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In this paper we complete the study of Rotenberg’s model (M. Rotenberg, 1983,
J. Theoret. Biol. 103, 181-199) describing the growth of a cell population and
treated partially by M. Boulanouar and H. Emamirad (Differential Integral Equa-
tions, 13 (2000), 125-144). In contrast to our previously cited treatment, here we
impose the condition that the maturation velocity for any cell can become null.
This consideration implies that the cell population never completely leaves its
initial distribution, because at every time we can find some cells of initial cell
population that are not divided. In this case, the generated semigroup is not
compact. To surmount this difficulty, after studying the irreducibility of the
generated semigroup, we calculate explicitly its essential type and we show the
asymptotic convergence of the generated semigroup to a projection of rank 1.
© 2000 Academic Press

1. INTRODUCTION

This paper is the continuation of [4] in which we distinguish any cell by
its degree of maturity w I =(0,1) and its maturation velocity v € J =
(0, b). By taking the degree of maturity between 0 and 1, we mean that the
cells are born at u = 0 and divide at u = 1. We denote by r(w,v,v’) the
transition rate at which cells change their velocities from v to v'. If we
denote by f = f(u, v, t) the density of this cell population with respect to
the degree of maturity u and maturation velocity v, then this density
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satisfies the following partial differential equation:

of  of
— t+p— =
Jat i

[frmarra

v, [ ) do. (1)
0

This model is proposed by Rotenberg [10] and can be considered as one
of the models of structured population dynamics with inherited properties.
Inherited properties models do allow memory of generation time and
among such models are the age—time and maturity—time models of prolif-
erating cell populations with inherited cycle length of Lebowitz and
Rubinow [7]. These models are based on the assumption that the duration
of the cycle from cell birth to cell division is determined at birth. Lebowitz
and Rubinow proposed that the birth law can be considered as a boundary
condition and has the form of an integral equation on the trace space. The
transition probability kernel of this equation is determined by the correla-
tion between generation times of mother—daughter pairs in proliferating
cell populations. Although it is controversial, many researchers have
claimed that such correlations do exist. The recent analysis of Sennerstam
and Stromberg [11] has even shown that it might be possible for a
near-zero mother—daughter generation time correlation to accord with
epigenetic and genetic inheritance transferred from mother to daughters.
This remark justifies the main objective of this paper to put v near 0.

An important experimentally observed property of proliferating cell
populations is their dispersion of various physical characteristics as time
evolves. This property is known as asynchronous exponential growth. A
rigorous mathematical treatment of the Lebowitz—Rubinow model can be
found in [15, 16]. In these papers Webb proved that asynchronous expo-
nential growth occurs provided that the transition kernel satisfies certain
smoothness and positivity conditions.

Let p > 0 be the average number of viable daughters per mitosis and let
k(v,v’) be the positive correlation between velocities of mother and
daughter cells. In [10], Rotenberg proposed as in [7] that the reproduction
rule is given by the boundary condition

b
uf (0,0, 1) =p/ k(v,v")v'f(1,0',t) dv'. (1.2)

0
To ensure the current continuity he imposed the normalization condition

/Obk(v,u’) dv=1. (1.3)
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We show that the Cauchy problem (1.1) and (1.2) with initial condition

f(r,0,0) = ¢o(p,0) (1.4)

is generated by a Cy-semigroup {e'’+}, . ;. To study the asymptotic behavior
of this semigroup we will use an operator-theoretic formulation of asyn-
chronous exponential growth of {e'’s},., which is given in [17]. This
formulation is based on three facts about this C,-semigroup. The semi-
group should be positive and irreducible and its essential type wess(Tp)
should be strictly less than its exponential growth bound wO(Tp), where

Wees(A) = tli%n;lot*lln afe]

and «f ] is the measure of noncompactness (see [17]). To establish the
main inequality

“’eSS(Tp) < “’O(Tp)

we have imposed in [4] that the minimum maturation velocity of all cells is
positive. That is, J = (a, b) with a > 0. This implies that w,(T7,) = —=.
Since this assertion is biologically unjustifiable (see [11]), our main aim in
this paper is to remove this assertion and recover the asynchronous
exponential growth of the generated semigroup with a new treatment. If
we impose that the maturation velocity of every cell may vanish, then at
any moment one can find some cells of the initial cell population that are
not divided. So this cell population never goes out of the initial evolution
phase and this may explain the noncompactness of the generated semi-
group in this case.

In this paper we adopt the notation of [4] and we will show that, in spite
of the noncompactness of the generated semigroup, the conclusion of [4]
on asymptotic behavior holds. In the next section we give a new expression
of the resolvent of the unperturbed operator (i.e., » = 0). This expression
is used to prove that the consideration a = 0 does not spoil the generation
theorem and positivity of the C,-semigroup for this model. In Section 3 we
recover the irreducibility of the generated semigroup either by using the
irreducibility of the boundary operator or by imposing an appropriate
assumption on the kernel r. In the last section, the boundedness of the
kernel k permits us to calculate explicitly the essential type of the
semigroup generated without perturbation (i.e., » = 0). The essential type
of globally generated semigroup is also calculated explicitly under an
assumption on the kernel r. Finally, we show that the generated semigroup
converges asymptotically to a projection of rank 1 in the operator norm
topology. Some of these results are announced in [1]. Here we complete [1]
by stating some new results and outlining the proofs. The case b = « is
discussed partially in [2].
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2. A NEW FORMULATION OF THE GENERATED
SEMIGROUP

Let Q =(0,1) x (0,b) =1 X J with 0 < b < . We begin by introduc-
ing the Lebesgue space L(Q) with its natural norm denoted by |||, and
the partial Sobolev space W(Q) = {¢ € L'(Q)|v(deo/dn) € L1(Q)} and
correspondence trace space L'(J,vdv). W(Q) and L'(J,vdv) are the
Banach spaces endowed with the norms

¢
v—

b
7 and lgllis, vav) =/(;U|g(v)|du.

lellwia) = llell +

1

In [4, Theorem 3.1], we have shown that the trace mappings
yO: ® = QD(O, .)1
’YI: (p = QD(lv .)

are linear continuous from W(Q) on L'(J,vdv), and we have character-
ized the boundary condition (1.2) by introducing the multiplying boundary
operator K, defined by

K,(v) = %/;bk(v,u’)u’t//(v’)du’.

This operator is positive from the Banach lattice L(J,vdv) into itself.
Furthermore the relation (1.3) implies that

beKpllf(v) dU=pbe«,l/(U) dv  forany ¢ e LY(J,vdv).
0 0

Thus
||Kp||y(L1(J.udu)) =p. (2.1)

If, for any p > 0, one defines the operator 7, , by

de
T, o0(p,v) = _U@(”’U)’
with domain
D(T,,) = {¢ € W Q) 700 =K, 1160},

the operator T,, on D(T,,) ={¢ € W(Q)|y,¢ =0} generates a
strongly continuous positive contraction semigroup given by

eTorp(u,v) = x(m v, 1)@ — tv,0),
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where

if uw>t,
if uw<t,

X(,U«vU,t)Z{é

and, for A > 0, we have

- JU
(A= To o) o 1,0) =f0“ e Mo(w —tv,v) dt.

The operators (A — T ,)~" and y(A — T, o)~ * are obviously bounded
and strictly positive. That is,

(A= Too) "((L(2)),\{0}) € ((L*(©)),\{0}) (22)
and
V(A = To0) T ((L1(Q))\{0}) € ((L(J,vdv)) \{0}). (23)
Now, let us define the operator K, , by

Ep,)\ = (ne)k,,
where

e(p.v) = exp(—/\%). (2.4)

THEOREM 2.1.  For any A > max{0, b In p}, the resolvent operator of Tp,0
is a positive operator given by
Y — -1 _ -
()‘ - Tp,O) = EAKp(I - Kp,)\) Y1(A = To o) t (A= To) g
(2.5)
Proof. Let A > max{0, b In p}. We know from [4] that
-1 -1 -1 -1
(A=T,0) =&l —K,,) Ky(A=Too) +(A—Too) 7,
(2.6)
where the operator K, , is given by

Kp,A¢=Kp(71€A)¢ (2.7)

for all ¢ € L'(J,vdv). To obtain the new expression (2.5) of (A — T o) !
it suffices to show that

— -1 -1

K(1-K,,) =(-K,,) K

P
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Since the operators K, , and K, , are positive on L'(J,vdv), from (2.1)
we have

1K, Al van <1 and ”I?p’)‘”Y(Ll(],UdU)) <1
for all A > max{0, b In p}. On the other hand, for any n € N we have
K,K, =K, ,K,,

which implies that

— -1
KP(I—KM) = Y K,K!,
n>0
= Y K!,K,
n>0
-1
=(I-K,,) K,

The positivity of the operator (A — Tp',\)’1 follows from the positivity of
the operators (A — T; o)™, vi(A — Ty )"', and K. 1

The coincidence between (2.5) and (2.6) implies that Theorems 3.5 and
3.6 of [4] are valid, even if a = 0. As consequence we have

LEMMA 2.1 (see [4D. The operator T, generates on LN(Q) a strongly
continuous semigroup {e'’r°}, _ , satisfying

(1) e'Too < e'Tro;
Q) e'Tro < ge® e Trsa0 if p > 1 and all g > p;
@) lleTrolly,s <1ifp <1
@ lleTrollyy =1ifp =1
B lerolly, = 1ifp > 1;
(6) when p < 1, this semigroup is expressed by
e'rop(w,v) =eToop(p,v) +A(t)e(p,v), =0, (2.8)

with
Ao iv) = X Ko 1 = )it o] o] 0) (29

and
x=1-x, (2.10)

where || - ||1,1 =" ”_Y(Ll(&l))-
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When ¢ € (0,b™ 1), we give the following expression of the semigroup
{e'Tro), ., forall p > 0.

THEOREM 2.2. Ift € (0,b™ 1), then for all p > 0 we have

eXp(tTp,o)‘P( M, V)

— exp(1Ty o) @( 1, v) + X( e, t)[prleXp[(t - %)TOYOM(U).

Proof. Lett < (0,b™ 1) and ¢ € LY(Q). We define the following func-
tion

A (x0)
= oxp(T0) 6 0) + X 00| Kyviomn| (1 = 2] ] 0.

If + > 0 is small then the same calculation of [4, Theorem 4.5] gives us

t 1

@) — e dep
lim L+
t—0

Y

Furthermore, if ¢ € D(T, ,) then we have vy, f(¢) = prle‘Tovo and vy, f(¢)
= y,e'To0, because 1 € (0,b71). Thus f(r) € D(T, ). Consequently, the

function f is a strong solution of the Cauchy problem

df
E = Tp,Of7
f(0) = .

But ¢'T»0 is another solution of the same Cauchy problem. By uniqueness
we complete the proof. |

Next we define the absorption operator 7, ; and the transport operator
T, by
P

T,,=T,0+S and I,=T,,+S+R=T,, +R,
where the operators R and S are given by
b ! ! !
Re( . v) =for(u,v,v Ye(wp,v'")dv

and

So( mv) = —[fobr(p,v',v)du’}go(,u,u).
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For the boundedness of these operators in L({)) we assume that

r is a measurable positive function,

b

(H1) M =ess sup fr(,u,v’,u)dv’<oo.
(p,0)e0 0

In the following lemma we announce some facts concerning the perturbed
operator T, which is used later. This lemma is proved in [4] for a > 0, and
the same proof is valid for a = 0.

LEMMA 2.2.  Under hypothesis (H1), —S and R are positive linear bounded
operators on L*(Q). Furthermore, the operators T, and T .1 with the domain
D(T,) = D(T, ,) = D(T, ;) generate on L) the positive C o-Semigroups
{e! Tp}t Lo and {e’ ) A satzsfymg for all p = 0 the following assertations:

1) eTor<elry 1 >0

2 e Mgty o < otTp1 < e’TPvO, t>0;

®3) eTri<e® t>0;

@) ifp <1, thenlle™|,,<1,t>0;

(5) ifp=1,thenl <lle|ly, <pe®? t>0.

3. IRREDUCIBILITY

The main result of this section is to show that the semigroup {e'’7}, . , is
irreducible. The proof of irreducibility given in [4, Lemma 6.1] is not valid
here, because we cannot find a constant ¢ > 0 such that the function e,
given by (2.4) satisfies y,€,(v) > ¢ > 0 for all v € J. Consequently, the
inequality K, , > cK, is no longer valid in the present context and this
forces us to choose a new treatment. For the irreducibility of e'”», we have
two alternatives: either we can impose the appropriate condltlons on the
boundary operator K, or we can endow the function r with some condi-
tions as it is defined in the sequel. First assume that the kernel of the
operator K, satisfies the following condition

(H2) fof]\Ak(U,U’) dv'dv >0,

where A is a measurable subset of J such that meas(A4) > 0 and
meas(J\ 4) > 0.

By the standard argument assumption (H2) implies the irreducibility of
the operator K, on L'(J,vdv) (see [18).
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LEMMA 3.1.  Under assumption (H2), the operator I?py A is irreducible for
all A > max{0, b In p}.
Proof. Let A > max{0, b In p} and let M be a closed ideal of the trace
space L'(J,vdv) such that
K, (M)cM. (3.1)

By the characterization of the closed ideal in L(J,vdv) (see [9]), there
exists a measurable subset w J such that

M= {¢eL}J vdv)|y(v) =0forae. v e w} (3.2)

Ifgek (M) then there exists ¢ € M such that g = K¢ and (y,¢)g =
(v,€)K, z// K, . Thus by (3.1) we obtain (y,€)g € M and (3.2) im-
plies that K, (M) c M. Finally, the irreducibility of the operator K,
implies that M= & or M = IL}(J,vdv) and this completes the proof. |

THEOREM 3.1.  Under assumption (H2), the semigroup {e'"r2},_  is irre-
ducible.

Proof. Let A > max{0, b In p} and let g be a strictly positive function
in L(Q). According to (2.3) the function y,(A — T;, o) *g € L'(J, vdv) is
also strictly positive and from the irreducibility of the operator I?m, it
follows that there exists an integer m > 0 such that

E,'ffn’l()\ - To,o)flg >0 a.e.in J.

The positivity of the operator (A — T;, ,)™* and the inequality K, > I?IM
imply that

_ — -1 _
(A - T,.0) lg = GAKp(I - Kp,A) yi(A = To o) lg

=, 1
= e)\Kp Z Kp,A71(’\ - To,o) 8

n>0
= € K K (A - 0,0)_18
= EAEZA%()‘ - To,o)_lg- (33)

Thus the resolvent operator of 7, , is irreducible, which is equivalent to
irreducibility of the semigroup {e'7»°}, . , (see [5] or [4, Lemma 2.1]). |1

THEOREM 3.2.  Suppose that hypotheses (H1) and (H2) hold. Then the
semigroup {e'"r}, .  is irreducible.
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Proof. By using assertions (2) and (3) of Lemma 2.2, we obtain

etTF > efMtetTl,vol t > 0.
Now the irreducibility of the semigroup {e'’+}, . , follows immediately from
the previous theorem. |

When K, is not irreducible, we impose the following hypothesis:

There exists o’ and b’ (0 < a’ < b’ < b) such that
(HS) r(l*LxU,U’)>Oa.e.0n ((Ovl)xfx(a’,b’))
O((0.2) X (a',5") x.7).

The proof of [4, Theorem 6.4] is valid and establishes the following lemma.

LEMMA 3.2.  Under hypotheses (H1) and (H3), the C,-semigroup {e'""}, . ,
is irreducible.

4. ASYMPTOTIC BEHAVIOR OF THE SEMIGROUP {e'™+},_

In this section we describe the asymptotic behavior of the semigroup
{e'"r},. , under some hypotheses on the functions k£ and r. We note that
from points (2) and (3) of Lemma 2.2 and point (1) of Lemma 2.1 we get

e*MtetTo‘o < e—MzetTp‘O < etTlul < elTﬂ, t > 0.

Since the semigroup {e'’o0},_ , is not compact, the semigroup {e'’7},. , is
neither (see [6, Prop. 2.1]). Consequently, we cannot use the method in [4]
that w.(7,) = —. To obtain this result we apply a new treatment,
assuming that

(H4) ke I2(Jx1T).

This assumption permits us to calculate explicitly the essential type of the
semigroup {e'7»1}, _ .

LEMMA 4.1. Suppose that assumption (H4) holds. Then, for all 0 < t <
b=t and s = 0, the operator

L(t,S) = [eZTP‘O _ etTO,O]eSTO‘O[eZTp‘O _ etTO‘O]

is weakly compact on L}({2).
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Proof. Let ¢ € (LY(Q)),. 1f 0 < < b1, it follows from Theorem 2.2
and hypothesis (H4) that

[eXp(tTp,o) - eXp(tTo,o)] e(pm,v)

spllkllmwfobu’yl[exp[(t - ﬁ)TO,()},L»](:)’) dv’

v
X ,U, t
=P||k||mebu’X(l,v’,t — ﬁ)qo(l — (t — ﬁ)U’,U’) dv'.
v 0 v v
Let s > 0. Then
L(t,s)e(pm,v)

sp||kllmwfobv’yl[exp[(t +5— %)TO’O}
x {exp(1T, o) — eXp(tToyo)}go](U’) dv’

X/ m, 0, t b 12
g[ U’X(l,v’,t+s— —)
v 0

= plikll
12

X [exp(¢T, o) — exp(tTo,O)]qo(l —~ (t +5— %)u’,u’) dv’

X(m,0.8) rb s s
gp2||k||i¥f/wx(l,uqtﬂ——)
v 0o v
_ ~y
X)((l—(t+s——)u,u,t)
v

X X

" 1
1,1)”,2t+s————,)
v

7 1
X @l — (2t+s - — = —,)U”,U” dv” dv'.
v v

The following change of variables

’

I 1
,u’=1—(2t+s————)u”,
v v

uZ

r_ '
dv' = o du',
-1

where u = u(t,s, w0, u',0") = |2t +s—pot+(pn —1)—
v
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implies that
X( w0, 1)
L(t,s)e(p,v) szllkllif

b ® n 1
Xff X(l,v”,2t+s————
0 71-Qt+s—p/v—=1/b)" v u

Xu’x(Lu,t+s—pot)

X X/(l — (t + 5 — %)u, u, t)go( p,u")ydu' dv”.
(4.1)
Replacing u by its value, a simple calculation gives
x(Lout+s— /Lw_l))_((l —(t+s—wo Yu,u,t)

1 ifl—n" <u <1,
0 elsewhere,

and 0 <u < b and in any case y(1,v",2t+s — uv~ ' —u~')=1. Thus
relation (4.1) becomes

X/(lu‘lvlt) b r1
L(t,5)¢( p,v) < p?D?IKIE=———["[o( ' v") dp' dv’
v 070
=Ho(p,v).

Since [o(x(w,v,8)/v)dudv < o, the operator H, is of rank 1 and,
consequently, weakly compact on L}(Q). Further, so is the operator L(t, s)
which is dominated by H, (see [6, Prop. 2.1]). |

LEMMA 4.2, Suppose that assumption (H4) holds. Then the operator
[EZTPJ _ etTO‘l]eSTO.l[e’Tpvl _ 3170,1]
is weakly compact on L}(Q) forall 0 <t < b~ ! ands > 0.

Proof.  To show this lemma, it suffices to note that the operator 7, ;
(resp. T, ) is a perturbation of the operator T, , (resp. T, ,) by the
bounded operator §. Duhamel’s formula gives us

etTrt = otTpo + fte(’_’)TFvOSeSTﬂvlds
0
and

t
e'Tor = ptTo0 4 /e(t—~Y)To,oSeSTo,1 ds.
0
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The positivity of the operator —S and (1) of Lemma 2.1 implies that

t t
e'Tr1 — otTor = o!Tpo — ptToo + fe([_’)TFvOSeSTﬁvlds _ /e(l—s)TovoseeTovlds
0 0

t
< etT],‘o _ etTO,O + /e(t_S)TO,OS[eSTp,l _ e-"TO,l] dS
0

< e'Tro — tTo0,
Consequently,
[etprl _ etToyl]esTovl[esz‘l _ etTovl] < [e’TM _ etTovo]esTo‘o[ezTP‘o _ etTOVO].

Once more, the fact that the operator [e'7r1 — e'To1]esToa[e!Tr1 — g'To1] is
dominated by a weakly compact operator in L'(€2) implies that it is weakly
compact. |

LeMMA 4.3, If assumption (H4) holds, then we (T, 1) = wes(Ty 1)
Proof. Let 0 <t < b~ Then by the previous lemma the operator
2—n[etTn1 _ e’TOvl]e”‘TOvl[e’TP‘l _ etTO‘l]

is weakly compact for all n € N. Consequently, the following operator
m
Z_l[etTPvl _ e[T0,1]|: Z 2_’13”IT0.1}[etTp.1 _ etTO.l]
n=0

is also weakly compact for any m € N. Since {e'’e1},_ ; is a contraction
semigroup, the last sum converges in Z(L(Q))) to the operator

[eTri — eTo1](2 — etTD‘l)fl[etprl — e'Toa],

which becomes weakly compact. The Dunford—Pettis property of L'(Q)
(see [8]) implies the compactness of

1Ty1 — ptTo1)(2 — eiTon -1]4
(e e'for)( e'’o1) .

According to [12, Corollary 1.4], this implies that the spectral radius
re(e'To1) of e'Tor and r(e'T»1) are the same. We complete the proof of
the lemma by recalling that for all 1 > 0 we have r(e'Tr1) = e'@esTpD)
and r(e'Tor) = e'esTor) (see [5]). |

To calculate the essential type of the semigroup {e'’+},. ,, we have to
assume that

r(m,v,0")
(H5) ry=r(pv,0')=—"—¢€L*(IXJ?.
M
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LemMMA 4.4, If (H1), (H4), and (H5) hold, then w(T,) = wei (T, ;).

Proof. Let t > 0. If p <1, then for any function ¢ € (L}(Q)), rela-
tion (2.8) gives us

Re'"roRe = Re'T°R¢ + RA(t)R¢,

where the operator A(¢) is defined in (2.9). If hypothesis (H5) holds, then
the kernel r is bounded and by a simple calculation we obtain

fngo( w0’y du dv'l, (4.2)

where 1 € L}(Q) is the function equal to 1 on . By using assumptions
(H4) and (H5) we obtain

b
RA(Re( ,0) < Ikl [
0

b kY, ’
foux(u,v 1)
XeXp[(t — leil)Tp’O]R(P(l,U")U” dv' dv" .
The change of variables s = ¢ — po' ™! implies that

RA(Re(w,0) < Il [ [ % w2 1]

[TRRE:
esTP'OR(p(l,U")U"[—} dsdv”.
Since x(u, u/(t —5),¢) = 0 for s <0,
RA()Ro( 1, 0) < B2IIklLllryll [ [e wRe(1,0")0" dsdv” .

As there exists an integer n such that n < bt < n + 1, we have
RA(t)Re( . v)

(b orGrD/b
< B2lklllr . Y fo / b“/ exp(sT, o) Re(L,0") dsdv"
i=0 i/

Ll

b rl/b
= b2||k]l. ||r1||wz /O/O/ exp(sT, )exp( )R(p(l ") dsdv” .

n

b
= b?||k|L. ||r1||w2 fo fo exp

}Rgo(l V") dsdv”
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When 0 < s < b1, by Theorem 2.2 we obtain e*7rop(1, ) = e’Toop(l, - )
and

RA(t)Ro( p,v)
" b /b i
< b2kl X [ [ exp(sTO’O)exp(—Tpvo)Rgo(l,v”)dsdu”.
i=070 "0 b
Using the definition of semigroup {e'7o0}, . , we get

RA(t)Re( p,0)

b r1/b , I

< Bl X [ x(Lo ,s)exp(ZTpvo)
X Re(l —sv",0") dsdv”

u b 1 i ’ ” ! ”n

sb2||k||m||rl||mi_zofo[Oexp(ZT,,,o)Rgo(M Y du dv”

The contraction of the linear operator exp((i/b)T, ), i =0,...,n — 1 (see
Lemma 2.1), and the boundedness of the positive operator R yield that

RA(t)Re(p,v) < (n + 1)b2||k||m||r1||m||R||1,1fﬂgo( ' o")dw dv".
Thus
RA(t)Re(p,v) < (bt + 1)bZHk”so”rl”oo”R”l,lfQQD( w,v')ydp dv' 1.
(4.3)
Now relations (4.2) and (4.3) give us

2
7l

Re'"roRp < — + (bt + 1) b2kl Ll R 1

Xf e(p,0")ydp dv' 1.
Q

As the operator ¢ € LMQ) = [oo(u/,0")du dv” 1 € LN(Q) is rank 1,
then by [6, Prop. 2.1], we obtain the weak compactness of Re'’»°R for all
t > 0. Finally, the same result holds for p > 1 (see Lemma 2.1). We
achieve this proof by applying the main result of [14] (see also [4]). 1
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To describe the asymptotic behavior of the semigroup {e'’r},., we
introduce the following assumption

(H6) m = ess inf fr(/u,u’,u) dv’ > 0.
(p,EN’Q

The following theorem is a simple application of Lemma 2.3 in [4] and
describes the asymptotic behavior of the semigroup {e'’+},. , for p > 1. In
fact, only in this case does the density of cells increase (see Lemma 2.2),
which is the biologically meaningful case.

THEOREM 4.1.  Suppose that hypotheses (H1), (H4), (H5), (H6), and (H2)
or (H1), (H4), (H5), (H6), and (H3) hold. Then there exists € > 0 such that,
for all m € (0, €), there exists M(n) > 1 such that, for all ¢ € L*(Q) and
t > 0, we have

le= T e Trp — (o, oF Ypolli < M(m)e " lloll;.

Proof. By using hypotheses (H1), (H4), (H5), and (H6) and Lemmas 4.3
and 4.4 we get

wess(Tp) = wess(Tp,l) = wess(TO,l) < wO(TO,l)'
Following the arguments given in [13] hypothesis (H6) yields

wo(Ty,) < —m <0.
Thus

wess(TO,l) < —-m <Q0.

Claim (5) of Lemma 2.2 gives us

and thus from previous relations we infer that
wess(T,) < @o(T,)-
Now either one of the hypotheses (H2) or (H3) implies the irreducibility of

the semigroup generated by 7, and the proof is completed by using the
main theorem of [17]. 1
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