E be a real Hilbert 
space with elements x, y,... with scalar product (x, y), and norm 
11 x 11 = d(x, x). Let I’ be a bounded open set in E satisfying the following 

ASSUMPTION A. (i) V is arcwise connected, and there exists a positive 
constant C of the following property: To every couple x0 , x1 of points in V 
there corresponds a continuously differentiable curve x = x(t) C v with 
x(O) = x,, , x(l) = xi such that 

(1.1) 

(ii) the boundary v of V is a smooth hypermanifold in the sense of 
[17, Definition 3.21. (We will need the property of such manifolds to have a 
unique exterior unit normal at every point [17, Theorem 4.11.) 

Let f be a real valued function defined on the closure P of V. 

ASSUMPTION B. f is not constant in any ball. Moreover, f has a continuous 
and uniformly bounded differential df(x; h) for x E v (“differential” means 
Frechet differential). Moreover we assume that for some constant M, 
g = grad f (defined by df(x; h) = (g(x), h)) satisfies the inequality 

II &II < M for x E 7. (1.2) 
377 



378 ROTHE 

DEFINITION 1.1. The point x E r is called a critical point off if 

g(x) = 0, (1.3) 

where 0 denotes the zero element of E. A real number c is called a critical 
value (or critical level) off if there exists a critical point x such that 

f(x) = c. (1.4) 

AWJMPTION C (Palais-Smale condition). If on the set S C r,,fis bounded 
while 11 g )I is not bounded away from zero on S then the closure S of S 
contains a critical point [ 11, Condition C]. 

ASSUMPTION D. The critical levels off are isolated. 

ASUMPTION E (Regular boundary condition). g is exteriorly directed on 
V, i.e., 

(g(x), n(x)) > 0 for all x E r, (1.5) 

where n(x) denotes the exterior unit normal to v at x. 
For any real number r, we set 

(f>Y} ={x E Vlf(4 >r>, fr = {x E vIf(4 < 47 
3f =(x E Vlf(x) <r>, {f=r}={XE:V(f(X)=T}, 

and for any couple of real numbers b > a, H,( J,, , ja) denotes the q-th singular 
homology group of the couple (Jb , 3J with a fixed coefficient group over a 
principal ideal domain [3, Chap. VII]. 

In the classical theory of Morse there is attached to every critical level c 
and every nonnegative integer q a group by the following 

DEFINITION 1.2. If a < c < b, and if c is the only critical level in the 
closed interval [a, b] then the q-th critical group C,(c) at level c is defined by 

(14 
It is, therefore, the first task to establish the legitimacy of this definition 

i.e., its independence of a and b under the assumption made above. This is 
done in Theorem 2.3 in whose proof (via Theorem 2.1) Assumption E 
plays a decisive role. (In the special situation where V is a ball, where g(x) - x 
is completely continuous, and where the number of critical values is finite, 
these results are contained in [16]). 

We conclude Section 2 with two theorems on the existence of minima and 
of critical levels and with a few simple examples. 
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By Assumption D the critical values form a countable set. If we denote 
them by ci , cz ,..., we set 

C&J = c:, M,i = rank Cgi, M,=xM,i. (1.7) 
‘E 

Section 3 deals with sufficient conditions for the validity of the inequalities 

R, GM,, (1.8) 

and of the equality 

&=M,, U-9) 

where R, denotes the q-th Betti number of I’ i.e., the rank of H,(V)). We 
recall the following 

DEFINITION 1.3. Let (B, A) and (D, C) be two pairs of sets in E with 
(B, A) r) (D, C). Let I denote the unit interval, and let 6: 

(I3 xI,A xI)+(B,A) 

be a continuous map. Then 6 is said to deform (B, A) into (0, C) if it has 
the following additional properties: 8(x, 0) is the identity map, and under 6 

(B x l,A x l)d(D,C), (D xI,CxI)-t(D,C). 

Theorem 3.1 states that (1.8) is true if in addition to assumptions A-E the 
following one is satisfied. 

ASSUMPTION F. Let b > c, and suppose that c is the only critical level 
in [c, b]. Then there exists a deformation deforming jr, into Jc . (We follow 
the convention by which [ ] indicates a closed, and ( ) an open interval.) 

The proof of Theorem 3.1 is based on a result of Seifert and Threlfall 
[20, Section 5, Satz II] according to which (1.8) is true if their axiom I [20, 
p. 241 is satisfied. It will be shown that the validity of this axiom follows from 
our assumption (Lemma 3.3). 

Similarly the discussion of (1.9) is based on a result of Seifert and Threlfall 
[20; Section 61. 

Assumption F is automaticahy satisfied if the set I’ of critical points is 
finite (Theorem 3.3). 

The addition of Assumption F to our previous assumptions allows us to 
establish the following facts by the same method by which they are established 
in the finite-dimensional case [12, Sections 7 and 81: If U(C) denotes the set of 
critical points at level c, then 
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(Theorem 3.4) and from this, by excision, 

(1.11) 

for any neighborhood W of u(c) whose closure contains no other critical 
points than those of u(c). (Theorem 3.5; the symbol M denotes isomorphism.) 

So far no nondegeneracy assumptions have been made. In Section 4 the 
definition of nondegeneracy of order p 3 2 is recalled (Definition 4.2; for 
p = 2, this definition coincides with the usual definition of nondegeneracy). 
A critical point which is nondegenerate of order p is isolated (Lemma 4.3); 
therefore, it follows easily from Assumption C that there are at most a finite 
number of such critical points. Consequently, if we assume that each critical 
point is nondegenerate of some finite order, there will be only a finite number, 
say N, of critical levels. (There exists at least one critical level by Theorem 
2.5). Our notation will be such that 

cl < c2 < “’ c, 

(cf. the line above (1.7)). Moreover, we set 

(1.12) 

C,(c,) = c,i for i = 1, 2,... N, (1.13) 

and denote by oji, j = 1, 2,... n, , the critical points at level ci . If Wji is a 
neighborhood of oji whose closure contains uji as the only critical point, then 
C$j defined by 

C;j = H,( fcj n Wji, 3ci n Wji - 0;) (1.14) 

is independent of Wii, and is called the critical group at uji. We have 

c,i M direct sum Ci.’ 
i 

(1.15) 

(cf. the corollary to Theorem 3.5). Therefore, 

(1.16) 

where M,a and IM,(uji) denote the rank of CQi and Ci*j, respectively (cf. (1.7)). 
M,(uji) is called the q-th type number of the critical point uji. 

We are thus led to consider a nondegenerate critical point of order p > 2 
which we assume to be 0 and a neighborhood W of 0 whose closure contains 
0 as the only critical point. If, in addition. we assume that 

f (0) = 0, (1.17) 
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then the q-th critical group C,(O) at 0 is given by 

C,(O) = H,(f, n W, j. n W - O), (1.18) 

and the q-th type number M,(O) at 0 is given by 

M,(O) = rank of C,(O). (1.19) 

When it is necessary to emphasize that these quantities refer to the function 
f, we write C,(O;f), M,(O,f), etc. Theorem 4.1 then states that 

(1.20) 

if $J(x) is the p-form given by the p-th differential off at 0. This is a familiar 
result if E is finite-dimensional and if p = 2 in which case it is proved by 
bringing the symmetric quadratic form (ci to its diagonal form. In the general 
case the proof of Theorem 4.1 is based on the approximation Theorem 4.2 
which gives sufficient conditions for an approximation # to f to satisfy (1.20) 
(this theorem seems to be new even in the finite dimensional case); it is then 
shown that these conditions are satisfied if $ is the p-th differential off. 

The proof of the approximation theorem is given in Section 6 and is based 
on the econcept of a “cylindrical neighborhood” of an isolated critical point 
which was introduced by Seifert and Threlfall [20; Section 91 in the finite- 
dimensional case. Section 5 is devoted to its generalization to Hilbert space. 

In Section 4 the approximation Theorem 4.2 is applied to a Taylor approx- 
imation # off. In Section 7 it is applied to obtain a reduction to a finite 
dimensional space. Here, in addition to the assumptions of Section 4, we 
assumef to be of the special form 

where 

f(x) = (p)-’ II 2 IF’ + F(x), P 3 2 and even, (1.21) 

G(x) = grad F(x) (1.22) 

is completely continuous. (Scalars of this form were treated in [15], and 
Section 7 is closely related to some of the results of that paper but care has 
been taken that the present section may be read independently.) It will be 
shown (Theorems 7.1 and 7.2): There exists an n,-dimensional linear sub- 
space En0 of E such that to every linear subspace En of E containing Eno, there 
corresponds an approximationf, to f of the following properties: If fi denotes 
the restriction of fn to En then, grad j, C En, and 

C,(O, f) = C,(@, fn) = C*(@, L)- (1.23) 

From (1.23) it can be deduced that C,(O, $) is finitely generated (Theo- 
rem 7.3). 
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In Section 8, we return to the global situation under the assumption that 
each critical point uji (defined in the line following (1.13)) satisfies the assump- 
tions made in Section 7 concerning the critical point 0, i.e. aj” is nondegenerate 
of even order p,j > 2, and in some neighborhood Wjf of uj”, f is of the form 

where 

f(x) = (p,j)-q x - 0; 1yi +F,,(x - CT;>, (1.23) 

Gii(x - uji) = gradFis(X - oji) (1.24) 

is completely continuous. The goal is to prove the Morse relations [IO, 
p. 1431 

MoZRo 
MI - MO > R, - R, 

M,c - MkeI + ..* + (- 1) MO 2 Rk - R,-, + .*a + (- 1)” R. (1.25) 

M,-MM,_,+...+(I)nMo=R,-R~_l+...+(-lI)nR~, 
for n = 71s . 

Now the proof for these relations given in [12, Section II] shows that it is 
sufficient to verify that certain groups are finitely generated. Under the 
additional assumption that the homology groups HV( I’) are finitely generated, 
this verification is carried out in Section 8 by the use of Theorem 7.2. 

The “principal parts” (1.23) cannot be given arbitrarily since they deter- 
mine the Mk which must satisfy the relations (1.25). This author has not 
treated the problem whether these relations represent the only restriction 
on the principal parts. (The related question whether the inequalities (1.25) 
are the only relations between the M, and I;), has in the finite-dimensional 
case an aflirmative answer if all p, = 2 as was proved by F. John [Sal (see 
also [lo, p. 1451). 

The Appendix (Section 9) contains continuity proofs for the deformations 
used in the earlier sections. 

2. THE CRITICAL GROUPS 

As pointed out in the introduction, the main object of this section is to 
legitimize Definition 1.2. 

LEMMA 2.1. f(x) is bounded in V. 

Indeed, if x is an arbitrary point in V and if M is as in (1.2), one easily 
derives from (1.1) the inequality If(x)1 < ]f(xa)] + MC )I x - x,, 11 for any 
x in the bounded set V. 
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LEMMA 2.2. There are no critical points on P = r - V. 

This is obvious from Assumption E. 

LEMMA 2.3. (i) The set r of critical points off in V is compact; (ii) The 
set A of critical levels is$nite. 

Proof of (i). Let xi , x, ,..., be a sequence of points in r. We have to 
prove the existence of a convergent subsequence. Since by Assumption B, f 
is not constant in any ball and since 2 is continuous, it is easily seen that r 
contains no ball. Using again the continuity of g, we see that there exists a 
sequence yi , yz ,..., of points in V such that 

dYn> f 03 I! g(m)ll = II iAY,) - g(%Jll < n-l, 
II xn --Yn II < n-l. 

(2.1) 

Then if S denotes the set consisting of the elements of the sequence (y,J, 
the closure S of S contains a critical pointy,, (Assumption C and Lemma 2.1), 
and there exists a sequence of integers ni such that yni converges to y,, . But 
then by (2.1), xni converges also to y,, . 

Proof of (ii). Suppose the assertion is not true. Then there exists a 
sequence {cn} of different critical levels, and a sequence (xn} of different 
critical points such that c, = f (x,J. By (i) there exists a sequence ni of integers 
such that xnj converges. The limit point x0 is critical, and, therefore, a point 
of V (Lemma 2.2). But cni =f(+ converges to f&). Thus the critical 
levelf(x,) is not isolated in contradiction to assumption D. 

LEMMA 2.4. For p > 0, let 

Ku = {x E v I Q) >, d-9 (2.4 

where 6(x) denotes the distance of the point x from the critical set P. Then there 
exists a positive m = m(p) such that 

II &)ll > 44 fw x E K . (2.3) 

Proof. If the assertion were wrong there would exist a sequence of points 
x, in K, such that limg(x,J = 0, and by Assumption C and Lemma 2.1, 
some point of r would be in the closure of the sequence (xn}. This contradicts 
the fact that, by definition of K,, , the distance of x to the set r is not smaller 
than the positive constant p. 

LEMMA 2.5. Let P be a closed set of real numbers which has no point in 
common with the set A of critical levels. Let p,, be a positive number not greater 
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than the distance between the sets P and A. (Such pO exists by Lemma 2.3). 
Finally, let 

s, = {x E v If(x) E P}. 

Then 

S,CK 

f OY 

0 < P d POpQy, 

where M and C aye as in (1.2) and (1.1) respectively. 

Proof. Let x0 E V, but 

xo+K, 

for some TV satisfying (2.6). We have to prove then that 

x0 4 SiJ * 

By definition of K, , (2.7) implies that 

s&o) -=c CL d P&MW. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.10) 

Since r is compact, there exists a y0 E r such that 

S(xo) = II x0 - Yo II * (2.11) 

Now from (1.1) and (1.2) it is easily seen that 

If (xo) - f(ro)l d MC II - ~0 II . 

From this, (2.10) and (2.1 l), the inequality 

lf(xo) -f(ro)l < PO (2.12) 

follows. But y. E r, and f (‘yo) E A. Thus (2.12) implies that f (x0) has a 
distance less than y, from A. Thus, by definition of po, f (x0) $ P which by 
(2.4) proves (2.8). 

THEOREM 2.1. In addition to the assumptions made previously, we assume g 
to be Lipschitz. Let x(t) = x(t, x0) be the solution of the problem 

dx 
z= - g(x), x(0, x0) = x0 E v. (2.13) 

Then, x(t, x,,) E Vfor allpositiwe t. 
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Proof. The assertion is obvious if x,, is a critical point, for then x(t) = IW,, 
for all t. 

Let x0 E V be not critical and suppose the theorem to be wrong. 
Then, there exists a positive t, , such that x1 = x(ti) E $’ while x(t) E V 

for 0 ;< t < t, , and from (2.13) and (1.5) we see that 

(4%). ($) ,=,,> = - M%) .d%)> < 0. 

To arrive at a contradiction and thereby prove our theorem, we will show 
that 

where n, = n(x,). (2.14) 

Now the tangent space T to P at xi is a linear subspace of E of codimension 1 
[17, Theorem 3.11. Consequently, every z E E has the unique representation 

x = an, + 7, (3 real, -q E T. (2.15) 

In particular, 

x(t) - x(h) -__ = u(t) a, + 77(f), t - t, 
o<t<t,. (2.16) 

Let us assume first that there exists a t2 in the open interval (0, tl) such that 
o(t) > 0 for t, < t < t, . Since 7) and n, are orthogonal, we see from (2.16) 
that 

( nl ,x(t) - x(h) t - t, > 
= u(t) 3 0 for t, < t < t, 

which obviously proves (2.14). 
If the assumption just made is not true, then there exists a monotone 

increasing sequence of positive real numbers t, , t, ,..., converging to t, and 
such that a(t,) < 0, or by (2.16), 

( 
eJ - x(h), n1 < 0 

t - t, > 
We will show that 

lim 
( 

X(tm) - x(tl) , n 
1 

) 

= 0 
m-m tvt - t1 

3 

(2.17) 

(2.18) 

which implies (2.14). 
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NOW let 6 E P and, as before, x1 = x(tr). Then from (2.15), with 
z = f - Xl , 

6 - x1 = on1 + 7). (2.19) 

We recall the following facts [17, Theorem 3.21: 7 is, for a small enough 
neighborhood of x1 , an admissible parameter for P: 

t = I(q), (2.20) 

with the additional properties 

Xl = 4(@), W@, 7) = 7. (2.21) 

Moreover [17, pp. 370, 3711, there exists a positive e such that the “cylinder” 

2 = {x = ~~~> + An1 I II ?J II < % I x I -=c 4 (2.22) 

has the following properties: 

(a) (2.20) and (2.21) hold in V n 2 such that, in particular, by (2.21) 

&I) -3 = 7) + +I) with limY0 = @ 
g-9 II 77 II 

(2.23) 

(b) the points of 2 are interior or exterior with respect to V according to 
whether h is negative or positive 

(c) 2 contains a spherical neighborhood N of x1 . 

With the notation x(t,,J = x, , we see from (2.15), with z = x, - x1 , 
that 

XT72 - xl = wh + ‘I~ , 0, real, sn E T. 

Since t, -+ tl , there exists an integer m,, 2 2 such that x,,, = x(t,,J C N E Z 
for m 2 m, . Therefore (see (2.22)) 

x, = l&J + Lfh , Am real, m > m, . 

Subtracting X, and taking the scalar product with n1 , we obtain 

<%a - Xl>%) = G+Im) - $>%> +&a* 

From this equality, from (2.17) and (2.23), and by noting that tm - t, < 0 
for m > m,, , and that rlrn and n, , are orthogonal we see that 
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But by assumption, x, = x(tm) E V for m > 2. Therefore, A, < 0, by 
property (b) above, and we see from (2.24) that 

Thus for the proof of (2.18) it will be sufficient to show that 11 r(&/(tm - ti)/l 
converges to zero. For this again, it will, on account of the second part of 
(2.23), be sufficient to prove that 

//rim/l = iI%Jl /I% -Ml 

IL - &I II &n - x111 . I4n - hl 

is bounded in m. But the first factor at the right is < 1 since 7m is the projec- 
tion of x, - x1 on the tangent space T while the second factor approaches 

dx ( 1 -z- +t, = -&1) 

asm+ co. 

THEOREM 2.2. Let a < b, and suppose that the closed interval [a, b] contains 
no critical level. Then 

f&(3* ,3a) = 0 (2.25) 

(for the notation used, see the lines following the statement of Assumption E in the 
Introduction). 

Proof. If jl, = 4, the empty set, then Jb =ja since 3a C3b, and (2.25) 
is true (see [3; I, Lemma 8.11). 

Let now $, # 4, and x0 ~3~ . Then by Theorem 2.1, x(t, x,,) stays in the 
domain V off and g for all positive t. Moreover, from Lemma 2.5 (with 
P = [a, b]) and Lemma 2.4 follows the existence of a constant m such that 

IIg(4ll 3 m > 0, 
if 

a <f (4 d b. 

These facts imply that the deformation d defined by 

(2.26) 

(2.27) 

d(xo , T, a, b) = d(xO , T) = x “bmT a) 
( ,x0 , ) O<T<l, (2.28) 

deforms in the sense of Definition 1.3 the couple (fb ,J,) into the couple 
(Ja ,3J. For the proof of th is assertion we refer to [16; pp. 242, 243; in 

40913 W-I = 
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particular, Lemma 4.121. This proves the theorem by [16, Corollary to 
Lemmas 2.1 and 2.31. 

THEOREM 2.3. Let b > p > c > ~11 > a, and let c be the only critical 
value in [a, b]. Then 

WJ, 7-L) - f&LA3 La (2.29) 

(fb ,“a -(A3 YJ&h (2.30) 

where the symbols w and N denote isomorphism and homotopy equivalence 
[3, I, 11.1 or 16, Definition 2.3, resp.]. 

Proof. (2.30) implies (2.29) [3, I, 11.21. To prove (2.30), we will show 
that 

(.A3 7-L) - (A3 LL> - ub ,Ja>. (2.31) 

Now from the properties referred to in the proof of Theorem 2.2 it is easily 
seen that 0(x, , 7, a, a)) (defined by (2.28)) deforms the first couple in (2.31) 
into the second. This proves the equivalence of these couples by [16, Lemma 
2.11. The equivalence between the second and third couples in (2.31) is 
shown correspondingly. 

Obviously, Theorem 2.2 makes Definition 1.2 legitimate. 
We conclude this section with applications of the previous results and some 

simple examples. 

THEOREM 2.4. There exists at least one critical point in V. 

Proof, Let us assume that the assertion is wrong. We claim first that 
under this assumption there exists a constant m such that (2.26) is true for all 
x E V. Indeed, otherwise there would, by assumption C, exist a critical point R 
in the closure 7 of V. But then by Lemma 2.2, 3 E V in contradiction to the 
assumption made in the first line of this proof. 

Thus (2.26) is true in V for some m. If x(t) is as in Theorem 2.1, we see 
from (2.13) that df (x(t))/dt = - jjg(x)jl” < - m2. Therefore,f(x(t)) + - co 
as t + + co. This contradicts Lemma 2.1, since x(t) E V for all positive t. 

THEOREM 2.5. (i) There exists an x E r such that 

f(Z) <f(x) for all x E 7. (2.32) 

(ii) Z~X satis$es (i), then f E V. 

(iii) ;f f satisfies (i) then E =f(~) is a critical level, and every x satisfring 
Z = f (x) is a critical point. 
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Proof of (i). By Lemma 2.1, f  has in P a finite greatest lower bound a. 
Under the assumption that our assertion is wrong, a is not in the range off 
and, therefore, not a critical value. On the other hand, there exists a smallest 
critical value c (Theorem 2.4 and Lemma 2.3). Then a < c. If b is such that 
a < b < c, there exists an x,, E V such that 

a <f(xo) < b < c. (2.33) 

Now the interval [u, b] has from the set n of critical 1eveIs the positive distance 
c - b. Therefore, there exists a positive m such that (2.27) implies (2.26). 
Now, again, if x(t, x0) denotes the solution of the problem (2.13) then by 
Theorem 2.1 and by the definition of a 

a <f (x(2, x0>> for t > 0. (2.34) 

The inequalities (2.33), (2.34) together with the fact thatf (x(t, x,,)) is decreas- 
ing in t imply that (2.27) holds with x = x(t, x0) for all positive t. But then 
(2.26) holds with x = x(t, x0) for all positive t, and from this we conclude 
as in the last paragraph of the proof of Theorem 2.4 thatf(x(t, x,,) --f - to 
as t -+ + co. But this contradicts (2.34). 

Proof of (ii). Let us assume there exists an x E r satisfying (2.32). Then 
for CT positive and small enough, x - (m(a) is an interior point of V since 
- n(S) is the interior unit normal to v at x [16, Definition 4.11. Therefore, 
we see from (2.31) that f  (5 - CVZ(%)) -f (3) > 0, which implies 

On the other hand, the left member of (2.35) equals - ((R(Z), n(a)) and is, 
therefore, negative by (1.5) in contradiction with (2.35). 

This finishes the proof of (ii). Assertion (iii) is an obvious corollary to 
assertions (i) and (ii). 

EXAMPLES. Let E be the Hilbert space of points x = (x1 , xa ,...) with 
C xi2 < cc and with (x, y) = C xiyi , and let f  (x) = (2)-l C xi”(l + hi), 
where hi j, 0. 

If V = I’, is the open unit ball it is easily verified that all assumptions of 
Theorem 2.5 are satisfied, and that z = 0 E V is the only minimum and the 
only critical point off in 7. We note that the point (1, 0, O,...,) E Y is the 
only maximum point in i;i. This shows that Theorem 2.5 becomes wrong 
if the minimum condition (2.32) is replaced by the corresponding maximum 
condition. 
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If Y = Vs is the ring: 1 < 11 x )/ < 2, then it is easily verified that Assump- 
tion E is not satisfied at the points of the unit sphere S, C us , and that f 
takes no minimum in rs . 

V, is convex, V, is not. But the validity of the assumptions of Theorem 2.5 
is not restricted to convex domains as is easily verified in the following 
example: 

f(x) = (2-1u~II - 1)"s v = v3 = (x 12-l < /J x 11 < 2). 

Here g(x) = ~(11 x II - 1Yll x II . Th e critical and minimum points are the 
points of the unit sphere S, C k’s . 

3. ON THE RELATIONS (1.8) AND (1.9) 

DEFINITION 3.1. Let s, be a singular q-simplex in E, i.e. a map s,, : d, -+ E, 
where d, denotes the closed Euclidean q-simplex whose vertices are the unit 
points on the axes of the (q + l)-dimensional Euclidean space E*+l [3, VII, 
2.21. Then the support ] sQ ] of sG is the point set s&J C E. If, for 
j = 1, 2,..., i, s*j are singular q-simplices in E, and if gj are nonzero elements 
of the coefficient group, then the support ( c, j of the singular q-chain 
c, = $=, s,jgj is the set & 1 s*j I C E. The support of the zero q-chain is 
the empty set 4. For any set S, “c~ C S” means that 1 C~ 1 C S. 

LEMMA 3.1. (a) 1 c, j is compact, (b) a real-valued continuous function 
de$ned on I c, I takes there a maximum and a minimum. 

Indeed, (a) is obvious since A, is compact, each S,j is continuous, and the 
union defining ) c, 1 is finite. (b) follows from (a). 

DEFINITION 3.2. Let V and f be as in the previous sections. Then, for 
any singular q-chain c, , whose support is in V, we set 

(3.1) 

Moreover, if & is a nonzero element of H,,(V), i.e., a homology class of non- 
bounding singular cycles Z~ C V, then 

(Cf. [20, p. 241). 
It follows from Lemma 2.1 that ~(2~) is finite. Obviously, 

(3.2) 
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and for c > 0 

4%) < CL(%) + E for some x, E ga . (3.4) 

LEMMA 3.2. ~(2~) is a critical value. 

Proof. Let c1 < ca < a-. c, be the critical values off (cf. Lemma 2.3). 
We will first show that 

PW 2 Cl * (3.5) 

Suppose this inequality is not true. Then, by (3.3) and (3.4), there exists a 
Z, E 2, such that 

4%) B #44 < Cl. (3.6) 

Now ~(4 = f (4 f or some x0 E 1 x, 1 C V by Lemma 3.1. But 

by Theorem 2.5. Thus &z,J =f(x,) 3 c1 which contradicts (3.6). 
From (3.5) thus proved we see: If our lemma is not true, then 

cc < 44) ==I cc+1 9 for some positive integer 5 not greater than N provided 
we choose for c~+~ a number greater than max(c, , ,(a,). Let now a, b be 
such that cy < a < @,) < b < cc+1 . Then by (3.3) and (3.4) there exists a 
Z, E f, such that 

cc < a < ~(.&a) d P&J < b < cifl . (3.7) 

Since [a, b] contains no critical value, the deformation (2.28) deforms jb into 
ja . In particular, the cycle Z, is deformed into a cycle z,’ Cja . Then 
&p’) < a, which, by (3.7) implies ~(zql) < ~(a,). This contradicts (3.3), 
since zq’ E 9, . 

DEFINITION 3.3. Let 9, be a nonzero element of H,(V). A cycle sa E Zn, 
for which ~(z,,) = &?,), is called a minimal cycle for 1, [20, p. 241. 

LEMMA 3.3. Provided that the Assumptions A-F stated in the Introduction 
are sati.$ed, the homology class $ of the preceding definition contains a minimal 
cycle. 

Proof. By Lemma 3.2, &?,) is a critical value. Therefore, by Lemma 2.3, 
there exists a b’ > &$) such that &?,) is the only critical value in [y(sJ, b’]. 
Then by (3.3) and (3.4), there exists a cycle Z, E f, such that 
@,) < p(zJ < b’. If the equality holds here, the lemma is true. If the 
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inequality holds, let S be a deformation with the property postulated in 
assumption F with c = #,J and b = &,J. Then the support of the cycle 
z,’ obtained from zQ by the deformation 6 lies inJc , i.e., ~(z~‘) 6 c = &Q. 
Here the equality sign must hold, since z~’ E & . Thus z, is a minimal cycle. 

THEOREM 3.1. Under the assumptions of Lemma 3.3, the relation (1.8) is 
true. 

Proof. The theorem is a consequence of Lemma 3.3 since as proved by 
Seifert and Threlfall in [20, p. 25, Satz 21, the existence of a minimal cycle 
implies (1.8). 

Remark. Seifert and Threlfall work with singular chains as defined by 
them [20, Section 21 and with integers modulo 2 as coefficients. However, 
their proof, referred to above, remains valid if, as in the present paper, 
singular chains as defined in [3, VII] with coefficient groups over a principal 
ideal domain are used. Let us mention that in other respects their proof 
covers a more general situation than the present one: E is a neighborhood 
space and f is continuous. 

Our next goal is to find sufficient conditions for the validity of (1.9). 

DEFINITION 3.4. We sag that Assumption F is strictly satisfied if, among 
the deformations whose existence is required by Assumption F, there is one 
leaving every point of JC fixed during the deformation. (In other words, jC 
is a deformation retract ofjJ. 

LEMMA 3.4. Let Assumptions A-E be satisjied, and suppose that the closed 
interval [a, b] contains no critical value. Then fa is a deformation retract of fb . 

Proof. For x,, ~3~ -jb, , 0 < t < 1, let x(t, x0) be the solution of the 
problem 

dx 
dt= 

g(x) 
- (f(%) - 4 ,,g(x)(,2 9 x(0, x0) = x0 . 

We then set, for 0 < t ,( 1, 

8(x0 , t) = ;r xo) ! for x E3b -3, 
for x0 E3a. 

Noting that (2.26) holds if (2.27) is true, and that 

df(xW -zzz 
dt 

(3.10) 
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and that, therefore, 

f@(t) =f(xo) - (f&3) - 4 4 (3.11) 

one easily verifies that 8(x,t) is the required deformation retraction (cf. [16, 
Section 51). 

LEMMA 3.5. Let Assumptions A-F be satisjed, the last one strictly. Let Ba 
be the zero element of H,(V), and let z, be a bounding cycle in V, i.e., zp E 8, . 
Then there exists a number y  = y(z,) such that 

(i) zq bounds on j, , i.e., there exists a chain co+1 CJ, with ta+I = zq . 

(ii) .z, does not bound on fy . 

Proof. We set 

(3.12) 

and claim that y has the required properties. Since 

for every c~+~ whose boundary is xq we see that 

PC%) G Y. (3.13) 

Now since there are only a finite number of critical values (Lemma 2.3), 
there exists a b > y such that the half open interval (y, b] contains no critical 
value (whether y is a critical value or not), and by definition of y, there exists 
an (Y in this interval and a cQ+r such that 

Now there exists a deformation which retracts Jb onto j, , by Lemma 3.4 if y 
is not a critical value, and, by assumption (cf. Definition 3.4), if y is a critical 
value. Then, if c:+~ denotes the deformed cq+r , we have c;,, = x, since, due 
to (3.13), z, remains pointwise fixed under the deformation. This proves 
assertion (i). Assertion (ii) follows directly from the Definition (3.12) of y. 

DEFINITION 3.5. Let 1, E Ha(fb , fb), and z, E 1,. Then x, is called a 
relative q-cycle onX modulo fb; such z, is said to be extendable below b (to an 
absolute cycle) if there exists a q-chain cq C fb such that zq + c, is a cycle 
[20, p. 261. 



394 ROTHE 

If b is not a critical value and if Assumptions A-E hold, then it is easily 
seen from Lemma 3.4 that every relative cycle onJa module fb is extendable 
below b. 

THEOREM 3.2. Let Assumptions A-F be satisfied, the last one strictly. 
Suppose that for every critical value c any relative cycle on -& modulo fc is 
extendable below c. Then (1.9) holds. 

Proof. By Lemma 3.3 every nonzero homology class contains a minimal 
cycle; moreover, to every bounding cycle there corresponds a number y 
of the two properties stated in Lemma 3.5. But these two properties together 
with the condition stated in the second sentence of the theorem imply (1.9) 
as was proved by Seifert and Threlfall in [20, pp. 26, 271. (Cf. the remark 
following the proof of Theorem 3.1.) 

We now give a sufficient condition for Assumption F to be satisfied 
strictly. 

THEOREM 3.3. Suppose that Assumptions A-E are satis$ed and that the 
set r of critical points is finite. Then Assumption F is strictly satisfied. 

Proof. Let b > c, and let c be the only critical level in [c, b]. We have to 
define a deformation S(x,, , t) retracting& onto 3, . This is done by using the 
x(t, x0) defined in the proof of Lemma 3.4 (with a replaced by c in (3.8)) 
with the difference that in the present case x(t, x,,) may not be defined for 
t = 1 since Ijg(X)ll = 0 f or some points x on the level c. However, f (x(t, x,,)) 
is decreasing for 0 < t < 1, and Em,,,-f(t, x0)) = c by [16, Lemma 5.31. 
Moreover, on account of the assumed finiteness of r, limt,,- x(t, x0) exists 
[16, Theorem 5.11. Due to these properties, we may define 

I 
44 x0) if x0 Efb -Jo O<t<l 

6(x0 , t) = iin_ x(t, x0) if x0 E.fb -L > t=l (3.14) 

x0 if X0E.h O<t<l, 

and S is seen to be a deformation retractingjb ontoj, (cf. the proof of Lemma 
5.4 in [lq). For the continuity of S(x, , t) see Lemma 9.2. 

In establishing Definition 1.2 of the critical group C,(c) at level c we used 
Assumptions A-E. By the use of the additional Assumption F it is possible 
to write C,(c) in a new form useful for later purposes and also to define a 
critical group at an isolated critical point. The rest of this section is devoted 
to this task. The technique used is essentially the same as the one employed 
in [12] for the finite dimensional case (cf. also [IS]). 

THEOREM 3.4. Suppose Assumptions A-F to be satisfied, the last one strictly. 
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Let c be a critical value and let (I = u(c) denote the set of criticalpoints at level c. 
Then, 

C,(c) = %(3c ,3c - 4. 

Proof. Let a, b be such that a < c < b and such that c is the only critical 
level in [a, b]. We have to prove 

Ku0 93c - 4 = ftA3b ,Jfa). (3.15) 

Now by assumption, there exists a deformation which retracts & onto 5 . 
Since Ja CJc such deformation retracts the couple (fb ,fa) onto the couple 
(J, ,3J. Consequently, ( see, e.g., [16, corollary to Lemmas 2.1 and 2.21) 
H&j, ,3J M H,( 3c ,3J, and it remains to prove 

fwc >3c - 4 - fG(3c ,3af,). (3.16) 

Now if c is a minimum value thenfa is empty and the right member of (3.16) 
equals I1l~(3~ , 4) = H,(JJ. But, by Theorem 2.5, all points at the minimum 
level c are critical. Therefore, Jc - o is empty, and the left member of (3.16) 
also equals H,( 3J. 

Let then the critical value c be not a minimum value for J Then, by 
Theorem 2.5 there exists a minimal critical value c’ < c. By definition of a, 
we see that c’ < a < c. Thusja ljO, which shows that 3, is not empty. We 
now consider the triple 3c 33G - u r>ja , Since ja is not empty we conclude 
from [3, I Theorem 10.41 that (3.16) is a consequence of 

fwc - a,Ja) !a+ w3a >3,). (3.17) 

To prove (3.17) we note that g(xa) # 0 for x,, E (jG - u) - 3,. Thus one 
sees easily that the deformation obtained by replacing in (3.9), jb by Jo - u 

retracts the couple ( Je - u, Ja) into the couple ( ja ,3J. This proves (3.17). 

Remark to Theorem 3.4. In a similar way, it may be proved that 

C,(c) r-25 K2(fc u U? J-c>* 

THEOREM 3.5. With the notations and assumptions of Theorem 3.4, let W 

be a netkhborhood of u whose closure contains no other critical points than those 
of u. (The existence of such a Wfollows easily from Lemma 2.3). Then 

C,(c) - w3c n w,/‘c n w - 4. (3.18) 

Proof. This follows from Theorem 3.4 and the excision-theorem [3, VII, 
9.11 since the couple at the right member of (3.18) is obtained from the couple 
( jc , 3c - u) by excising Jc - W. 
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COROLLARY TO THEOREM 3.5. With the assumptions and notations of 
Theorem 3.5 we assume that u = ul oj , where the oj are closed and disjoint. 

Let Wj be a neighborhood of oj such that the closures Wi are disjoint and such 
that the closure of the neighborhood W = UT Wj of o contains no critical points 

not belonging to u. Then C,(c) is isomorphic to the direct sum of the groups 
H,(jO n Wj ,jO n Wj - u)). Indeed, this direct sum is isomorphic to the 
group at the right member of (3.18) by the “direct sum theorem” [3, I, 13.21. It is 
easy to see that the groups H,(jc n Wj ,jc n Wi - uj) are independent of the 

particular choice of Wi . 

With the notations used in (1.7) and (1.12) let ui, ut, Wif, Wi (i = 1, 2,... N, 

j = 1, 2,... ri) be defined with respect to ci as u, uj , Wi , W were just defined 
with respect to c. Moreover, let 

M,(U;) = rank of H,(jG n Wt, jc n Wji - oji). 

Then, by the above corollary 

(3.19) 

M*i = g1 kiyuji), (3.20) 

DEFINITION 3.6. If the set P of critical points is finite then the component 
uii of I’ introduced above will always denote a set consisting of a single point. 
In this case, we call the group whose rank is the right member of (3.19) the 
q-th critical group off at the critical point uji and denote it by C,(uji); its 
rank (3.19) is called the p-th type number at uji. If there is need to emphasize 
that we deal with the function f, we write Cg(uji; f), M*(uji; f) etc. 

4. NON DEGENERATE CRITICAL POINTS OF ORDER p 

For p > 2 let E, denote the product of E p-times by itself. Let 
Q(h, , 4 ,..., h,) be a map of E, into the reals which is linear and continuous 
in each hj . Then, as is well known, 

I Q(h, , h, ,..., 4J~CIh~I/hzI~~~lh~l (4-l) 

for some constant C. If, in addition, Q is symmetric, it is called a p form. 
In this case, we set 

Q(h) = Q(h, , h, ,..., h,) if h, = h, ,..., h, = h (4.2) 

and 

Q(h;h)=Q(h1,h2 ,..., h,-,,h) if hl=hz=*..hDvl=h. (4.3) 
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The differential dQ(h; k) of Q(h) with “increment k” exists and is given by 

dQ(k A) = pQ(k k). (4.4) 

(This is easily seen from the binomial formula for Q(x + h); see, e.g., 
[9, Section 40 (3)]). Since, by definition of the gradient, 

dQ(k k) = (grad Q(h), k), 

we see from (4.4) that grad Q is homogenous of order p - 1. 

DEFINITION 4. I. The p-form Q is called nondegenerate if there exists 
a positive constant m such that 

II grad Q@)li 3 m II h P-l. (45) 

We recall some facts about differentials. Let N = N(q) be a convex 
neighborhood of the point x0 E E, and let $ be a map of N into a Hilbert 
space F. For the definition of the j-th differential d$A(x,,; h, ,.,., h,) of $ at x,, , 
we refer to the literature (see, e.g., [I; VIII.121 or [4]). We note that continuity 
of the differential at x0 means that to each positive E there corresponds a 6 
such that 

I/ d$qay h, )... hj) - d+!(x,; h, ,... hj)ll 

< 6 II 4 II ... II 4 II for j/ x - x0 j/ < 6. (4.6) 

We set d”4(x) = #(x), and for j = 0, l,..., we write # E Cj(x,) to indicate that 
dy(x; h, ,...) hj) exists and is continuous for all x in some neighborhood of x0 . 
For every set 5’ C E, we write $ E P(S) t o indicate that # E 0(x,) for every 
x0 E S. Since the j-th differential is linear and continuous in each hi , it 
follows from (4.1) and (4.6) that for a 9 E Cj(x,) there exists a neighborhood N 
of x0 and a positive constant K such that 

II a+; 4 ,*--, 43 < K II 4 II ... II 4 II for x E N(x,). (4.7) 

We recall further that if # E C?(N) for some open convex neighborhood N of 
x0 , then 8$(x; h, ,..., hj) is symmetric in h, ,..., hj for each x E N. Thus for 
such x, &$J(x; h) (see (4.2)) is a p-form in h. From (4.7) we see that for some 
N(x,) and some positive K, 

II 4W 4 -=c K II h IP for x E N(x,). (4.8) 

LEMMA 4.1. Let z,b = f  6e a real-valued function in CP+l(xo) (p 3 0). Then 
g = grad f E 0(x,) and 

djf(x; h, ,..., hi) = (d+‘g(x; h, ,..., hj-l), h,) foforj = 1,2 )...) p + 1. (4.9) 
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We omit the proof since there is no difficulty in extending (by induction) 
the proof given in [17, Lemma 2.21 for the case p = 1 to arbitrary p. 

LEMMA 4.2. Let f be as in the preceding lemma with x0 = 8, and let 
g = gradf. We suppose that 

&f(@; h) = 0 forj = l,...,P - 1;P > 2. (4.10) 

Then there exists a constant K and a neighborhood N of x0 such that for x E N 

If@) -f(@)l <Kllxll' (4.11) 

and 

II &)ll < K II x lip-1. (4.12) 

Proof. By Taylor’s theorem [I, VIII, 14; 51 we see from (4.10) that, 

f (iv) -f (@) = J; dpf(tx; x) (;pLt;; dt. 

This together with (4.8) proves (4.11). 
To prove (4.12) we note that by Lemma 4.1,g E G’(Q), and that by (4.9) 

and (4.10) 

djg(@; h) = 0 forj = 0, l,..., p - 2. (4.13) 

Therefore, (4.12) follows again from Taylor’s theorem (applied to g) and 
(4.8) (with $ = g and with p replaced by p - 1). 

DEFINITION 4.2 (cf. [14, Definition 2.61). The real-valued function f is 
said to have 0 as nondegenerate critical point of order p 3 2 if f E C*l(S), if 
(4.10) is satisfied, and if the p-form dpf (0; h) is nondegenerate in the sense of 
Definition 4.1. 

LEMMA 4.3. 8 is a nondegenerate critical point off c Cp+l(S) ;fand only ;f 
there exists a neighborhood N(B) of 0 and two positive constants k and K such that 

k II x Ilp-l -=c II &>ll ( K II x IP forx EN(@). (4.14) 

Proof. Let the symbols d, and grad, written in front of dpf (x; h) denote 
differential and gradient operations, resp., operating on the second variable h, 
while, as before, d and grad refer to the first variable x. With this notation, 

d;,dy(@; h, ,..., h,; k) = pdy(8; hl ,.a,, h,-l; k) 
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if h, = h, ,..., h, = h (cf. (4.4) and (4.3)). From this and (4.9), we obtain 

d,df’f(@; h, ,..., h,; k) = (pdp-lg(8; h, ,..., h,,), k) for h, = *se = h, = h; 

and from this we conclude that 

grad, dy(@; h) = pdD-lg(@; h). (4.15) 

This equality together with Definitions 4.1 and 4.2 shows that a necessary 
and sufficient condition for 0 to be a nondegenerate critical point of order p 
is that, in addition to (4.10), 

d’-lg(@; h) >, m, Ij h lpl (4.16) 

for some positive constant m, . 
Suppose now that 8 is nondegenerate of order p, and let us prove (4.14). 

Then, since (4.10) holds by assumption and since, as shown in the proof of 
the preceding lemma, (4.10) implies (4.13) we see from Taylor’s theorem 
that 

g(x. = dp-W; 4 + s’ dpg(tx; x) (t,--‘;;’ dt. 
(P-l)! 0 

(4.17) 

From this, from (4.8) (with $ = g), and from (5.16) (with h replaced by x), 
we see that in some neighborhood of 0, 

which obviously proves the assertion pertaining to the left part of (4.14). 
The right part of (4.14) follows from (4.12). 

Conversely, suppose (4.14) to be true. We have to prove (4.10) and (4.16). 
For the proof of (4.10) it will, on account of (4.9), be sufficient to prove (4.13). 
Suppose, (4.13) not to be true, and let j. be the smallest nonnegative integer 
< p - 2 such that the j,-th differential of g at 0 is not zero, Then the equation 
which is obtained from (4.17) by replacing p - 1 by j, holds. From that 
equation, from the left part of (4.14), and from the fact that j, < p - 2, 
one easily obtains an inequality of the form 

/I d’og(@; x)\l < const 11 x 113’0+1 for 11 x Ij 

small enough which is in contradiction with diog(@; x) ‘being homogeneous 
of degree j, . 

From (4.13) thus proved we see that (4.17) holds, and from this equation, 
from (4.14), and from (4.8), an inequality of the form (4.16) (with h replaced 
by x) is easily derived for small enough 1) x 1) . 
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THEOREM 4.1. Let 0 be a nondegenerate critical point of order p for f.  For 

convenience, we aissume 

f(o) = 0. (4.18) 

Let 

Then, for every q = 0, 1, 2 ,..., 

C,(O;f) = C*(@;fA (4.20) 

where C&O; f) and C&O; f,) denote the q-th criticalgroups at 0 off and f, resp. 
(cf. Definition 3.6). 

The proof is based on the following. 

THEOREM 4.2 (Approximation Theorem). Let 0 be a nondegenerate critical 

point qf order p for f.  Let (4.18) be satisfied. Let w and m be two positive numbers 
such that 

II &>ll 3 2m II x Ilp-1 for II x II < R. (4.21) 

(Such m and R exist by Lemma 4.4). Let zj E 0+1(O) with #(O) = 0. We suppose 
that y(x) = grad #(x) has the following property: To each r) > 0, there corres- 
ponds a positive R, < i? such that 

II&> - r(x)ll < 77 II * P1 for II x II < 2% . (4.22) 

Under these assumptions, (i) 0 is a nondegenerate critical point of order p for #, 
and (ii) 

C*(O; f) = C&O; #) for q = 0, 1, 2 ,..* . (4.23) 

The proof of this theorem will be given in Section 6. We now prove that 
Theorem 4.2 implies Theorem 4.1 by showing that # = f, satisfies the 
assumptions of Theorem 4.2. Obviously, I&@) = 0. Moreover, by (4.15) 
and (4.19), 

(4.24) 

which shows that y(0) = 0. Finally, it follows from (4.24) and (4.17) that in 
some neighborhood of O,g(x) - y(x) equals the integral in (4.17). Its norm 
is, therefore, (cf. (4.8)) majorized by (K (1 x II/p!) (j x lip--l, which shows that, 
for 7 given, (4.22) holds if K2R&! < 7. 
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5. THE CYLINDRICAL NEIGHBORHOOD OF AN ISOLATED CRITICAL POINT 

This useful concept was introduced by Seifert and Threlfall in [20, 
Section 91 in the finite-dimensional case. In the present section this concept is 
generalized to the Hilbert space case. In the next section it will be applied 
to the proof of the Approximation Theorem 4.2. 

Let 0 be an isolated critical point 0f.f. We assume (4.18). For R > 0, we 
denote by B(R) = B(@, R) the open ball with center @ and radius R. We 
assume R to be such that 0 is the only critical point in B(2R). We consider 
the solution e(t) = t(t, x0) of the problem 

d5 
dt= 

&a 
II dtw ’ 

t(O, x0) = x0 E B(R) - (0). 

Since 

W&N -Ji- = (gca $) = - 1, f(W) -f(Xo) = - 

(5.1) 

t, (5.2) 

we may introduce a new parameter 

T ==.mw and set X(T) = 47, x0) = S(t), To =f(Xo>~ (5.3) 

With these notations, the problem (5.1) takes the form 

dx g(x) -- 
JG - II &)ll” ’ 

~(7~) = x0 E B(R) - (0). (5.4) 

We refer to the solution x(T) of (5.4) as the gradient line through x,, . 

LEMMA 5.1. Let X(T) and B(R) be as above. 

I. We consider x(T) for 7 < To =f(x,). Then either there exists a point 
R E B(R) such that 

lim x(T) = ?? 
TlfW 

while X(T) E B(R) for f(Z) < 7 <f(x,), or 

‘jh$ X(T) = 0. (5.5) 

In this case we say that the gradient line x(T) ends at 0. 
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II. We consider X(T) for f(q,) = T,, 6 7. Then either there exists a 
point z E B(R) such that 

while X(T) E B(R) for f(q) < T cf(~?), or 

lii x(7) = 8. (5.6) 

In this case, we say that X(T) starts from 0. 

Proof. The proof given for I in [15, Lemma 4.81 remains valid under the 
present assumptions if in that proof the reference to the corollary to Theo- 
rem 2.2 of [15] is replaced by reference to Lemma 2.1 of the present paper 
while the reference to Lemma 4.5 of [15] is replaced by reference to Lemma 
2.4 of the present paper. The proof of II is essentially the same as that of I. 

DEFINITION 5.1. Let R be as above, let 0 < R, < R, and let E be a 
positive number. Then the cylindrical (RI , e)-neighborhood C(R, , .E) of 8 
is defined as follows: 

C(R, , e) = C+(E) u C-(E) u Z(R, , c) u {O}, (5.7) 

where 

C+(E) is the set of those points x,, on gradient lines ending at 0 for which 
0 -ws> -=I E> 

C-(c) is the set of those points x,, on gradient lines starting from 0 for which 
- c cf(xo) -=L 0, 

and where Z(Rl , G) is the set of points x0 satisfying two conditions: 
(i) - E <f(xJ < E, (ii) x0 lies on a gradient line which intersects the set 
Z(R,) = (x If(x) = 0 and 0 < 11 x )I < RI}. If we want to emphasize the 
role off, we write C(R i , l ,f) for C(R, , E), and use the corresponding nota- 
tion for the other sets in (5.7). 

Remark 1. The designation of C(R, , c) as “neighborhood” will be 
justified later (Lemma 5.4). 

Remark 2. If the critical point 19 is a maximum or a minimum, then 
C(R, , c) reduces to C-(E) u (63) or C+(E) u (0) resp. 

Remark 3. The sets at the right member of (5.7) are mutually disjoint. 
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LEMMA 5.2. To a positive R, < R, there corresponds an E > 0 such that 

C(R, , E) C WO (5.8) 

Proof. The proof is based on 

LEMMA 5.3. Let R be as in Lemma 5.2. Let cl , t2 be real numbers satisfying 
the inequality 

0 -=c 51 -=c 52 < R. (5.9) 

Finally, let X(T) be a gradient line satisfying 

51 < II x(411 d 52 for 7-1 < r < 72 . (5.10) 

Then there exists a positive constant m = m(& , [,) such that 

(5.11) 

Proof. The ring P([, , 5,) : Jr < Jj x j/ < [a has a positive distance from 
the set of critical points off. Therefore, by Lemma 2.4 there exists a positive 
m = m([, , 5,) such that 

II &>ll 2 m for x E P(L , Cd. (5.12) 

Since, by (5.4), II dxjd-r 1) = 11 g(x)jl-1, we see from (5.4) and (5.12) that 

which proves (5.11). 
We now return to the proof of Lemma 5.2. We claim that (5.8) is true if 

0 < E < (R - R,) m(R, , R), (5.13) 

where m(R, , R) is as in Lemma 5.3. We have to show that each of the sum- 
mands at the right member of (5.7) is contained in B(R). 

We start with Z(R, , c). Let x0 E Z(R,), i.e., 

0 < II xc, II < R, -c R To =f(Xo) = 0, (5.14) 

and let X(T) be the gradient line through x,, , i.e., satisfying x(0) = x0 . We 
have to show that 

11 x(T)11 -=c R for - E < 7 < E. (5.15) 
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Suppose (5.15) is not true. Then because of (5.14), 

II 44l = R (5.16) 

for some T in one of the open intervals (0, E), (- E, 0). It will be sufficient 
to carry out the proof for the case that the first of these intervals contains a 7 
satisfying (5.16). Clearly, then there exists a ra in that interval such that 

II +z)ll = RR, II 44 < R for 0 < 7 < 7s < E (5.17) 

since 

II Wll = II xo II -=c R, -=L R. (5.18) 

We see from (5.18) and (5.17) that 11 x(T)\~ = RI for some T in the interval 
(0, ~a), and from this the existence of a or follows easily for which 

II 4dll = J-4 9 R, -=c II 4411 < R for T1 < 7 < T2 . (5.19) 

From this, (5.17), and Lemma 5.3 we obtain 

(520) 

an inequality which contradicts (5.13). 
This finishes the proof of the inclusion Z(R, , E) C B(R), and we turn to 

the proof of 

C+(c) C B(R). (5.21) 

Let x(T) be a gradient line for which (5.5) holds. We have to prove that 

11 +)li -=c R (5.22) 

for 

o<T<E. (5.23) 

Suppose this assertion not to be true. Since by (5.5), I( x(T)II < R for small 
enough 7, we infer the existence of a ~a in the interval (5.23) such that 

11 ~(%>\I = R, 11 +)li < R fOrO<T<T2. (5.24) 

But, again by (5.5), 11 x(T)/[ < RI for small enough 7. It follows the existence 
of a or for which (5.19) holds, and from this and (5.24) we infer by Lemma 
5.3 the inequality (5.20) which contradicts (5.13). Thus (5.21) is proved. 
The inclusion C-(E) C B(R) is proved the same way. 

This finishes the proof of (5.8) since, obviously, (0) C B(R). 

LEMMA 5.4. Let (5.8) be satisfied. Then C(R, , 6) is open. 
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We start the proof with the following remark which for later reference we 
formulate as 

LEMMA 5.5. Let IJ : B(x, , u) --+ E. Suppose that 4 is Lipschitz and that 
there exists a constant m > 0 such that 

II %(x>ll < m-l for x E B(xO , u). (5.25) 

Then, the unique solution x = x(t) of 

g = VW, +a> = x0 (5.26) 

is dejined at least for 1 t - to j < am and satisfies there the inequality 

[I x(t) - x0 I/ < m-l j t - to I < u. (5.27) 

This lemma is simply a statement of the classical local existence theorem 
for (autonomous) differentia1 equations (for the validity of this theorem in 
Hilbert space, see, e.g., [ 15, Lemma 4.31). 

We return to the proof of Lemma 5.4. We have to show that every 
x0 E C(R, , E) is an interior point of C(R, , G): 

A. Let x0 = 0. We choose an R, such that 0 < R, < R, < R. Since 
(4.18) is assumed, there exists a positive R, < R, such that 

IfW -=c mink (Rl - 4 m(R, j RIN for jl x II < R, . (5.28) 

We will show that 

xl E C(R, ,c> (5.29) 

if 

0 -c II ~1 II < 4, (5.30) 

which will obviously prove that x0 = 0 is an interior point. 
For xi satisfying (5.30), let x(r) be the gradient line satisfying 

x(71) = Xl , where 71 =fh>* (5.31) 

We distinguish three cases: 

I. X(T) ends at 0. Then, x1 E C+(E) C C(R, , l ) since /f (x,)1 < E by 
(5.30) and (5.28). 

II. X(T) starts from 0. Then, xi E C-(E) C C(R, , E) by the same argu- 
ment. 
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III. x(r) neither ends at nor starts from 0. Then we distinguish two sub- 
cases: 

IIIa. TV =f(xJ = 0. Now, by (5.30), 

(5.32) 

and we see that 

xl E V,) C Z(R, 3~) C C(R, ,e>. 
IIIb. TV = f (xl) # 0. We consider the case 71 > 0, the proof in the case 

71 < 0 being essentially the same. We will show that 

xl C .W, ,4 C C(R, ,4. (5.33) 

Since 1) x1 11 < RI (cf. (5.32)) and since we are not in Case I or II, it follows 
from Lemma 5.1 that there exists a 7s such that 

$y 4’) E ml) while I/ X(T)// <RI for 72 < T < TV. (5.34) 

Denoting this limit by x, , we have 

x2 = x(72), I/ +dl = RI , (5.35) 

and it follows from (5.32) that 1) X(T)// = R2 for some T in (72 , 71). Therefore, 
there exists a 73 such that 

473) = R, , and Rg <((X(7)/l < R, for 72 < 7 < 73 < 71. (5.36) 

From (5.35), (5.36) and Lemma 3.3, we conclude 

RI - R2 = II472)11 - iIX(73)11 < IIX(72) - 473111 

< 7s - 72 < 71 - 72 
(5.37) 

m(R2, RJ m(R2 ,RI) * 

But 0 < 71 = f (x1) < (RI - R,) m(R2 , RI) by (5.32) and (5.28). From this 
inequality together with (5.37) we see that f (x2) = 72 < 0. Since 
f (xl) = 71 > 0 the existence of a d in (T2 , 7J follows such thatf@) = 0 for 
z = X(T). Moreover, 11~11 < RI , by (5.34). Thus, ZC Z(R,). Now x, lies 
on the gradient line through R and 1 f (x1)/ < E by (5.30) and (5.28). These 
two properties prove (5.33), and the proof that x0 = 8 is an interior point is 
finished. 
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B. x,, G Z(R,), i.e., 

0 < II xo II -c 4 < R 

and 

f (x3 = 0. 
Let 

5 = min (II x0 l//4, (4 - II x011/4>, 

and let P(x, ,25) be the ring 

(5.38) 

(5.39) 

(5.40) 

eo > 25) = lx I II x0 II - 25 -=c II x II < II 30 II + 20. (5.41) 

It is easily verified that the closure of this ring is contained in II(Rl)- 
Therefore, there exists, by Lemma 2.4, a constant m = m(t) such that 

II &4ll 2 NJ > 0 for x E P(x, ,25). (5.42) 

But on account of (5.39) there exists a positive to < 5 such that 

I .f@)l < mWm(C>, 4 for x E B(xo , 5,). (5.43) 

We will show that 

Wxo , lo> C -W, 94 C C(R, 94. (5.44) 

We note first that because of 5, < 5, the inclusion 

B(x1 9 5) c fYx0 , 20 for x1 E -W. , to) (5.45) 

is easily verified. Consequently, the inequality (5.42) holds for x E B(x, , [), 
and it follows from Lemma 5.5 that the solution X(T) of the differential Eq. 
(5.4), with the initial condition x(~r) = x1 , 7r =f(xJ, satisfies 

x(4 E: qx, > 5) for 1 T - 71 / < 5m(5>. (5.46) 

But, for x1 E B(xo , co), it follows from (5.43) that 

1 0 - T1 1 = 1 T1 1 = iftxl)l < b(t)- 

Therefore, (5.46) shows that 

x(0) E B(x,, 5)CP(x,, 25)CB(R,). 

Thus 0 < 11 x(O)11 < R, , and we see that x(0) E Z(R,), sincef(x(0)) = 0. But 
x1 lies on the gradient line through x(O). Moreover, for x1 E B(xo , co), we 
conclude from (5.43) that I Tl 1 = If(xl)l < E. This completes the proof of 
(5.44). 
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C. x0 Z(R, , e), E # 0. Let x = ~(7, x,,) be the solution of the differential 
Eq. (5.4) satisfying ~(7~ , x0) = x,, , r,, =f(x,). Then, by definition of 
-P, > E), 

5 = x(0, x0) E Z(R,). (5.47) 

Thus, 

0 < II ~11 = II 40, xo)ll -c 4 , T = 0 =f@). (5.48) 

From (5.47) and the proof given for case B we conclude the existence of a 
positive 5s such that (5.44) holds with x,, replaced by 3: 

W, to) C V, > 4. 

We claim the existence of a positive & such that 

(5.49) 

Wo > 51) C W, , E) C C(R, ,4. (5.50) 

We define i& as follows: Since If(xs)l < E, by definition of Z(R, , E), we may 
choose 5, such that 

If(%>l < E9 (5.51) 

if 

x1 c w$l , 5,). (5.52) 

But since ~(7, x1) depends continuously on the initial value x1 = X(T~ , x1), 
we may subject [I to the additional restriction that (5.52) implies the inequal- 
ity 11 x(?, xX) - x(?, x0)/l < [,, , or by (5.48), (5.47) that 

40, x1) E w, t-0). (5.53) 

By (5.49), this implies that zI = x(0, x1) C Z(R, , l ). Consequently, %r 
lies on the gradient line through some point y,, of Z(R,), i.e., there exists a 
solution x = ~(0, y,) of the differential Eq. (5.4) with the initial condition 
~(0, yJ,f(ya) = 0, such that, for some 8, say, 0 = 0, , x(0, x1) = %r = ~(0, ya). 
By the uniqueness theorem for differential equations this implies that 
$7, x1) = ~(7 + 8, , y,,). Therefore, x(- 0, , x1) = ~(0, y,,) E Z(R,) for X, 
satisfying (5.52). This proves (5.50). 

D. x,, E C+(E) u C-(E). It will be sufficient to treat the case that 
x,, E C+(E). If x = ~(7, x0) is the solution of (5.4) satisfying 

then 

470 , $0) = x0 E c+(4, 0 < To =f(xJ < E, (5.54) 

vi X(7, X0) = 0. (5.55) 
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Now, by A, there exists a positive 5 such that 

BP, 5) c VI > 47 (5.56) 

and by (5.55) there exists a 7 such that 

3 = x(T, x0) E B(O, 0, 0 < F < To. (5.57) 

We claim that there exists a positive 5, such that 

4% 3 t-1) c Wl > c)- (5.58) 

We determine & as follows: Because of (5.54) we may choose [r such that 

0 G(q) < 5 (5.59) 
if 

Xl E B&l 3 5,). (5.60) 

Moreover, with the usual notation x(7, x1) for the solution of the differential 
Eq. (5.4) with the initial condition zc(~s , x1) = x1 , we may, because of 
(5.57), require 

II 47, Xl) - $11 = II XC?> Xl) - XC?> %)I1 

to be so small that 

s1 = x(7, Xl) E B(O, 5) c C(R, , E), 

provided x1 satisfies (5.60). 

(5.61) 

Now let ~(0, x,) be the solution of the differential Eq. (5.4) satisfying 

Y(f(x,), %I> = %I = x(7, Xl). (5.62) 

Because of (5.61), ~(0, ;) x is one of the gradient lines used in the construction 
of C(R, , c). The same is true for ~(7, x1), since, as seen from (5.62) and the 
uniqueness theorem for differential equations, X(T, xl) = y(~ +f(@- ?, Q. 
This together with (5.59) proves that x1 E C(R, , l ) if x1 satisfies (5.60). Thus 
(5.58) holds. 

6. PROOF OF THE APPROXIMATION THEOREM 4.2 

Assertion (i) of this theorem follows in an obvious way from the assumption 
made on g, from (4.22), and from Lemma 4.3. 

We turn to the proof of (4.24). By Definition 3.6 we have to exhibit neigh- 
borhoods N(f) and N($) of 0, both contained in B(a) for which 

fUfo n W>Jo n N(f) - PI w %($, n WY% h n W) - W). (6.1) 
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Now by Lemma 4.3 we may suppose i? and a constant K be chosen in such a 
way that in addition to (4.21) with m = k 

K” x “9-1 > /j g(x)11 
2 

for x E B(R), (6.2) 

If we set 

1; = min 7, F, k3-“-1 , 
I I (6.3) 

it is easily verified from (4.21), (6.2), and (4.22), with r] replaced by 5, that 

K II x Ilp-l 2 II rWll 3 k II x IP--l for x E B(R,) E B(R). (6.4) 

We note that because of (6.3) also 

II g(x) - YWII d rl II x lP1 for x E B(R,). 

We now keep q, and therefore 5, fixed and set 

~(~)=~~l~~II~ll,<2~~, R2g. 

We then see from (4.21) (with m = k) and (6.4) that 

(6.5) 

(6.6) 

II d4ll 
II Y(X>ll I 

3 kRp-l for x E P(R). (6.7) 

It now follows from Lemma 5.2 and its proof (see, in particular, (5.13) with R 
replaced by 2R, and R, by R) that 

if we choose E in such a way that 

kRP 
- < E < kRp. 

2 

We will now prove (6.1) with 

Nf) = W 4, W,4 = WC E> $1, 

where, as usual, the bar denotes closure. We set 

Wf) =Li f-l W), WI4 = $0 n wh 
.z = N-(f) u Iv-(#). 

(6.9) 

(6.10) 

(6.11) 
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Then (6.1) will be proved, once it is shown that 

and 

s7(4 Ji - {@>I 6% fwwf), N-(f) - PH, (6.12) 

f&G? 2 - W) = fwvf% qfq - {@}). (6.13) 

It is sufficient to prove (6.12), as is clear from the fact that (6.4) holds if y 
is replaced by g (as follows from (4.21) and (6.2)), that (6.7), (6.8) are the 
same for g and y, and that (6.5) is symmetric in g and y. 

As a first step towards proving (6.12), we show that 

f&(4 2 - W) w f&P MO, 2 n,fo - (0)). (6.14) 

To this end, we construct a deformation 

such that 

%o Y t) : 22 x [O, l] -+ z (6.15) 

Go , t) = x0 forx,EZnf,, O<t<l, (6.16) 

while for all x0 E 2‘ 

S(x,,O) =x0, S(x,, l)E~nfo,. (6.17) 

Because of (6.16), we have to define S(x, , t) only for x0 E Z - (Z n Jo), 
i.e., for 

x0 E W$) n if > 01. (6.18) 

To do this, we note first that for such x0 by (6.11), (6.10) and (6.8) 

x0 E N-(#) c C(& E, (6) c B@R), fko) > 02 (6.19) 

and thus 

- E d 9(x0) 9 0 < f (x0)* (6.20) 

We now consider the “#-gradient line” x = [(T, x0) defined by 

dt YW 
- = -j@qp 9 dr 5bo 3 x0) = x0 > To = #(x0) (6.21) 

and recall that 

a+, x0> = 7% (6.22) 
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We will prove the existence of one and only one or = ~r(x,,) in the interval 

- E,<T<To 

for which 

MT1 P x0)) = 0, 

and then define, for x0 as in (6.18), 

Go 9 t> = (((Tl - 70) t + 70 > x0>, O<t<1. 

To prove our assertion concerning 7r , we consider the ring 

(6.23) 

(6.24) 

(6.25) 

P(xo) = Ix 1 y < [j x Ij < 3 y\ . (6.26) 

Now (1 x0 I( < 2R by (6.19). Th ere ore, f P(xo) C B(3R) C B(R,), the last 
inclusion following from (6.6). C onsequently, we see from (6.4) that 

for x E P(xo), (6.27) 

and this inequality holds a fortiori in the ball 

(6.28) 

which is contained in P(xo). It, therefore, follows from Lemma 5.5 that 

(6.29) 

if 

1 T - To 1 < k (j $ (lP. (6.30) 

We will now show that 

fk+, x0)) < 09 (6.31) 

if 7 is in the interval 

pk 
pk<T<To-I/~I/ 7 (6.32) 
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Indeed, if we add the inequality f(~a) - 2$1(x,) > 0 (which follows from 
(6.20))to the identity f(t(~, x0) ===~(KT, x0)) - $(t(~, x0)) + #(c?(T, x0)) and 
observe (6.22), we see that 

f(&, Xo) <f(t(T, x01> - Y@(T, xo)) +f(t(To > Xo)) - !‘(@To > xo)) + -i- - To . 
(6.33) 

Now if 7 is in the interval (6.32), and, therefore, in the interval (6.30) we 
know that x = &T, x0) E P(a+,) C B(R,). But for any x E B(R,) 

for 

If(x) - gx)l < y (6.34) 

If(x) - $@)I = j ,: (gW) - rw> x> dfl / 

G II x II j1 II g(@ - rW)ll do 
0 

from which (6.34) follows on account of (4.22) with 7 replaced by 5. Now 
from (6.33), (6.34), (6.29), and (6.32) we see that 

f(t(T> Xo) < ; [Ii &, Xo)ll” + 11 Xo ii”] + 7 - To 

< ;!iq” [5(3P + 2”) - kl. 

Here the bracket is negative by (6.3). This proves (6.31) and also the existence 
of a pi satisfying (6.24) sinCef(f(T ,, , x0) =f(xo) > 0 by (6.20). It remains to 
prove the asserted uniqueness of such pi . We do this by showing that 

g (t(T> x0)) > 0. (6.35) 

Now, by (6.22), we have (in obvious notation) 

But by (6.21) (6.4), (4.23) (with 7 replaced by LJ, and (6.3), 

(6.36) 

which together with (6.36) proves (6.35). 
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Thus the deformation defined by (6.25) satisfies the requirements (6.15)- 
(6.17). This proves (6.14). 

Now, by Lemma 5.4, there exists a positive r such that 

B, = B(@,r)CC(l?,~,f)a (6.37) 

By excising from Z nib the intersection of this set with the complement of 
B, , we see that 

f&P-d, -J.?&, -(@I) - fWnJ, n B,, znfo n B, -(@I>>. (6.38) 

But it is easily seen from (6.37), (6.10), and (6.11) that 

Znj,, n B, =N-(f) n B,. 

Therefore, the right member of (6.38) is H&N-(f) n B,, N-(f) n B, - {O}), 
and this group is isomorphic to H&V-(f), N-(f) - @) as is again seen by 
excision. This shows that (6.38) together with (6.14) implies (6.12). 

7. SUFFICIENT CONDITIONS FOR THE CRITICAL GROUP C,(@,f) 
TO BE FINITELY GENERATED 

We assume now that Assumptions (1.21) and (1.22) are satisfied in addition 
to those made in Section 6. Then 

g(x) = grad&4 = x II x lip-2 + G(x), (7.1) 
where G is completely continuous. 

EXAMPLE. Let E be the Hilbert space of real functions x(t) whose square 
is Lebesgue integrable over [0, 11. Let p be an integer > 2, and let 

where each K,, is symmetric in its arguments and square summable over its 
domain of integration and where 

Then 

(7.2) 
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(see, e.g., [21, Section 21.21). Assume 

x 11 x II- + p-p+l j; a.* j: K,(s, t, ,..., t,-l)x(tl) -a- ~(t~-~) /I dt, ... dt,el j/ 

>, m I/ X (Ipwl 

for some positive m. Using (7.1)-(7.3) and Lemma (4.3), it is not hard to see 
that f is nondegenerate of order p at 0. 

We return to the general case. To obtain conditions as indicated in the 
title of this section we use finite-dimensional approximations. 

If E” is a given finite dimensional (linear) subspace of E of dimension n, 
we denote by y” or ( y)% the projection of the element y E E into En. Moreover, 
we set 

fn@) = P-I II x II8 + J-n(x), (7.4) 

where F,(x) = F(P) and 

g,&) = x II x llp--2 + GO)> (7.5) 

where G,(X) = (G(x”))“. Then, by [15, Lemma 2.31, 

gn = gradf, . (7.6) 

We state the following fact whose routine verification we omit as 

LEMMA 7.1. Forr = 1, 2 ,..., p, the r-th di@mntial of G, exists and is given 

6Y 

dlG,(x; h, ,..., h,) = (d’G(x,; hlR,..., hrn))“. (7.7) 

THEOREM 7.1. There exists an no-dimensional subspace En0 of E of the 
following property: If E” 3 E 11~, then 8 is a nondegenerate critical point of fn 
of order p, and 

C*(@;f) = C&f,). (7.8) 

Proof. We will show that # = fn satisfies the assumptions of the approxi- 
mation Theorem 4.2. By (7.6), y = grad # = g, , and, by (7.4), (4.18), and 
(7.9, I/J(@) = 0, r(e) = Q for any En C E. Moreover, # E CP+l by Definition 
4.2 and Lemma 7.1. 

It remains to prove that to every q > 0 there corresponds an E”o and 
an R, such that (4.22) is satisfied, i.e., for En3 E”Q and x E B(2R,), 

II g(x) - g&)II = II G(x) - GWN” < q II x P1. (7.9) 
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We will prove, for suitable En and R, , the inequalities 

and 

II G(x) - G@“)ll < % II x ll9-1 for x E B(2R,) (7.10) 

II G@“> - (G(4)” II -=c : II XI/~-~ for x E B(2R,), (7.11) 

which together imply (7.9). 
Starting with the proof of (7.11), we recall the following well-known fact 

(which follows, e.g., from [8, 2nd lemma, p. 511): If iii is a bounded closed 
neighborhood of 0 and if G is a completely continuous map fl-+ E, then to 
each positive or there corresponds an En0 such that for En 3 Ena 

II w - w)” II < 91(x EN>. (7.12) 

We want to apply this for some N with 

G(x) = dp-lG(O, x). (7.13) 

That this G is (for small enough N) completely continuous follows from 
Lemma 7.2 which for later use is formulated in more general terms than 
would be necessary for the present purpose. (It is a modification of a well- 
known lemma by Krasnolseskii [7; II, Lemma 4.11.) 

LEMMA 7.2. Let Nl be a neighborhood of 0. Let G be a completely continuous 
map Nl + E which is an element of Cg(N,). Then there exists a neighborhood 
NC Nl of 0 such that for T = I,2 ,..., p - 1, d’G(x; h, ,..., h,) is completely 
continuous as map of N x El x . . . x E, into E. 

Proof. With d”G = G, the statement of the lemma is true for Y = 0 by 
assumption. We assume it to be true for Y - 1 <p - 1 for some neigh- 
borhood N,-, C Nr . We may assume N,-, to be spherical and its radius 5 to 
be so small that for some constant K 

11 dF+lG(x; h, ,..., h,+All G 4 K II h, II -.. II h,+l II for x E NT-r (7.14) 

(cf. (4.7)). Let N, C N,.-, be a spherical neighborhood of 0 with radius 

. (7.15) 

Suppose now the lemma not to be true for r. Then taking into account the 
linearity of dcG in each h, , we see that there exist a 6 > 0 and sequences xi, 
h,i (p = l,..., r, i = 1, 2,...) such that 

d7G(xi; hIi ,..., h,i) - d’(G(xj; hlj ,..., h,i) 3 6, xg E IV, , // h,i /I = 1. (7.16) 
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By Taylor’s Theorem for arbitrary h, ,..., h,-, , and for x and h, E N, , 

where 

dr-lG(x + h,; h, ,..., h,-,) - d'-lG(x; h, ,..., h,-1) 
= d’G(x; h, ,..., ii-1 , h,) + I+; A, , .., h-1 , k), 

(7.17) 

qx; h, I**., k-1 , A,) (7.18) 

=I 
1 

d’+lG(x -+ th,; h, ,..., k-1 ,A, > 4 (1 - 0 dt. 
0 

From (7.18) and (7.14) we see that 

for arbitrary h, ,..., h,-, , and h, , x having norms not greater than u. We now 
set in (7.17), x = xi, h, = ha for p = l,..., r - 1, and h, = u!zhri, and from 
the equality thus obtained we subtract the one obtained from it by replacing 
the index i by the index j. We then see that 

jl dr G(xi + oh,i; I&.., h;-,) - d’-lG(x,’ + oh;; h,j ,..., h;_,)]; 

+ /I d’-lG(xi; h,‘,..., hf-,) - d’-‘G(x’; h,j ,..., h;el)ll 

>, /I d’G(xi; hli ,..., lz-, , oh,i) - drG(x’; h,j ,..., lz-, , ohrj)li 

- I/ R(xi; h,i ,..., hj-, , uh,i)jl - /I R(xj; hi ,..., hj,-, , uh,j)i~ . 

Now by (7.16), (7.19), and (7.15), the right member of this inequality is not 
less than &r/3. Thus the inequality is in contradiction with our induction 
assumption for r - 1. 

We return to the proof of (7.11). By Lemma 7.2, the G defined by (7.13) 
satisfies (7.12). We may assume the neighborhood N of (7.12) to be spherical 
of radius 4 and choose Q < 5+/4. Then, taking into account the fact that 
C(X) is homogeneous in x of degree p - 1, we conclude the existence of an 
En0 such that for En3 En0 

II q4 - (W>” II < + II x P1 for all x E E, 

and, therefore, 

11 qxy - (G(x”)>” jl < $ I/ x” p-1 < f 11 x p-l. (7.20) 
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We now apply (4.17) with g replaced by G. We then see (cf. (7.13)) that 

G(x”) - (G(x”))n = & [G(xn) - (G(xn)>“] + R(xn) - (R(x”)“, (7.21) 

where R(x) denotes the integral in (4.17). From (7.21), in conjunction with 
(7.20) and (4.8) we conclude that for some constant K and for x in some 
neighborhood of 0 

This inequality implies (7.1 l), if I/ x )( < q/8K. 
Turning to the proof of (7. IO), we note that again by (4.17) with g replaced 

by G: 

G(x) - GW = (p : I)! ___ [C(x) - e(xn)] + R(x) - R(xn), (7.22) 

where G(x) and R(x) have the same meaning as in (7.21). As in the preceding 
paragraph, we see that for ]j x I/ small enough 

To estimate the first term at the right member of (7.22), we use the follow- 
ing 

LEMMA 7.3. Let N be a spherical neighborhood of 19, and let (Y? be a map 
N -+ E of the following properties: 

(a) G is a completely continuous gradient map, 

(,9) dC?(x; k) exists and is completely continuous considered as map 
N x E--f E. Then to given positive E there corresponds an E”o such that, for 
E” 1 E”o, 

(7.24) 

The lemma is a restatement of [15, Lemma 2.51. We now verify that 
G = G (cf. (7.13)) has properties (a) and (18). Property (a) follows from (7.13), 
Lemma 7.2, and (4.15). As to property (/3) we note that 

dG(x; k) = d,d+lG(@; xl ,..., x,-~; k), _... n9--1zm 
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(cf. the definition of dB given at the beginning of the proof for Lemma 4.3). 
Therefore, taking into account that G(x) is homogeneous of degree p - 1, 
we see from (4.4) that 

dG(x; k) = ($I - 1) d*-lG(6; x1 ,..., x,+; k)zl _..._ zp--2=z . 

On account of Lemma 7.2 and the complete continuity of G, this equality 
proves (/3). 

Thus the conclusion (7.24) of Lemma 7.3 holds with G = G. But since 
G(x) is homogeneous of degreep - 1 and since for any positive (Y, (a.~)” = tin, 
we conclude that 

II G(x) - G(xn)ll < f II x lip-1. 

Combining this inequality with (7.22) and (7.23), we see that 

II G(x) - GWll -c II x HP--l [+ + 2K II x !I] . 

This obviously proves (7.10) for 11 x (I < 77/8K, and Theorem 7.1 is proved. 
For any En C E, we denote by r’, and & the restriction to E” of fn and g, , 

resp. ( j, equals the restriction off to En, but &, is, in general, not the restric- 
tion of g to En). With these notations, we have 

THEOREM 7.2. There exists an En0 C E sub that, for En 1 Eno, 8 (as zero 
point of En) is a nondegenerate critical point of order p for fn , and 

w4.L) = C,(Q,f). (7.25) 

Proof. We choose Eno, according to Theorem 7.1. Then 8 is a non- 
degenerate point of order p for fn and, therefore, by Lemma 4.3, also for je . 
To prove (7.25), we note that, by [15, Lemma 3.11, for any small enough 
spherical neighborhood N of 8, the couple (N n (&, , N A (3,)s - {@}) 
is a deformation retract of the couple (IV n (&, , N n (j& - {S]). There- 
fore, C,(e,i;) w C,(@,f,), which together with (7.8) implies (7.25). 

THEOREM 7.3. Cd@, f) is finitely generated for every nonnegative integer q. 
For q > n, , the q-th type number off at 8 (see Definition 3.6) is 0. 

This is a corollary to Theorem 7.2 (see, e.g. [20, Section lo]. 

409/36/2-13 
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8. RETURN TO THE GLOBAL SITUATION 

We suppose conditions (A)-(E) of the Introduction to be satisfied. In 
addition, we assume each critical point offto be nondegenerate of some order 
> 2. Then, by Lemma 4.3 all critical points are isolated. It follows easily 
from Lemmas 2.3 and 2.2 that the set r of critical points is finite. In addition 
to the notations explained in Definition 3.6 and in the paragraph preceding 
it, we will use the following ones (cf. [12, p. 171): a,, a, ,..., a, are real 
numbers satisfying 

a, < Cl < a, < *-- < U&l < Cd < ai “‘<U,,<C,<U,, 

where a, is supposed to be larger than supfin V (cf. Lemma 2.1). Moreover, 
let A, = Y n fas for i = 1, 2 ,..., N, and A,, = @, the empty set. 

THEOREM 8.1. In addition to the assumptions made above, we suppose that 

H,(V) isjnitely generated and that for every criticalpoint CT: off the representu- 
tion (1.23) holds in some neighborhood of uji, where pij is an integer 3 2 and 
where Gii = grad Fij is completely continuous. Then (a) the groups Ha(Ai) 

(i = 0, l,..., N) are jkitely generated, and (p) the Morse inequalities (1.25) 
hold. 

Proof. H,(A, , A,J is the critical group at level ci , and, therefore, (see 
corollary to Theorem 3.5) isomorphic to the finite direct sum over j of the 
groups C,(aji), each of which is finitely generated by Theorem 7.3. Thus the 
groups H&A, , Aipl) are finitely generated. To prove (a), we consider the 

Pa* 

Hg+l(Ai , A-1) + H&4-J + HA4 (4.2) 

of the homology sequence. If we first set i = N, then the two extreme groups 
of (4.2) are finitely generated, the one at the left as just proved and the one at 
the right by assumption, since A, = V. From the exactness of the sequence 
(4.2), it follows easily that H9(ANJ is also finitely generated. Now, setting 
i = N - 1 in (4.2), we see, by the same argument, that H&A,-,) is finitely 
generated. Continuation of this procedure proves (IX). But (a) implies (/3) 
as Pitcher’s proof of the Morse relations [12, Section 1 l] shows. 

9. APPENDIX 

In the preceding sections, various facts concerning existence and continua- 
tion of solutions of ordinary differential equations in Hilbert space were used. 
Concerning these, we refer to the remarks made in [15, Lemmas 4.3, 4.41 
and [6, Section 31. 
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Those remarks, however, are not sufficient to guarantee the joint continuity 
in x0 and t of the deformations used in the present paper, viz., the deforma- 
tions (2.28), (3.8), (3.14), and the deformation defined by (6.16) and (6.25). 

This Appendix is devoted to the continuity proof for the two last-named 
of these deformations, the proof for the first two being considerably simpler 
because of the absence of interfering critical points. 

We start with the following lemma and its corollary both of which represent 
obvious generalizations of theorems classical in the finite-dimensional case, 

LEMMA 9.1. Let u = u(t) be a map of the real interval [CY, /zI] into the Hilbert 
space E. We assume the existence and continuity of duldt in this interval. More- 
over, we assume the existence of a positive constant X and a nonnegative constant p 

such that 

Then, for any couple t,, , t in [CY, fi]: 

// u(t)l12 < 11 u(t,)112 e2A’t--t0’ + lVoP(e 
2,4/t-&J _ 

A ‘) , 

where MO denotes the maximum of I/ u(t)11 for t E [pi, /3]. 

Proof. From (9.1) we obtain 

19’1 =2j(u(t),$$)I <22h(ju(t)jl”+2Mop. 

By a well-known lemma, this inequality implies (9.2) (see, e.g., [6, p. 93, 
Hilfssatz 21). 

COROLLARY TO LEMMA 9.1. Let eI(t) and e2(t) be solutions of the d$er- 
ential equation in Hilbert space dt/dt = x(f). Suppose that the &(t) exist fop 
t E [cr, /3], and that x satisfies, in this interval, a Lipschitz condition with Lipschitz 
constant A. Then, 

II t,(t) - E2Wl G II Wo> - 62(t0)ll eA’t-tJ for t, t, E [a., PI* (9.3) 

Indeed, u = fI - & satisfies (9.1) with p = 0, and (9.3) followsfiom (9.2) with 
p = 0. 

LEMMA 9.2. Under the assumptions of Theorem 3.3 the deformation 8(x0 , t) 
dejked by (3.14) is jointly continuous in x0 and t. 
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Proof. Let (x,, , t,,) be the point at which we want to establish the con- 
tinuity. We distinguish four cases: 

(a) x0 Ef, , 0 < to d 1 

(b) xo~Ja-~,O~t,<1 

(4 xo~{f=C),O<tlJ<1 

(4 xo~h-ji, to=l. 

Proof for Case (a). Since fc is open, there exists a neighborhood N(x,,) 
of x0 such that N(x,) E fc . Then, S(y,, , t) = y,, for y,, E N(x,,) and t E [0, 11, 
by (3.14). Thus, S(y, , t) - 8(x,, to) =ys - x0. 

Proof for Cuse (b). We recall that x(t, xs) denotes the solution of the 
initial-value problem (3.8) (with a replaced by the critical value c). We write 
shortly x(t) for x(t, x0) and set y(t) = x(t, y,,), where y0 denotes another 
initial value. 

We will first show that x(t) and, with proper choice of yO, also y(t) are 
bounded away from the set r of critical points, if 

ogt<to<l. (9.9) 

Indeed, from (3.11) (with a replaced by c) and from (9.9), we see that 

b - c zf (x(t)) - c = (1 - t) (f (x0) - 4 > (1 - to) (f (x0) - 4. 

This inequality shows that f (x(t)) for t satisfying (9.9) is bounded away from 
the set (1 of critical levels. Therefore, x(t) is bounded away from J’ by Lem- 
ma 2.5. 

We will now define a positive 6 such that y(t) is bounded away from I’, if 

llXo-yo/I~~, o,<t,<t,<1, where I tl - to ) < E. (9.10) 

Again, by Lemma 2.5 it will be sufficient to choose E such that f (y(t)) is 
bounded away from d. Firstly, we require E to be so small that tl < 1. 

Our next requirement on E is that, for y0 satisfying (9.10), 

If (x0) -f (YJI < 5, (9.11) 

where the positive number 5 is chosen in such a way that the interval [b, b + &‘I 
contains no critical level. Noting thatf(y(t)) is decreasing in t, we see that 
b + 5 >f (y(t)) >f(y(tl)), for t satisfying (9.10). This inequality shows 
that it will be suf?icient to subject E to the third requirement that, for ya and tl 
satisfying (9.10), 

f (YPA) - c > 0. (9.12) 
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To show that it is possible to satisfy this requirement, we note first that, by 
assumption, 

f($toN - c > 0. (9.13) 

But 

ftrw - .MtoN = (1 - to) WYO) -f@o) + MYO) - 4 (t1 - to), 
(9.14) 

as is seen by subtracting from (3.11), with a = c and t = t,, , the equation 
obtained by replacing x(t) by y(t), and to by t, . Now the absolute value of 
the right member of (9.14) is less that If(ya) - f(x,,)l + (b + 5 - c) 1 t, - to /. 
Clearly, B may be chosen in such a way that this quantity is less than one 
half of the left member of (9.13) for y,, and t, satisfying (9.10). But with this 
choice of E, we see from (9.13) and (9.14) that (9.12) is satisfied. 

Our goal is to find, for every p > 0, an E, such that 

II YW - 4to)ll < P? (9.15) 

for y0 and t, satisfying (9.10). We assume that E satisfies the three require- 
ments made above. Since then, as just proved, x(t) andy(t) are bounded away 
from r, it follows from Lemma 2.4 that 

(9.16) 

for some positive constant m. Since y(t) satisfies (3.8), we see from (9.16) that 

II Y(h) - Y@o)ll = (JTYO) - 4 I/ 1:: g dt 1; < (6 + 5) ’ t1 ; to ’ * 

This shows that E can be chosen in such a way that I/ y(to) - y(to)ll < p/2 
for t satisfying (9.10). 

Obviously, it will, for proving (9.15), be sufficient to choose E such that 

llY(to) - 4to)ll < $- 7 (9.17) 

fory, satisfying (9.10). To this end, we set u(t) = x(t) - y(t) and # = g/II g l12. 
We then easily obtain, from (3.8), 

$ = #(Y) Lf(Yo) -fho)l + (J+o) - 4 W(Y) - 444). (9.18) 
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Now, it follows easily from (9.16) that g satisfies (in the intervals indicated) a 
uniform Lipschitz condition (see, e.g. [16, p. 2451). Calling the Lipschitz 
constant L, we see, from (9.18) and (9.16), that 

I1 il g Gm-‘If(Yo>-f(xo)l +@-c)L))ull. 

Applying Lemma 9.1, we obtain the inequality 

(9.19) 

where R denotes the diameter of our domain such that 

II @II d II x(t)ll + llr(t)ll d 2~ 

It is evident from (9.19) that E can be chosen as required. 

Proof of Case (c). In this case, 8(x0 , t) = x,, for all t in [0, 11. We will 
prove: To every p > 0, there corresponds a positive E such that, for all t 
in 10, 11, 

II YYO > t) - x0 II G P? (9.20) 

if 

II x0 - Yo II -=c E* (9.21) 

Our assertion is trivial if y. EA; for, then, S(y, , t) = y. . Let y. efb - jc . 
We will first prove our assertion for t in the half open interval [0, 1). The 
interval [c, b] has a positive distance from k{c}, the set of critical levels other 
than c. From this it follows easily (by a slight generalization of Lemma 2.5) 
that there exists an cr such that, for all x Ejb - f0 , 

II x - Y II z 9 > 0 for all y E r - {f = c>. 

We may and will assume that I satisfies the additional inequality 

(9.22) 

9 ==E P* (9.23) 

We note that (9.22) holds, in particular, for x = x0 and x =yo . Now 
f (x0) = c is a critical level. Thus x0 may or may not be critical point. But, in 
any case, since by assumption r is finite, there exist constants c2 , l s such that 

p > 61 > E2 > Ep > 0, (9.24) 

and such that the ring 

P(,o> = ix I 63 <I/* - XOII G <2> (9.25) 
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has a positive distance from r. Consequently, by Lemma 2.4 there exists 
a constant m such that 

II &+I 2 m > 0 for x E P(xa). 

Let now E be a number satisfying the requirements 

(9.26) 

EQ > E > 0, If(Yo) - c I < (~2 - 4 Ifl (9.27) 

for y,, satisfying (9.21). Clearly, such E exists sincef(x,) - c = 0 and sincef 
is continuous. 

With such choice of E we claim that (9.21) implies (9.20) for 0 < t < 1. 
Because of (9.24) it will be sufficient to show that (9.21) implies 

II YYO > t> - x0 II < E2 for 0 < t < 1. (9.28) 

Suppose this not to be true. Then, there exists a y. satisfying (9.21) and a 
t’ E [0, 1) such that 

II YYO 3 t’) - x0 II > 62 * (9.29) 

But 

II YYO 3 0) - x0 II = II yo - x0 II < 6 < 63 < 9. (9.30) 

The last two inequalities together imply the existence of a t” such that 

II S(Yo 7 t”> - x0 II = % 9 0 < t” < t’ < 1. (9.31) 

This equality together with (9.30) ’ pl rm ies the existence of a t”’ such that 

II qy, , t”> - x0 II = 63 > 0 < t”’ < t”. (9.32) 

Clearly, then, there exist also t”, t”’ which, in addition to satisfying (9.31) and 
(9.32), have the property 

E3 G II S(Yo 9 t) - $0 II < 62 for t” < t < t”, 

i.e. that 6(y, , t) E P(xo) for the t values indicated. Therefore, the inequality 
(9.26) holds with x = 6(yo, t) = x(t, yo) = y(t), and we see, from (9.31), 
(9.32), (9.26), (3.8), and (3.11) (with a = c), that 

0 < 9 - 63 = II Yyo , t”) - x0 11 - /I qy, ) t”) - x0 /I 

< II qyo , t”> - qyo 9 t”>ll = jl j;: $$ dt /j 

< (f(yo) - c) (t” - t”) m-l = (f(y(t”)) --f(y(t”))) m-l. 
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Observing thatf(y(t)) * d IS ecreasing in t, that y(O) = y,, , and that by (3.11) 
(with a = c), limw-f(y(t) = c we see, from the preceding inequality, that 
O<Ea-- es < (f(y,J - c) m-l. But this inequality contradicts (9.27). 

This finishes the proof for t E [0, 1). But 

II S(Yo , 1) - x0 II ,< II YYO 9 1) - YYO 9 tN+ II qyo , t) - %I II * (9.28) 

Note now that the c, which we constructed to some given p, did not depend on 
t for t E [0, 1). Thus the second term at the right member of (9.28) will not be 
greater than p for t E [0, 1) if y. satisfies (9.21) with this E. But by [16, Theo- 
rem 5.11 and the Definition (3.14) of S(y, , 1), the first term at the right 
member of (9.28) tends to zero as t + l-. This completes the proof of (9.20) 
fort=l. 

Proof for Case (d). We set 

(9.29) 

We have to prove: To every p > 0 corresponds an E > 0 such that 

if 
II S(Yo P 0 - f  II < P (9.30) 

IIYO - x0 II ( 6, O<l -tt<. (9.31) 

Now since f (g) = c, the arguments and definitions leading up to (9.26) hold 
literally in the present case with x0 replaced by L Moreover, we see from 
(9.29) that there exists a i such that 

II 4x0 9 Q -Z/l -+ fort<t<l. (9.32) 

In addition, we require off that 

(b + 5 - c) (1 - f) < (es - 6) m (9.33) 

where 5 is as in (9.11). Let now E be a positive number satisfying the following 
two requirements: Firstly, 

f (Yo’o) > c for y. satisfying (9.31). (9.34) 

(This is possible since f (x0) > c). Secondly, 

II X(Yo T 9 - 4x0 , Gil < z for 0 < t < i and for y. satisfying (9.31). 

(9.35) 
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That this is possible is simply the assertion of case (b) with t, replaced 
by L 

We claim that with this choice of E, (9.11) implies (9.30). In the first place, 
we have for y,, satisfying (9.31) 

IlX(Yo,~)--ll~~3’ (9.36) 

Indeed, the left member of (9.36) is not greater than 

Thus (9.36) follows from (9.35) and (9.32). 
We will now show that (9.31) implies the inequality obtained from (9.30) 

by replacing p by the smaller number or (see (9.23)). If this inequality were 
not true we could, by the arguments used in the corresponding part of the 
proof for case (c), conclude the existence of two constants t” and t”’ such that 

t < Y < t” < 1, -4Yo 9 t”) = E3 , +I , t”) = E2 

“(Yo ? 0 E P(f) for t” < t < t”, 
(9.37) 

and derive the inequality 0 < c2 - l 3 < (~(JJ~) - c) (t” - t”‘) m-l. But here 
the right member is, by (9.37) adn (9.33), smaller than 

(f(Yo) - 4 (1 - t) m-l < (6 + t; - c) (1 - t) m-l < c2 - c3 , 

We thus arrive at a contradiction. 

LEMMA 9.3. The deformation 6 dejined 6y (6.16) and (6.25) is jointly 
continuous in x,, and t if the assumptions of Theorem 4.2 are satisfied. 

Proof. We denote the solution of the initial value problem (6.21) by 
t(~, T,, , x,,) such that ((~a, 70, x,,) = x,, and ~a = #(x0). Then, (6.25) reads 

6(x, > t) = ~((~&o) - To) t + To Y To P xo), (9.38) 

where 71(x0) denotes the solution of (6.24). 
We should prove the following three statements: 

(a) 71(x0) depends continuously on x0 . 

(b) The right member of (9.38) depends continuously on its third argu- 
ment. 

(c) The 6 given by (6.25) “fits continuously” at (f = 0) with the identity 
map (6.17). 
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Now (b) follows easily from the corollary to Lemma 9.1, and the proof 
of (b) is routine once (a) is proved. Therefore we restrict ourselves to giving 
the more complicated proof for statement (a). 

Let then KT, ?, 2) be the solution of the differential Eq. (6.21) satisfying 

&F, Q, a) = 3, ? = a@), (9.39) 

and let T = TV be the root off(f(7, ?, Z) = 0. 
We have to prove: To every positive p, there corresponds a positive E such 

that 

I?(f) - Tl(XO)I <P? (9.40) 

if 

/a-xol <E. (9.41) 

We will subject E to a successive number of compatible restriction. The 
first of these is 

o(.<yp. 

It is then a matter of direct verification that, for 3 satisfying (9.41), 

B (3, 3 q) CB (x,,, y) CP(x,). 

(9.42) 

(9.43) 

(We recall that B(x, a) denotes the ball with center x and radius a; see also 
(6.26)). Therefore, by (6.27), 

1 1 

= II G R II &J/2 lip-1 
forx,E B II 311 x; 3 T) 

It follows from Lemma 5.5 that 

(9.44) 

for 

(9.45) 

We now remark that 

1 P-1 

To--h - 
2 "2" II II < T&o) < To > (9.47) 
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as follows from (6.31) and (6.32) together with the fact that f(~,,) > 0 (see 
(6.20)). 

Our second requirement on E is that, for x satisfying (9.41), 

With this choice, the interval 

(9.48) 

(9.49) 

is contained in the interval (9.46) as is seen by a direct verification, using 
(9.48) (9.47), (9.49) and the fact that // x0 /j < 11 /I f \I/10 by (9.42). 

We now describe our last two requirements on the E corresponding to the 
given p (cf. (9.40), (9.41)). First, let pr be such that 

Sincef(f(7, 7 o , x0) is increasing in T and vanishes for T = T~(x,,), the inequal- 
ity 

f(KTl@O) - P19 70) 20) < 0 -cm~&o> + Pl 9 70) x0) 

holds. Consequently, there exists a positive 5 such that 

f(X’> < 0 <f(x”>, 

if 

and 

l/x' - 4(Tl@O) - Pl 7 70 9 xo)ll < 5 

Our additional requirements on E then are, for x,, satisfying (9.41), 

for x0 satisfying (9.41) and 

(9.51) 

(9.52) 

(9.53) 

(9.54) 

(9.55) 

where h denotes a Lipschitz constant for r(x)/\1 ~(x)\I~ for x C B(x, , 11 x0/2 II). 
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We will show that for such e with z satisfying (9.41), 

satisfy (9.52) and (9.53), resp., and, consequently, (9.51). Thus there will 
be a zero off (f( 7, 5, Z) in the interval (T&J - pi), ~~(%a) + pi) which will 
prove our statement (a). 

It will be sufficient to prove the first of the two assertions just made the 
proof for the second one being essentially the same. 

Now, 

We wiil prove that both terms at the right member are majorized by 512. We 
note, first, that [(T, TV, 2) = .$T + Q - To, b, %), both members of this 
equality satisfying the differential Eq. (6.21) and both reducing to f = for 
7 = 7. . Thus, the first term at the right member of (9.56) equals 

11 6%&o) - PI t T, F> - &1(X0) - f’l + f - To, 7, %)I/ 

(9.57) 

Now, by (9.48) and (9.50), the interval of integration is contained in the 
intend [~dx~) - &k 11 x0/2 IP’, T&o)~, and, therefore, in the interval (9.49) 
which in turn (as proved above) is contained in the interval (9.46). Conse- 
quently, it follows from (9.45) and (9.43) that 

for 7 in the interval of integration. Thus the estimate (9.44) holds 
for the integrand and the norm of the integral in (9.57) is less than 
1 7 - 7. 1 (R I] x0/2 //“-1)-1 which is less than 5/2 by (9.54). 

This proves our assertion concerning the first term at the right member 
of (9.56). But the second term is, by the corollary to Lemma 9. I, not greater 
than 11 f - x0 1) exp(h 1 TV - p1 - 7. I), and, therefore, by (9.47), (9.50), 
and (9.55), not greater than 5/2. 
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