
Computers and Mathematics with Applications 55 (2008) 368–380
www.elsevier.com/locate/camwa

Stabilization of explicit methods for convection diffusion equations
by discrete mollificationI

Carlos D. Acostaa, Carlos E. Mejı́ab,∗

a Universidad Nacional de Colombia, Department of Mathematics and Statistics, Manizales, Colombia
b Universidad Nacional de Colombia, Department of Mathematics, Medellı́n, Colombia

Received 22 May 2006; received in revised form 21 March 2007; accepted 5 April 2007

Abstract

The main goal of this paper is to show that discrete mollification is a simple and effective way to speed up explicit time-stepping
schemes for partial differential equations. The second objective is to enhance the mollification method with a variety of alternatives
for the treatment of boundary conditions. The numerical experiments indicate that stabilization by mollification is a technique that
works well for a variety of explicit schemes applied to linear and nonlinear differential equations.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Convection–diffusion; Wave propagation; Discrete mollification; Stability analysis; Explicit schemes

1. Introduction

Since the 1980s, the mollification method has been used by a considerable number of authors as a regularization
method for ill-posed problems [1–3]. More recently, in [4,5], the method was introduced as a stabilizer of the forward-
time central-space explicit scheme for linear parabolic equations. By stabilizer we mean a technique that provides a
way to increase the stability bound of the explicit method.

The main goal of this paper is to show that discrete mollification is a simple and effective way to speed
up explicit time-stepping schemes for partial differential equations. To fulfill this objective, we concentrate on
convection–diffusion equations and present a mollified forward-time central-space method. We establish stability
bounds for linear equations and show through encouraging numerical experiments, that the same bounds are valid for
some nonlinear cases.

The second goal of this paper is to enhance the mollification method with updated convergence results and a
wide variety of alternatives for the treatment of boundary conditions. This is a delicate matter when dealing with
convolutions; our approach is inspired by the methods of digital image processing.

I This work has been partially supported by COLCIENCIAS, project number 1118-11-16705 and DIME, project number 30802867.
∗ Corresponding author.

E-mail addresses: cdacostam@unal.edu.co (C.D. Acosta), cemejia@unalmed.edu.co (C.E. Mejı́a).

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.04.019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82695121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:cdacostam@unal.edu.co
mailto:cemejia@unalmed.edu.co
http://dx.doi.org/10.1016/j.camwa.2007.04.019

C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380 369

The outline of this paper is as follows: We begin with the definition and main properties of mollification in
Section 2. The study of boundary conditions appears in Section 2.3, which is followed by the results on stabilization
in Section 3. The last section presents illustrative numerical experiments.

2. Mollification

The mollification method is a filtering procedure, based on convolution, that is appropriate for the regularization
of a variety of ill-posed problems, namely, inverse heat conduction problems, numerical differentiation, coefficient
identification, problems related to digital signal processing, etc.

When mollification is applied to digital signal processing, it is convenient to have the possibility of working with
different mollification kernels. However, in this paper, we restrict our attention to a Gaussian kernel. For an overview
of the many applications of this method, we recommend [1,4] and the references therein.

2.1. Abstract setting

Let δ > 0, p > 0 and

Apδ =

(∫ p/δ

−p/δ

exp(−s2)ds

)−1

.

We work with the following truncated Gaussian kernel:

κδp(t) =

{
Apδδ

−1 exp(−t2/δ2), |t | ≤ p
0, |t | > p.

This kernel satisfies: κδp ≥ 0, κδp ∈ C∞(−p, p), κδp is zero outside [−p, p] and
∫
R κδp = 1.

Given f : R → R locally integrable, we define its δp-mollification, denoted Jδp f , as the convolution of f with
the kernel κδp. That is,

Jδp f (t) =
(
κδp ∗ f

)
(t)

=

∫
∞

−∞

κδp(t − s) f (s)ds

=

∫ t+p

t−p
κδp(t − s) f (s)ds

=

∫ p

−p
κδp(−s) f (t + s)ds. (1)

Roughly speaking, the parameters δ and p are related to shape and support of the mollification kernel respectively.
Unless otherwise stated, we assume p = 3δ for mollification in the abstract setting. Thus

Apδ =

(∫ p/δ

−p/δ

exp(−s2)ds

)−1

=

(∫ 3

−3
exp(−s2)ds

)−1

(2)

is independent of δ.
If f is defined on a bounded set Y , the computation of the convolution Jδp f requires either an extension of f to

points out of Y or the restriction of f to a proper subset of Y . A useful approach for closed intervals was presented
in [2]. Furthermore, in the last paragraph of Section 5 of [4], Murio says: “In general, if the initial and/or boundary
conditions are known, they should be incorporated to the code to improve accuracy”. Consequently, in this paper we
deal with several data extension procedures, based on the ideas presented in [6,7]. We also include a scaling technique

370 C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380

as an alternative for computations near the boundary. Following [6], we refer to all the extensions and to the scaling
procedure as boundary conditions. The details on this topic are presented in Section 2.3.

2.2. Discrete mollification

Definition 1. Let X =
{

x j : x j = x0 + jh, j ∈ Z
}

be a discrete domain with x0 and h given real numbers and h > 0.
Let G : X → R be a function defined by G(x j) = y j . Set

S j =
(
x j−1 + x j

)
/2, j ∈ Z

I j =
[
S j , S j+1

)
, j ∈ Z

f (t) =

∞∑
j=−∞

y jχ j (t), t ∈ R,

(3)

with χ j the characteristic function of I j . Then for δ > 0 and η a given non-negative integer, we define the
δη-mollification of G as the δp-mollification of f with

p = (η + 1/2) h, (4)

That is,

JδηG(x) = Jδp f (x).

We are particularly interested in the value of JδηG at the points in X . Let

t j = (j − 1/2) h, j ∈ Z. (5)

Then we can write

JδηG(x j) = Jδp f (x j)

=

∫ p

−p
κδp(−s) f (x j + s)ds

=

η∑
i=−η

∫ ti+1

ti
κδp(−s) f (x j + s)ds.

Furthermore,

ti < s < ti+1 if and only if Si+ j < x j + s < Si+ j+1.

Thus,

JδηG(x j) =

η∑
i=−η

wi y j+i , where wi =

∫ ti+1

ti
κδp(−s)ds. (6)

That is, the discrete mollification of G is the discrete convolution of the vector y with a kernel vector w of weights
obtained from the kernel kδp. Notice that w satisfies

η∑
i=−η

wi = 1.

For discrete mollification, the integer η is the parameter related to the support of the discrete mollification kernel.

Theorem 1 (Convergence). Let g be a function defined on R with fourth derivative g(4) continuous and bounded in
R. Let G be its discrete version defined on X. If Gε is another discrete function defined on X such that

|Gε(x j) − G(x j)| ≤ ε, for x j ∈ X,

C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380 371

then, for each compact set K = [a, b], there exists a constant C = C(K) such that if x j ∈ K

|JδηGε(x j) − JδηG(x j)| ≤ ε,

|JδηG(x j) − g(x j)| ≤ Ch2.

Additionally,

|D+ JδηG(x j) − g′(x j)| ≤ Ch, (7)

|D0 JδηG(x j) − g′(x j)| ≤ Ch2,

|D− D+ JδηG(x j) − g′′(x j)| ≤ Ch2,

where D+, D− and D0 are the forward, backward and central finite difference operators respectively.

Proof. (Stability) In fact,

|JδηGε(x j) − JδηG(x j)| =

∣∣∣∣∣
η∑

i=−η

wi
(
Gε(x j+i) − G(x j+i)

)∣∣∣∣∣
≤

η∑
i=−η

wi |G
ε(x j+i) − G(x j+i)| ≤ ε.

(Consistency) Let x j ∈ K = [a, b]; then, from Taylor’s theorem, for each i = −η, . . . , η there exists ξi ∈ K̃ =

[a − p, b + p] such that

g(x j+i) = g(x j) + (ih) g′(x j) +
(ih)2

2
g′′(ξi).

Then

JδηG(x j) =

η∑
i=−η

wi g(x j+i)

=

η∑
i=−η

wi

(
g(x j) + (ih) g′(x j) +

(ih)2

2
g′′(ξi)

)

= g(x j) +
h2

2

η∑
i=−η

i2wi g
′′(ξi). (8)

Because, from symmetry in the kernel

η∑
i=−η

wi (ih) g′(x j) = hg′(x j)

η∑
i=−η

iwi

= hg′(x j)

η∑
i=1

i (wi − w−i) = 0.

Hence,

|JδηG(x j) − g(x j)| =
h2

2

η∑
i=−η

i2wi |g
′′(ξi)|

≤
h2

2

η∑
i=−η

i2wi‖g′′
‖
∞,K̃ .

372 C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380

(Numerical derivatives) As above, if x j−1, x j+1 ∈ K , there exist ξi , ζi ∈ K̃ such that

JδηG(x j+1) = g(x j+1) +
h2

2
g′′(x j+1)

η∑
i=−η

i2wi +
h4

24

η∑
i=−η

i2wi g
(4)(ξi),

JδηG(x j−1) = g(x j−1) +
h2

2
g′′(x j−1)

η∑
i=−η

i2wi +
h4

24

η∑
i=−η

i2wi g
(4)(ζi).

Now, for some ϑ j and ν j between x j−1 and x j+1, we have∣∣∣∣g(x j+1) − g(x j−1)

2h
− g′(x j)

∣∣∣∣ =
h2

12
|g′′′(ϑ j)| ≤

h2

12
‖g(3)

‖
∞,K̃ ,∣∣∣∣g′′(x j+1) − g′′(x j−1)

2h

∣∣∣∣ = |g′′′(ν j)| ≤ ‖g(3)
‖
∞,K̃∣∣∣∣∣g(4)(ξi) − g(4)(ζi)

2h

∣∣∣∣∣ ≤
‖g(4)

‖
∞,K̃

h
.

Thus

JδηG(x j+1) − JδηG(x j−1)

2h
= g′(x j) + O(h2).

The other bounds in (7) are obtained in the same way. �

2.3. Boundary conditions

In this section we present the numerical procedure for the computation of the δη-discrete mollification of a data
vector y ∈ Rm . This mollification is denoted yδη.

The procedure makes use of extensions of the data outside the domain and, in this sense, follows the ideas in [4]
and other references on mollification, in which two constant extensions of the data are computed by solving two
optimization problems. However, we take a different approach, based on the techniques for image reconstruction and
digital signal processing described in [6], Section 7 of [7] and Chapter 24 of [8].

Let us assume, following Definition 1, that

y j = G
(
x j
)
,

where a = x1 < x2 < · · · < xm = b and x j − x j−1 = h > 0 for j = 2, . . . m. By (6),

[
yδη

]
j = JδηG(x j) =

η∑
i=−η

wi y j+i , where wi =

∫ ti+1

ti
κδp(−s)ds

and the t ′i s are given by (5), that is,

ti = (i − 1/2) h, i ∈ Z.

This yields

yδη = Tl yl + T y + Tr yr , (9)

C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380 373

where

Tl =


w−η · · · w−1

. . .
...

w−η

0


m×η

, yl =


y−η+1
y−η+2

...

y−1
y0


η×1

,

T =



w0 · · · wη 0
...

. . .
. . .

w−η

. . . wη

. . .
. . .

...

0 w−η · · · w0


m×m

, y =


y1
y2
...

ym−1
ym


m×1

,

Tr =


0

wη

...
. . .

w1 · · · wη


m×η

, yr =


ym+1
ym+2

...

ym+η−1
ym+η


η×1

.

(10)

The vectors yl and yr are our concern now. How do we define them? Some additional hypotheses are in order. They
are called Boundary Conditions, and we describe them according to [6].

2.3.1. The zero (Dirichlet) boundary condition
In this case, yl and yr are null and yδη is computed from y by the Toeplitz matrix T . More precisely,

yδη = T y, (11)

where T and y are given by (10).
This boundary condition is useful when it is known that y decays rapidly to zero outside the domain [a, b]. Of

course, it becomes a liability if y does not have this property, as is clearly stated in [7,8] for digital image processing.

2.3.2. Scaled boundary condition
In this case, yl and yr are null, and yδη is computed from y by a scaled version Tδη of matrix T given by

Tδη = D−1T,

where D = diag [d1, d2, . . . , dm] and dk is the sum of the elements in the kth row of T . Thus,

yδη = Tδη y. (12)

This scaling is recommended when there is no knowledge of the behavior of the function G outside the domain.

2.3.3. The periodic boundary condition
In this case,

yl =


y−η+1
y−η+2

...

y−1
y0

 =


ym−η+1
ym−η+2

...

ym−1
ym

 , yr =


ym+1
ym+2

...

ym+η−1
ym+η

 =


y1
y2
...

yη−1
yη


and it is possible to compute discrete mollification in a straightforward way. The associated linear operator is the
circulant matrix

Cδη =
[
0m×(m−η)|Tl

]
+ T +

[
Tr |0m×(m−η)

]

374 C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380

and

yδη = Cδη y.

Since Cδη is circulant, it can be diagonalized by the discrete Fourier matrix. This is an important advantage of using
periodic boundary conditions.

Another common approach is to extend the data by reflection of the information in the domain. This reflection can
be even or odd. In the even case, the mollification operator is a Toeplitz plus Hankel matrix. Section 3 of [6] is an
appropriate reference at this point.

2.4. Parameter selection

When working with mollification as a regularization procedure, the parameter δ may be automatically selected by
GCV, Generalized Cross Validation [9], and the integer η is obtained from δ as

η =

⌊
3δ

h
−

1
2

⌋
,

which is consistent with Eq. (4). In this paper we establish that, even when boundary conditions are assumed, discrete
mollification is defined by a linear operator. Therefore GCV can be applied in all cases. For the application of GCV
to mollification, we recommend [4].

However, for stabilization, it is convenient to keep η as the main parameter. This means that we know in advance
the number of points to take into account as support for the discrete mollification kernel. Given η, the value of δ is
found from (4) as

δ =

(
η +

1
2

)
h

3
.

3. Stabilization

Explicit methods for partial differential equations are subject to restrictions on the time step. By stabilization of an
explicit scheme, we mean a procedure that speeds up computations by allowing greater time steps. Additionally, it is
desirable that the method prevents the appearance of spurious oscillations.

To comply with the first task, we show that our stabilized schemes allow greater time steps than those established
by regular stability restrictions of the CFL type; this is obtained by using the Theorem 2, below. For references on
the subject, we recommend [10–12,5,4]. The second task is relevant when dealing with non-linear equations like the
viscous Burgers’ equation.

Our approach is stabilization via discrete mollification applied to explicit schemes for convection–diffusion. Our
results generalize those in [5] and Section 5 of [4].

Theorem 2. Let

vn+1
m =

η+1∑
j=−η−1

W jv
n
m+ j ,

be a time-stepping numerical scheme for solving the convection–diffusion equation

ut + aux = buxx ,

on a equally spaced discrete domain

x1 < x2 < · · · < xN .

If the entries’ modulus of the Fourier transform of the RN vector[
W0 W1 · · · Wη+1 0 · · · 0 W−η−1 · · · W−1

]
(13)

are all less than or equal to one, then the scheme is stable under periodic boundary conditions.

C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380 375

Proof. Under periodic boundary conditions, the numerical solution at tn+1 can be computed from the solution at tn ,
by multiplying the latter by the circulant matrix with first row (13). But, the eigenvalues of such a matrix are those
entries in the Fourier transform of (13). Then the spectral radius of the iteration matrix is the infinity norm of the
Fourier transform of (13). So, from the hypothesis, the iteration matrix has spectral radius less than or equal to one,
thus the scheme is stable. �

This simple result gives a sufficient condition for stability. Furthermore, the conditions for the theorem are very
easy to check.

3.1. Convection–diffusion equation

Consider the Convection–Diffusion Equation

ut + aux = buxx (14)

and the forward-time central-space finite difference scheme (FTCS) for this equation,

vn+1
m − vn

m

k
+ a

vn
m+1 − vn

m−1

2h
= b

vn
m+1 − 2vn

m + vn
m−1

h2 . (15)

Here, vn
m is the discrete approximation to the value of u at the nodal point (xm, tn), h and k are the uniform mesh sizes

for the space and the time variables x and t respectively. Notice that (15) is equivalent to

vn+1
m = vn

m + bµ(1 + α)vn
m−1 − 2bµvn

m + bµ(1 − α)vn
m+1, (16)

where

µ =
k

h2 , λ =
k

h
and α =

ha

2b
=

aλ

2bµ
.

The stability bounds for this scheme are

bµ ≤ 1/2, α ≤ 1.

Let zn
m = Jδηv

n (xm) be the δη-mollification (in space) of vn evaluated at xm . We consider two mollified versions for
(16), the first one

vn+1
m = vn

m + bµ(1 + α)zn
m−1 − 2bµzn

m + bµ(1 − α)zn
m+1, (17)

results from replacing the data coming from spatial discrete differentiation for their mollified versions. The second
mollified scheme is obtained from (16) by replacing the right hand side terms by their mollified versions. This yields

vn+1
m = zn

m + bµ(1 + α)zn
m−1 − 2bµzn

m + bµ(1 − α)zn
m+1. (18)

To analyze the convergence of (17), we rewrite it in terms of the definition of discrete mollification. We begin by
setting w j = 0 for | j | > η, so that

zn
m =

η∑
j=−η

w jv
n
m+ j =

η+1∑
j=−η−1

w jv
n
m+ j ,

zn
m−1 =

η∑
j=−η

w jv
n
m−1+ j =

η+1∑
j=−η−1

w j+1v
n
m+ j ,

zn
m+1 =

η∑
j=−η

w jv
n
m+1+ j =

η+1∑
j=−η−1

w j−1v
n
m+ j .

This yields

vn+1
m = vn

m + bµ

η+1∑
j=−η−1

{
(1 + α)w j+1 − 2w j + (1 − α)w j−1

}
vn

m+ j ,

376 C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380

Fig. 1. CFL condition for the mollified FTCS Scheme (19).

or equivalently

vn+1
m =

η+1∑
j=−η−1

[
δ0, j + bµ

{
(1 + α)w j+1 − 2w j + (1 − α)w j−1

}]
vn

m+ j , (19)

where δ0, j represents the Kronecker’s delta. Similarly, we can write (18) in the form

vn+1
m =

η+1∑
j=−η−1

[
w j + bµ

{
(1 + α)w j+1 − 2w j + (1 − α)w j−1

}]
vn

m+ j . (20)

3.1.1. Stability
Theorem 2 can be applied to schemes (19) and (20). Fig. 1 shows the maximum bµ allowed for the scheme (19).
From this figure, some additional remarks have to be made:

(1) For values of α close to 1, there is no essential improvement in the stability of the original scheme.
(2) For values of α close or equal to 0, the stability bound is greater than 1

2 whenever mollification is used (η > 0).
As a consequence, when solving the convection–diffusion equation with α close to 1, one can increase the space
resolution by reducing h without having to select a very small k.

(3) The case α = 0 corresponds to the heat equation, for which stabilization by mollification was considered by Murio
in [4]. There is agreement between our results and Murio’s.

The CFL condition for the mollified scheme (20) is shown in Fig. 2. The main feature here is stabilization for α close
to 1, which is missing from the previous scheme.

3.1.2. Consistency
For consistency with the problem

ut + aux = buxx ,

we rewrite (17) and (18) as

vn+1
m − vn

m

k
+ aD0zn

m = bD2zn
m, (21)

vn+1
m − zn

m

k
+ aD0zn

m = bD2zn
m, (22)

respectively, and note that

ut −
vn+1

m − vn
m

k
= O (k)

C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380 377

Fig. 2. CFL condition for the mollified FTCS scheme (20).

ut −
vn+1

m − zn
m

k
= O

(
k +

h2

k

)
ux (xm, tn) − D0zn

m = O
(

h2
)

uxx (xm, tn) − D2zn
m = O

(
h2
)

.

From here, we obtain the consistency of the schemes as k, h → 0, as long as h2/k → 0 as well.

4. Numerical examples

In this section we illustrate the stabilization property of the mollified explicit schemes by testing them with a variety
of examples, based on the convection–diffusion equation

ut + aux = buxx . (23)

Some of the examples are illustrations of the theory presented above and the others are preliminary encouraging
experiments that show the potential of discrete mollification as stabilizer of explicit marching schemes for partial
differential equations. All of the examples were implemented using MATLAB 7.0 SP1 under Windows XP SP2 on a
PC with a 3.02GHz Intel Pentium 4 processor and 512 Mb of RAM.

Example 1 (Diffusion-Dominated). Mollified Forward-time Central-space scheme (19) for the homogeneous heat
equation

ut = uxx , 0 < x < 1, 0 < t

u (x, 0) = sin(πx), 0 < x < 1,

u (0, t) = u (1, t) = 0, 0 < t.

The exact solution is known. For the table, we use h = 1/64, the Neumann (odd extension) boundary condition
and the maximum µ allowed. The error norms are computed for all x and a set of t-values on the discrete grid.

η bµ Inf error L2 error Time (s)

0 0.5 1.4563e−4 2.3612e−4 1.532
1 0.6475 2.5998e−3 7.3468e−4 1.234
2 1.48 6.4994e−3 1.8757e−3 0.547
3 2.3125 8.3427e−3 2.5916e−3 0.344
4 3.4225 8.6844e−3 3.1920e−3 0.234
5 4.68 8.7602e−3 3.8941e−3 0.172
6 6.2125 7.9251e−3 4.8629e−3 0.125

378 C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380

Fig. 3. Example 02 at t = 2, with α = 0.5, η = 6 and bµ = 1.5.

Example 2 (Convection-Dominated). Mollified Forward-time Central-space scheme for the convection–diffusion
equation (23) with

u(x, t) =
1

√
1 + t

exp

(
−

(x − a(1 + t))2

4b(1 + t)

)
.

This example is presented at [13] as a test problem for studying the effect of dissipation and dispersion in two
particular schemes. Here, we use this example to compare schemes (19) and (20). Actually, this problem requires us
to choose a proper value for the parameter bµ inside the stability region in order to get good accuracy. The original
scheme FTCS (16) yields acceptable results for bµ = 0.125. Scheme (19) provides good results for bµ = 0.25 with
α ≤ 0.5 but for a greater α it is required a smaller bµ. In contrast, scheme (20) is capable of solving the problem with
good accuracy and using bµ values greater than 0.5. So, only in this case can we talk of an effective stabilization. The
following tables show the maximum absolute error (ε) at t = 2 for scheme (20) with several values of α, bµ and η.
The experiments were run with x ∈ [−1, 4], t ∈ [0, 2] , a = 1, h = 1/64 and b = haα−1/2. For other values of h,
the same value of bµ will perform well. Fig. 3 illustrates this example for α = 0.5, η = 6 and bµ = 1.5.

α (20), η = 4 (20), η = 6 (20), η = 8

0.25
ε = 9.4212e−003

bµ = 2.25
ε = 1.1833e−002

bµ = 3.0
ε = 1.2065e−002

bµ = 4.0

0.5
ε = 1.0714e−002

bµ = 1.125
ε = 1.2710e−002

bµ = 1.5
ε = 7.1431e−003

bµ = 2.0

0.75
ε = 1.0637e−002

bµ = 0.75
ε = 1.3850e−002

bµ = 1.0
ε = 1.7370e−002

bµ = 1.375

1.0
ε = 1.2062e−002

bµ = 0.5625
ε = 2.0333e−002

bµ = 0.75
ε = 1.9226e−002

bµ = 1.0

Example 3 (Viscous Burger’s Equation). Mollified Forward-time Central-space scheme for the nonlinear equation

ut +
1
2

(
u2
)

x
= buxx

with

u (x, t) = a − c tanh
(c

2b
(x − at)

)
. (24)

C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380 379

Fig. 4. Example 03 at t = 1.0, mollified FTCS (19) with η = 4 and bµ = 1.9.

Fig. 5. Example 03 at t = 1.0, mollified FTCS (20) with η = 4 and bµ = 1.9.

In this case, the two different implementations (19) and (20) stabilize but the first one does not prevent oscillations.
Figs. 4 and 5 illustrate this behavior at t = 1.0 for a = 1.5, c = 0.5, h = 1/64, b = h(a + c), η = 4 and bµ = 1.9.
This selection implies α = 0.5.

The reason for this behavior is that, unlike (19), scheme (20) is a TVD method. We visualize discrete mollification
as an effective way to stabilize computations and, at the same time, control spurious oscillations. Our results in
this area will be the subject of a forthcoming paper. Finally, some remarks should be pointed out. The first example
illustrates how stabilization can reduce the computing time by relaxing the stability bound. The second example shows
that scheme (20) is more desirable than scheme (19) for convection dominated problems. The third example shows
that the stabilization procedure presented here can also be successfully implemented for non-linear problems.

References

[1] D.A. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Problems, John Wiley, 1993.
[2] C.E. Mejı́a, D. Murio, Mollified hyperbolic method for coefficient identification problems, Comput. Math. Appl. 26 (1993) 1–12.
[3] D. Murio, C.E. Mejı́a, S. Zhan, Discrete mollification and automatic numerical differentiation, Comput. Math. Appl. 35 (1998) 1–16.
[4] D.A. Murio, Mollification and space marching, in: K. Woodbury (Ed.), Inverse Engineering Handbook, CRC Press, 2002.
[5] L.J. Montoya, C.E. Mejı́a, F.M. Toro, Estabilización de esquemas por molificación discreta, Adv. Recur. Hidrául. 7 (2000) 102–116.
[6] M.K. Ng, R.H. Chan, W. Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM J. Sci. Comput. 21 (3)

(1999) 851–866.
[7] D. Calvetti, L. Reichel, Q. Zhang, Iterative solution methods for large linear discrete ill-posed problems, Appl. Comput. Control, Signals

Circuits 1 (1999) 317–374.
[8] S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, second ed., California Technical Publishing, San Diego,

California, 1999. URL: http://www.dspguide.com.
[9] G. Golub, M. Heath, G. Wahba, Generalized cross validation as a method for choosing a good ridge parameter, Tecnometrics 21 (2) (1979)

215–223.

http://www.dspguide.com

380 C.D. Acosta, C.E. Mejı́a / Computers and Mathematics with Applications 55 (2008) 368–380

[10] F.W. Wubs, Stabilization of explicit methods for hyperbolic partial differential equations, Internat. J. Numer. Methods Fluids 6 (1986)
641–657.

[11] V. Alexiades, G. Amienz, P. Gremaud, Super-time-stepping acceleration of explicit schemes for parabolic problems, Comm. Numer. Methods
Engrg. 12 (1996) 31–42.

[12] K. Eriksson, C. Johnson, A. Logg, Explicit time-stepping for stiff odes, SIAM J. Sci. Comput. 25 (2003) 1142–1157.
[13] M.M. Cecchi, M.A. Pirozzi, High-order finite difference numerical methods for time-dependent convection-dominated problems, Appl.

Numer. Math. 55 (2005) 334–356.

	Stabilization of explicit methods for convection diffusion equations by discrete mollification
	Introduction
	Mollification
	Abstract setting
	Discrete mollification
	Boundary conditions
	The zero (Dirichlet) boundary condition
	Scaled boundary condition
	The periodic boundary condition

	Parameter selection

	Stabilization
	Convection--diffusion equation
	Stability
	Consistency

	Numerical examples
	References

