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a b s t r a c t

The mathematical modelling and numerical simulation of the human cardiovascular sys-
tem is playing nowadays an important role in the comprehension of the genesis and de-
velopment of cardiovascular diseases. In this paper we deal with two problems of 3Dmod-
elling and simulation in this field, which are very often neglected in the literature. On the
one hand blood flow in arteries is characterized by travelling pressure waves due to the in-
teraction of blood with the vessel wall. On the other hand, blood exhibits non-Newtonian
properties, like shear-thinning, viscoelasticity and thixotropy. The present work is con-
cerned with the coupling of a generalized Newtonian fluid, accounting for the shear-
thinning behaviour of blood, with an elastic structure describing the vessel wall, to capture
the pulse wave due to the interaction between blood and the vessel wall. We provide an
energy estimate for the coupling and compare the numerical results with those obtained
with an equivalent fluid–structure interaction model using a Newtonian fluid.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cardiovascular diseases represent a major cause of morbidity and mortality in developed countries, having a significant
impact on the cost and overall status of healthcare [1]. An increasing demand from the medical community for scientifically
rigorous quantitative investigations of vascular diseases, has recently given a major impetus to the development of
mathematical models and numerical tools for computer simulations of the human cardiovascular system, in both healthy
and pathological states. However, the circulatory system is highly integrated and modelling its various functions is an
incredibly challenging problem, which requires addressing many fundamental issues, both from the mathematical and
computational viewpoints [2].
Whole blood is a concentrated suspension of formed cellular elements that includes red blood cells or erythrocytes,

white blood cells or leukocytes and platelets or thrombocytes. These cells are suspended in an aqueous polymer solution,
the plasma, containing electrolytes and organic molecules. While plasma is nearly Newtonian in behaviour, whole blood
exhibits marked non-Newtonian characteristics, mainly explained by the erythrocytes aggregation at low shear rates, their
deformability and their tendency to alignwith the flow field at high shear rates. These complexdynamic processes contribute
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Fig. 1. Domain representing a portion of a blood vessel at time t .

to the shear-thinning, viscoelastic and thixotropic behaviour of blood. For a detailed discussion of the physical properties of
blood and corresponding mathematical models see for instance [3] and references therein.
Meaningful haemodynamic simulations require constitutivemodels that can accurately capture the rheological response

of blood over a range of physiological conditions. In most part of the arterial system of healthy individuals blood can be
modelled as a Newtonian fluid (see e.g. [4,2]). However, in some disease states, namely if the arterial geometry has been
altered to include regions of recirculation, detected for instance in intracranial aneurysms or downstream of a stenosis,
more complex blood constitutive models should be used [5,3,6], although many authors have modelled blood flow using
the Navier–Stokes equations.
Blood flow interacts mechanically with the vessel wall, giving rise to pressure waves propagating in arteries, which

deform under the action of blood pressure. In order to capture these phenomena, complex fluid–structure interaction (FSI)
problems must be considered, coupling physiologically meaningful models for both the blood and the vessel wall. From the
theoretical point of view, this is extremely challenging because of the high nonlinearity of the problemand the low regularity
of the displacement of the fluid–structure interface. So far, existence results have been obtained only in simplified cases [2].
From the numerical point of view, the use of partitioned schemes which solve iteratively the fluid and the structure sub-
problems, supplied with suitable transmission conditions, is difficult to handle in haemodynamic problems, due to the large
added mass effect (see [7]).
Mathematical analysis and numerical schemes for FSI problems are still largely incomplete. Most use Newtonian fluids

and elasticity models ([2] and references therein), while FSI problems with non-Newtonian blood models coupled with
simple or complex models for the vessel wall dynamics are practically not addressed in the literature. In this work we
propose to extend existing results for 3D FSI problems with Newtonian fluids to a generalized Newtonian shear-thinning
model for blood flow, using a fully implicit coupled algorithm [8]. An energy estimate for the FSI coupling will be proved at
the continuous level, extending stability results already obtained in the Newtonian case [9]. Finally, numerical results are
compared with those obtained with an equivalent FSI coupling using a Newtonian model for blood flow.

2. The non-Newtonian fluid model

Asmentioned above, the physical properties of plasma and of the formed elements inducemechanical properties in blood
that become relevant under certain flow conditions and cannot be appropriately described by theNavier–Stokes equations. It
is commonly accepted that the most relevant non-Newtonian characteristic of blood is its shear-thinning behaviour (see [5,
3]). In this work we will neglect other non-Newtonian effects like viscoelasticity, thixotropy or yield-stress, and consider
blood as a shear-thinning fluid described by the generalized Navier–Stokes equations.
Let Ω t ⊂ R3 be a bounded domain representing the space occupied by a portion of a blood vessel at time t . The part

of the boundary corresponding to the physical interface is denoted Γ tw , while Γ
t
in and Γ

t
out represent the so-called artificial

boundaries, that do not correspond to any physical interface (see Fig. 1). The artificial sections appear due to the truncation
of the domain, since it is unfeasible to take into account the whole cardiovascular system as the computational domain.
We consider the equations for the isothermal flow of incompressible fluids, written in Eulerian coordinates, i.e. with

respect to the current configurationΩ t :ρ
(
∂u
∂t
+ u · ∇u

)
− div σ(u, P) = 0, inΩ t , ∀t ∈ I,

div u = 0, inΩ t , ∀t ∈ I,
(1)

where I =]0, T ] is the time interval and ρ is the density of blood. The unknowns are the velocity u and the pressure P , while
σ(u, P) is the Cauchy stress tensor, described through a constitutive relation characterizing the rheology of the fluid. In the
case of Newtonian fluids the constitutive relation is simply given by σ(u, P) = −PI + 2µD(u), where µ is the dynamical
viscosity of blood and D is the strain rate tensor, given by D(u) = 1

2 (∇u+∇u
T ).
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In this work we consider generalized Newtonian fluids, for which the viscosity is variable and dependsmonotonically on
the rate of shear γ̇ :

γ̇ =

√
1
2
D(u) : D(u).

More precisely, the generalized Newtonian model accounts for such dependence through the constitutive relation:

σ(u, P) = −PI+ 2µ(γ̇ )D(u). (2)

Different generalized Newtonian models correspond to different specifications of the viscosity function µ(·). When the
viscosity decreases with the shear rate, the fluid is said to be shear-thinning (or pseudoplastic), being shear-thickening (or
dilatant) when the viscosity increases with shear rate. The most common generalized Newtonian model is the power-law
viscosity, given by µ(γ̇ ) = kγ̇ n−1, where n ∈ R is the power-law index, and the parameter k is the consistency. This model
became very popular because it is possible to derive analytical solutions in various flow conditions [10]. A power-law fluid
is shear-thinning if n < 1 and shear-thickening if n > 1. For both mathematical and physical reasons, we will focus on
bounded viscosity laws of the general form

µ(γ̇ ) = µ∞ + (µ0 − µ∞)F(γ̇ ), (3)

where F(·) is a continuous monotonic function such that limγ̇→0 F(γ̇ ) = 1 and limγ̇→+∞ F(γ̇ ) = 0.
In the case of blood flow, as mentioned before, we are interested in describing a shear-thinning behaviour and therefore

µ0 > µ∞ > 0. For this purpose we will use the Carreau–Yasuda generalized Newtonian model, which is a particular case
of (3):

µ(γ̇ ) = µ∞ + (µ0 − µ∞) · (1+ (λγ̇ )a)
n−1
a . (4)

Here λ > 0, and n, a ∈ R are constants to be estimated by curve fitting of experimental data (see [11,3]). In this work we
use a = 2, corresponding to the so-called Carreau model. The coefficients µ0 and µ∞ are the asymptotic viscosities, with
µ∞ the viscosity at higher shear rates, and µ0 the viscosity for the lowest shear rates, which corresponds, in a pipe flow, to
the lowest pressure drop. Notice that if λ = 0 or n = 1, the viscosity is constant and we recover the Newtonian model, with
viscosity µ0.
We endow equations (1)–(2) with the initial condition u = u0, for t = 0, inΩ0, while at the physical boundary Γ tw we

impose no-slip conditions. As we will see in Section 4, this corresponds to set u = g, for t ∈ I , where the function g is the
velocity of the structure wall, i.e. the velocity of the physical boundary, given by the model for the vessel wall dynamics. In
the case of rigid vessels, where no wall displacement is considered and the domain is constant in time, we have g = 0.
The prescription of proper boundary conditions on the artificial sections Γ tin and Γ

t
out is not a trivial task, since these

conditions must account for the global effect of the remaining parts of the cardiovascular system. This issue can be handled
with a geometricalmultiscale approach but is not addressed in thiswork. For detailswe refer to [12,9] and references therein.
Generally speaking, even if the geometrical multiscale approach is applied, we must prescribe either Dirichlet u = h, or
Neumann σ(u, p) = q boundary conditions on the artificial boundaries.

3. The structure model

The vascular wall has a very complex structure, being composed of several separate layers of different materials, with
distinct mechanical properties [13,14]. The derivation of appropriate and accurate constitutive models for such a complex
tissue is extremely difficult and still a challenging subject of active research. Difficulties in modelling blood flow and
measuring its material properties also exist for the vascular wall. Indeed, on one hand the artery wall evidences nonlinear,
inelastic and stress–strain response [13,14]. On the other hand, the mechanical properties of the tissues measured in
laboratory are not likely to match the ones of the same tissues in vivo, which poses some limitations to mechanical
parameters obtained in experiments. Moreover, measurements in vivo are, at least for now, out of reach. Again, a balance
must be found between models of high complexity, capable of describing detailed aspects of the mechanical behaviour of
the material, and simpler models, less accurate but more feasible from the mathematical, numerical and computational
viewpoints.
In this work we consider the 3D nonlinear model of hyperelasticity [15, Chapter 4]. Hence, the structure domain will also

be a 3D bounded subsetΣ t of R3, varying in time. We subdivide the boundary of the structure domainΣ t into four disjoint
parts (see Fig. 1): Γ tw , which corresponds to the part of the boundary interfacing with the fluid domain, Γ

t
Σ,ext, which is the

portion of the boundary in contact with the exterior, and Γ tΣ,in and Γ
t
Σ,out, corresponding to the inflow and outflow artificial

boundaries, respectively.
As it is customary in solid mechanics, we write the structure equations in the Lagrangian frame, i.e. with respect to a

reference configuration, in cartesian coordinates. We denote byΣ0 the structure reference domain, which is the domain at
the initial time Σ0, when the structure wall is at rest. We also assume that the reference configuration is in equilibrium,
with zero internal stresses. This assumption is only an approximation for the study of blood flow in vessels, since the arterial
wall exhibits a pre-stress state [13,14]. We denote by Γ 0w , Γ

0
Σ,ext, Γ

0
Σ,in and Γ

0
Σ,out the corresponding reference boundaries

(see Fig. 1).
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The nonlinear structure model for 3D compressible elastic materials is thus given by (see [15])

ρw
∂2η

∂t2
− div0 (P) = 0, inΣ0, ∀t ∈ I, (5)

being η the displacement vector with respect to the reference configuration Σ0, ρw the wall density, div0 the divergence
operator with respect to the Lagrangian coordinates and P = P(η) = FS the first Piola–Kirchhoff tensor, with S = S(η) the
second Piola–Kirchhoff tensor and F = F(η) = I+∇0η the deformation gradient tensor. Moreover, we denote by E = E(η)
the Green–St. Venant strain tensor:

E =
1
2

(
FTF− I

)
=
1
2

(
∇
T
0η+∇0η+∇

T
0η∇0η

)
.

Weconsider a St. Venant–Kirchhoffmaterial [15, Section 3.9], forwhich the response function for the second Piola–Kirchhoff
tensor is linear in E : S = λ tr(E)I+ 2µE, where

λ =
Eξ

(1+ ξ)(1− 2ξ)
and µ =

E
2(1+ ξ)

are the Lamé constants, E is the Young modulus and ξ is the Poisson ratio.
Although the arterial wall should in principle be considered incompressible, the St. Venant–Kirchhoff model, valid in

small-strain and large displacements regime, is known to perform better than the linearized models (see [15, Section 3.9]).
In this studywe consider a nearly incompressible material by setting a Poisson ratio close to 0.5 and a constant mass density
ρw .
We recall that the 3D linear elastic model is obtained if instead of Ewe take its linear counterpart e(η) = 1

2

(
∇
Tη+∇η

)
.

The 3D equations of elasticity (5) have to be supplied with initial and boundary conditions. We take the initial conditions
η = η0, and η̇ = η̇0, for t = 0, inΣ0. Since the structure equations will be coupled with the fluid model, the initial velocity
η̇0 has to be compatible with the fluid initial condition, namely η̇0 = u0, on Γ 0w .
Regarding the boundary conditions, at the exterior boundary we assume that the stress is zero, by taking a homogeneous

Neumann boundary condition: P0 ·n0 = 0, on Γ 0Σ,ext, with n0 the outward normal vector to Γ
0
Σ,ext. At the interface with the

fluid Γ 0w , we consider appropriate matching conditions (7), which will be introduced in Section 4 and consist of imposing
the continuity of the stresses.
As for the fluid, it is not clear from physical arguments which should be the proper boundary conditions to impose on

the artificial sections Γ 0Σ,in and Γ
0
Σ,out. Again, in this work we will not focus on this issue, nevertheless we refer that in this

case not even the geometrical multiscale approach has provided satisfactory answers [9]. Hence, we consider a clamped
structure at the extremities by setting a Dirichlet homogeneous boundary condition η = 0 on Γ 0Σ,in ∪ Γ

0
Σ,out.

4. Coupling the fluid and the structure

The fluid–structure interaction problem (FSI) results from coupling the fluid equations (1)–(2) with the structure ones
(5). The coupling occurs at the interface Γ tw , through the matching conditions between the fluid and the solid, given by

u = η̇, ∀t ∈ I, on Γ tw, (6)

−σ(u, P) · n = S(η) · n, ∀t ∈ I, on Γ tw, (7)

where n is the outward unit vector to Γ tw . Condition (7) establishes the continuity of the stresses, while (6) is the no-slip
condition, that guarantees the total adherence of the fluid to the structure. The coupling is performed by imposing (6) on
Γ tw for the fluid, and (7) on Γ

t
w for the structure (Dirichlet to Neumann coupling). Should there be an external pressure, it

appears as an applied surface traction in the structure model. For the sake of simplicity, and with no loss of generality, we
will consider the external pressure to be zero.
We havementioned that the fluid equations arewritten in Eulerian coordinates, while the structuremodel is represented

in a Lagrangian frame. Condition (6) is already in Eulerian coordinates, and thus ready to be imposed on the fluid equations.
This is not the case of condition (7), that should be rewritten on Γ 0w , to be prescribed on the structure model. By means of
the Piola transform, we have

− (det∇0η) σ(u, P)
(
∇
−T
0 η

)
· n0 = P(η) · n0 for t ∈ I, on Γ 0w, (8)

where∇0 indicates the gradient with respect to the Lagrangian coordinates, and n0 is the outward unit vector to Γ 0w .

4.1. An energy estimate

In [9, Theorem 3.9] an energy estimate for the FSI coupling between the Newtonian fluid equations, written in the formρ
(
∂u
∂t
+
1
2
∇|u|2 + curl u× u

)
− div σ(u, P) = 0, inΩ t , ∀t ∈ I,

div u = 0, inΩ t , ∀t ∈ I,
(9)
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and the structure equations (5) is proved. Here, we extend that result to the generalized Newtonian fluids in the standard
formulation (1)–(2).
The FSI problem is highly nonlinear, since the solution for the fluid equations depends on the domainΩ t , which in turn

varies in time, depending on the solution η of the structure equations. Moreover, the solution of the structure equations
depends itself on the fluid load on the vessel wall, that is, on the fluid solution. This complexity of the FSI problemmakes it
difficult to obtain regularity results for the coupled problem, as well as to study its well-posedness. Precisely, the 3D elastic
model does not provide a priori sufficient regularity of the solution η for the coupling with the fluid equations. Indeed, from
the matching condition (6), we see that the fluid velocity at the interface boundary Γ tw with the structure wall is given by
the time derivative of the wall displacement η̇, which does not, in general, belong to H1/2(Γ tw), that is the natural space for
the trace of the fluid solution u(t) ∈ Γ tw . Several authors, in search of regularity results for the FSI Newtonian problem,
add extra regularizing terms to the structure model, that however do not have a direct physical meaning [16,17]. We refer
to [18] for a more recent result for strong solutions of the FSI Newtonian problem using 3D elasticity structure models.
Due to these difficulties, we assume a priori some regularity hypothesis, so that the integral and norms used to derive

the stability result are well defined. In particular, we assume that |u(t)|2 ∈ H1(Ω t), and also that η̇ ∈ H1/2(Γ tw), which
guarantees that u(t) ∈ H1(Ω t). Moreover, since the fluid domainΩ t depends on the structure model solution, we assume
that such solution is regular enough so that Ω t is sufficiently regular at all times. In particular, we consider that, at any
time t ∈ I the domain Ω t ⊂ R3 is open and connected and its boundary ∂Ω t := Γ tw ∪ Γ

t
in ∪ Γ

t
a is locally Lipschitz (i.e.,

∂Ω t ∈ C1,1).
In order to derive an energy estimate, we define the energy of the coupled FSI problem (1)–(2), (5) and (6)–(7) as

E (t) =
ρ

2
‖u‖2L2(Ωt ) +

ρw

2
‖η̇‖2L2(Σ0) + µ ‖E‖

2
L2(Σ0) +

λ

2
‖tr E‖2L2(Σ0) .

Proposition 4.1 (Energy Decay Property). The coupled FSI problem (1)–(2), (4), (5) and (6)–(7), with homogeneous Dirichlet
boundary conditions u = 0 on Γ tin and Γ

t
out, satisfies the following energy inequality:

d
dt
(E (t))+ 2µ∞‖D(u)‖2L2(Ωt ) 6 0, (10)

from which we obtain the energy decay property:

E (t)+ 2µ∞

∫ t

0
‖D(u)‖2L2(Ωt )dt 6 E (0), (11)

where E (0) depends only on the initial data u0, η0 and η̇0.

Proof. As in [9, Theorem 3.9], multiplying the structure equation (5) by η̇ and integrating over the reference domain Σ0,
we obtain, due to the homogeneous boundary conditions considered for equations (5) on Γ 0Σ,ext ∪ Γ

0
Σ,in ∪ Γ

0
Σ,out, and to the

matching condition (7),

ρw

2
d
dt
‖η̇‖2L2(Σ0) +

λ

2
d
dt
‖tr E‖2L2(Σ0) + µ

d
dt
‖E‖2L2(Σ0) = −

∫
Γ tw

(σ(u, p) · n) · u dγ . (12)

Similarly, for the fluid equations, we multiply the momentum equation by u and integrate over Ω t . Due to (6) and the
Reynolds transport theorem, we have

ρ

∫
Ωt

∂u
∂t

u dω =
∫
Ωt
ρ
1
2
∂

∂t
|u|2 dω =

ρ

2
d
dt
‖u‖2L2(Ωt ) −

ρ

2

∫
Γ tw

|u|2u · n dγ . (13)

Regarding the convective term we have, using integration by parts,

ρ

∫
Ωt
(u · ∇)u · u dω = −

ρ

2

∫
Ωt
|u|2 div u dω +

ρ

2

∫
∂Ωt
|u|2u · ndγ . (14)

We now remark that, for a shear-thinning generalized Newtonian fluid with a viscosity law (3), we have:

µ∞ 6 µ(γ̇ ) 6 µ0.

Thus, noticing that D(u) : ∇u = D(u) : D(u) > 0, we may write∫
Ωt
2µ(γ̇ )D(u) : ∇u dω > 2µ∞‖D(u)‖2L2(Ωt ).

Finally, summing (12), (13) and (14) and considering the incompressibility condition div u = 0, we get

d
dt
(E (t))+ 2µ∞‖D(u)‖2L2(Ωt ) +

ρ

2

∫
Γ tin∪Γ

t
out

|u|2u · ndγ 6
∫
Γ tin∪Γ

t
out

(σ(u, P) · n) · u dγ , (15)



2788 J. Janela et al. / Journal of Computational and Applied Mathematics 234 (2010) 2783–2791

pressure
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–8000.000

Fig. 2. A 3D representation of the pressure distribution and computational domain at times t = 0.003 s (left), t = 0.006 s, t = 0.009 s, t = 0.012 s and
t = 0.015 s (right).

which leads to the energy inequality (10) by taking homogeneous Dirichlet boundary conditions on Γ tin and Γ
t
out. The energy

decay property (11) is obtained integrating (10) between 0 and t , with t 6 T . �

If instead of homogeneous Dirichlet conditions on Γ tin and Γ
t
out, homogeneous Neumann conditions are considered, the

result holds true only if
∫
Γ tin∪Γ

t
out
|u|2u ·ndγ > 0, which can be verified for instance if

∫
Γ tin
|u|2u ·n > 0 and

∫
Γ tout
|u|2u ·n > 0.

These conditions are satisfied if the boundaries Γ tin and Γ
t
out are both outflow sections, meaning that the flux exits the

domain: u · n > 0. This is not true in general for blood flow, not even if Γ tout is a downstream section (the one closer
to the systemic circulation), due to the pulsatile nature of blood flow in arteries. One way to overcome this problem is
to reformulate the fluid equations as in Eq. (9) (see [9]), which can be straightforwardly applied to the equations for the
generalized Newtonian fluids (1)–(2), since it does not alter the constitutive relation term of the equations. From this point
of view, and after the demonstration of Proposition 4.1 presented here, the results in [9] can be easily extended to the
generalized Newtonian case.

5. Numerical simulations

The numerical methods

The numerical approximation of the FSI coupling problem is performed through a splitting strategy, where the fluid
and solid sub-problems are solved separately in an iterative way [19,8]. The nonlinear fluid–structure iterative coupling is
performed through aquasi-Newton algorithmadapted from [8]. Here the Fréchet derivative of the fluid operator is computed
exactly, while the shape derivative is approximated by the one of a Newtonian fluid.
The fluid equations are discretized in time by the implicit Euler scheme, being the nonlinear convective term linearized in

a semi-implicitway: (un·∇)un+1, withun andun+1 the velocity solutions at the previous and current time steps, respectively.
Also the viscous term is treated in a semi-implicit way: σ(un+1, Pn+1) = −Pn+1I+ 2µ(γ̇ n)D(un+1), i.e., the viscosity at the
current time step is computed from the velocity gradient at the previous one. In order to account for the evolution of the
computational domain, we apply the Arbitrary Lagrangian Eulerian (ALE) formulation to follow the fluid–structure interface
movements (see for instance [20], and references therein). The ALE method is based on the construction of an appropriate
mappingAt : Ω0 → Ω t , (x̂, t) 7→ x = At(x̂), from the reference domainΩ0, to the current oneΩ t . This technique allows
to overcome the mismatch on the coordinate systems between the fluid (Eulerian coordinates) and the solid (Lagrangian
coordinates), by simply reformulating the Eulerian time derivative of the fluid momentum equations into the ALE time
derivative: ∂u

∂t =
∂u
∂t

∣∣
x̂ − (w · ∇)u, withw =

∂At

∂t ◦ (A
t)−1 the domain or mesh velocity in the current configurationΩ t . In

particularAt := IΩ0 + ηf , where ηf = Ext(η|Γ 0w ), being Ext an arbitrary extension of the solid displacement η over the fluid
reference domainΩ0, which in this work is simply an harmonic extension of the fluid domain, imposed through condition
(6). The fluid space discretization is carried out by means of a streamline diffusion finite element method [21,22].

Remark 5.1. At the continuous level the ALE description of the fluid is not necessary, since the change of information
between the reference and current domains is carried out at each t ∈ I in a transparent way. This is not the case anymore at
the discrete level, where the time discretization calls for the use of quantities at previous time steps, when the mesh nodes
were at different positions. The ALE time derivative is an adequate tool to follow the evolution of quantities associated to
the moving mesh nodes.

The fluid normal stress on the fluid–structure interface Γ tw , prescribed on the structure equations (condition (7)), is
computed in a weak form, by evaluating the residual of the fluid equations for the non-vanishing test functions on the
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Fig. 3. Comparison of the wall displacement in a longitudinal cut at several time steps: t = 0.003 s (top), t = 0.006 s, t = 0.009 s, t = 0.012 s, and
t = 0.015 s (bottom), for the Newtonian model (solid lines) and for the non-Newtonian Carreau model (dashed lines).

interface. The structure equations are discretized in time with the mid-point Newmark method, and in space through P1
finite elements.

Numerical results

In order to test the fluid–structure coupling described in Section 4 we setup a simple model problem. The initial fluid
domain is a cylinder of radius R = 0.5 cm and height 5 cm,while the initial structure domain is a cylindrical shell with 0.1 cm
of thickness surrounding the fluid domain. The vesselwall is described as an elasticmaterial governed by Eq. (5),with density
ρw = 1.2 g cm−3, and blood is modelled as a generalized Newtonian Carreau–Yasuda fluid with density ρ = 1.06 g cm−3
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Fig. 4. Time evolution of the cross-sectional area in two different cross-sections (z = 1.25 cm, left, and z = 2.5 cm, right) for the Newtonian model (solid
lines) and for the non-Newtonian Carreau model (dashed lines).

and parameters a = 2 (Carreaumodel),µ0 = 0.56 Poi, µ∞ = 0.0345 Poi, λ = 3.313 s and n = 0.3568 taken from [23], and,
for the purpose of comparison, blood is also modelled as a Newtonian fluid with constant viscosity µ = 0.035 Poi. In fact,
the proper choice of the Newtonian model to compare with the generalized Newtonian models requires some caution, as
described for example in [6], leading to an a priori choice of an equivalent Newtonian viscosity. The fluid domain is meshed
with 9120 linear tetrahedral elements (hmax = 0.25), and the structurewith 3840 linear tetrahedral elements (hmax = 0.25).
The two meshes are conforming. The time step is1t = 5× 10−4 s.
The flow is driven by a pressure pulse generated by a constant pressure difference between the extremities of the vessel

from time t = 0 s to t = 0.009 s. The vessel inflates, initially near the inflow boundary, and then the motion propagates
along the vessel until it reaches the outflow section and is reflected back (see Fig. 2). This reflection is totally unphysical and
is due to the use of inappropriate boundary conditions. This issue can be solved through geometrical multiscale methods
(see [9]) but, in the present work, we aremore interested in the stability of the coupling and not in the agreement with some
given physiological data. As energy is dissipated, the motion of the wall is damped. The coupling was found to be stable,
which indicates that the discrete analog of the energy inequality (4.1) holds for the particular time and space discretization
described in the previous subsection.
In more detail, Fig. 3 compares the wall displacement in different time steps, both for the non-Newtonian and the

Newtonian models. We can observe that there is a visible difference between both models, already in the initial time step.
Since the pressure gradient and consequently the maximum shear rate, are high in the initial period, the non-Newtonian
viscosity is close to the high shear viscosity µ∞, and the behaviour is almost Newtonian, in the section of the vessel where
the displacement is higher. As time advances, the differences become more visible due to accumulation of the small initial
differences that result in larger discrepancies, and also because the decrease of the shear rate makes the non-Newtonian
effects more prominent.
Fig. 4 illustrates the evolution of the cross-sectional area in two cross-sections: z = 1.25 (close to the inflow boundary)

and z = 2.5 (middle of the vessel). The cross-sectional area in the proximal cross-section (left) appears less regular due to
reflections caused by the clamping of the vessel. In both cases the amplitude of the variation of the area is damped over time,
and the differences between the models become more significant as we go further away from the initial pressure pulse.

6. Conclusions

The techniques usually employed to perform 3D FSI simulations with Newtonian fluids can be extended, in a relatively
straightforward way, to the case of generalized Newtonian fluids. At the continuous level, an energy estimate for the FSI
coupling was demonstrated, extending the stability results given in [9]. From the numerical point of view, the coupling
is stable for the test case studied here and the numerical results are coherent with the ones obtained in the Newtonian
case. Even in simple test problems it is already possible to find significant differences in the velocity fields and vessel wall
displacement when we use non-Newtonian or equivalent Newtonian models. We do not claim that non-Newtonian models
should always be used to perform 3D FSI simulations of blood flow; we simply state that there is a difference in the results
that we must be aware of when a model for blood flow is chosen. Ultimately, there is a need for experimental results to
establish if the flow conditions necessary for triggering non-Newtonian effects in blood are present in vivo, in the vascular
region under consideration.
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