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Summary

Since detection of an RNA molecule is the major crite-
rion to define transcriptional activity, the fraction of
the genome that is expressed is generally considered
to parallel the complexity of the transcriptome. We
show here that several supposedly silent intergenic
regions in the genome of S. cerevisiae are actually
transcribed by RNA polymerase Il, suggesting that
the expressed fraction of the genome is higher than
anticipated. Surprisingly, however, RNAs originating
from these regions are rapidly degraded by the com-
bined action of the exosome and a new poly(A) poly-
merase activity that is defined by the Trf4 protein and
one of two RNA binding proteins, Air1p or Air2p. We
show that such a polyadenylation-assisted degrada-
tion mechanism is also responsible for the degrada-
tion of several Pol | and Pol lll transcripts. Our data
strongly support the existence of a posttranscrip-
tional quality control mechanism limiting inappropri-
ate expression of genetic information.

Introduction

Most, if not all, eukaryotic primary transcripts, whether
transcribed by RNA polymerase (Pol) I, 11, or lll, undergo
maturation, which includes endonucleolytic severing,
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exonucleolytic trimming, splicing, nucleotide modifica-
tions/edition, and/or capping. Interestingly, most ma-
ture 3’ ends are generated by processing. Some result
from cleavage and/or trimming, while others are ex-
tended by polymerases of the § family, which add 3’
tails without the help of a DNA template: CCA for tRNA
(Schurer et al., 2001) or poly(A) sequences for mRNA
(Proudfoot and O’Sullivan, 2002). Addition of poly(A)
tails to mRNAs occurs at an endonucleolytic cleavage
site that is severed cotranscriptionally. The Pap1p pro-
tein has poly(A) polymerase activity but depends on the
assembly of a large complex for its function, which also
insures correct positioning and control the length of the
poly(A) tail (Keller and Minvielle-Sebastia, 1997). In eu-
caryotes, polyadenylation of coding RNAs has at least
three important functions: it is required for RNA sta-
bility, efficient nucleocytoplasmic export, and transla-
tion. Except for a limited number of exclusively nuclear
species, most transcripts reach the cytoplasm, where
a large majority contribute to protein synthesis.

In this canonical view of the RNA synthesis pathway,
the expressed fraction of the genome in a given cell is
determined by accurate promoter selection. Transcrip-
tion from these landmarks generates primary tran-
scripts that are matured into functional RNA molecules,
while the remaining fragments of the primary tran-
scripts (e.g., introns, 3’ trailers, as well as 3’ extensions
and internal spacers of the pre-rRNAs and pre-tRNAs)
are rapidly degraded (e.g., Kim et al. [2004], West et
al. [2004]). These events may explain the high rate of
degradation of a fraction of nuclear RNAs never reach-
ing the cytoplasm (e.g., Egyhazi [1976]). In addition to
degradation events targeting short-lived processing in-
termediates, specific nuclear RNA decay pathways also
destroy aberrant pre-mRNAs or those failing to be ex-
ported (Bousquet-Antonelli et al., 2000; Das et al., 2003;
Libri et al., 2002; Torchet et al., 2002). In yeast, Rat1p
and the exosome are two exonucleases implicated in
these nuclear degradation processes: Ratlp is a 5'-3’
exonuclease showing sequence similarity to Xrn1, the
major 5'-3' exonuclease involved in cytoplasmic
mRNA decay (Johnson, 1997). Rat1p is mostly nuclear
and has been implicated in the maturation of pre-rRNAs
and snoRNAs (Petfalski et al., 1998) and in transcription
termination (Kim et al., 2004). The exosome is a large
complex of 3’-5' nucleases that is found both in the
nucleus and in the cytoplasm (Mitchell and Tollervey,
2000). The nuclear form of the complex contains two
specific subunits, Rrp6p and Lrp1p, that are its only
nonessential subunits. The exosome has been impli-
cated in numerous nuclear RNA processing and degra-
dation events including pre-rBNA and sn(o)RNA matu-
ration (Allmang et al., 1999a; Petfalski et al., 1998) and
the turnover of pre-mRNAs in processing/splicing and
RNA export mutants (Bousquet-Antonelli et al., 2000;
Das et al., 2003; Libri et al., 2002; Torchet et al., 2002).
Presence of both Ratlp and exosome homologs in
eukaryotic species suggests that the cognate decay
pathways are evolutionarily conserved.
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To identify new targets for the nuclear exosome, we
have analyzed the transcriptome of a strain lacking
Rrp6p with DNA microarrays. In accordance with previ-
ous studies, polyadenylated forms of numerous Pol Il
and Pol lll noncoding RNAs (Allmang et al., 1999a; Ka-
daba et al., 2004; van Hoof et al., 2000) and of tran-
scripts derived from the rDNA locus (Kuai et al., 2004)
accumulated. Surprisingly, we identified in addition
new polyadenylated transcripts mapping to intergenic
regions. These were characterized as novel Pol Il tran-
scription units. Accumulation of the cognate RNAs in a
rrp6 mutant results from their stabilization rather than
from transcriptional activation. Interestingly, most poly(A)
additions to these transcripts are not mediated by the
classical polyadenylation machinery. Database searches
revealed the presence of other potential poly(A) poly-
merases encoded by the yeast genome, including Trf4p
that has recently independently been shown to be re-
quired for polyadenylation and degradation of hypo-
modified forms of tRNAmet (Kadaba et al., 2004). Con-
sistently, we show that Trf4p associates with Airlp and
Air2p to form a new enzyme endowed with polyadeny-
lation activity. This complex associated with Mtrdp, a
putative RNA helicase previously implicated in activa-
tion of the nuclear exosome (de la Cruz et al., 1998;
Liang et al., 1996). Most importantly, the polyadenyla-
tion of most cryptic transcripts derived from intergenic
regions detected in the rrp64 background was nearly
completely abolished in the absence of Trf4p, leading
to their further stabilization. Taken together, these re-
sults demonstrate that a novel yeast nuclear poly(A)
polymerase is implicated in a quality control process
targeting numerous RNA to degradation by the exo-
some. Notably, this mechanism appears to limit the ge-
nomic noise resulting from inappropriate transcription
of intergenic regions in the genome. These observa-
tions have several evolutionary implications.

Results

New Cryptic Transcripts Accumulate

in the Absence of Rrp6p

The role of the Rrp6p exonuclease in the nuclear turn-
over of Pol Il transcripts is still unclear. To identify new
Rrp6p targets, we compared the transcriptomes of an
rrp64 and a wild-type strain using Affymetrix DNA
microarrays spanning the entire yeast ORFeome as well
as some noncoding RNAs and intergenic regions. Two
microarrays were used with RNAs from a wild-type
strain (BMA64; see Table S1 in the Supplemental Data
available with this article online) and two with RNAs
from an rrp64 strain (LMA164), and the signal inten-
sities were compared (Figure 1A). Importantly, the fluo-
rescent probes were generated from total RNAs using
oligo(dT) as primer and were thus enriched for probes
against polyadenylated RNAs. While the vast majority
of the cellular ORF-containing transcripts did not differ
between the two strains (only 5.1% of verified ORFs
reproducibly exhibit an rrp6 4/WT ratio >2), a number of
signals increased significantly in the rrp6 mutant com-
pared to the wild-type. Signals corresponding to almost
all snRNAs and snoRNAs and directly downstream se-
quences strongly increased in an rrp64 background

(red dots, Figure 1A), presumably as a consequence of
the previously reported polyadenylation of such tran-
scripts in the absence of Rrp6p (Allmang et al. [1999a],
Allmang et al. [1999b], van Hoof et al. [2000], and see
below). Likewise, signals corresponding to several
rBNA species increased dramatically (yellow dots, Fig-
ure 1A), consistent with the reported stabilization of
polyadenylated forms of these transcripts in rrp6 mu-
tants (Kuai et al. [2004] and see below; van Hoof et al.
[2000]). Surprisingly, a number of signals derived from
intergenic regions not linked to previously reported
transcripts were also specifically enhanced in the rrp6
mutant. Many of these signals corresponded to in-
tergenic regions containing SAGE tags (Velculescu et
al., 1997) (green dots, Figure 1A). Some (20.3%) of
these SAGE probes (cured for those overlapping or
next to known noncoding RNAs; see Table S3) repro-
ducibly exhibited an rrp64/WT ratio >2 in the two inde-
pendent experiments (by comparison, only 0.8% of
these probes exhibited a ratio >2 in the controls where
the isogenic strains, i.e., WT-1/WT-2 and rrp64-1/
rrp64-2, were compared). Similarly, 7.7% of these
probes reproducibly exhibited an rrp64/WT ratio >3 in
both independent experiments when this number was
only 0.9% for the verified ORFs. This specific behavior
of the SAGE probes did not result from a bias in the
distribution of signal intensities between the two types
of features (SAGE probes versus ORFs), since essen-
tially identical results were obtained when comparing a
subset of ORF and SAGE probes exhibiting an average
signal ratio within the same intensity class (300-3000
average intensities). The peculiarity of SAGE probes
was also apparent when comparing the class fre-
quencies distribution of log2-transformed ratios be-
tween the two kind of features (Figure 1B): the rrp64
versus wild-type ratios (green curves) appear more sig-
nificantly shifted toward higher values relative to the
control experiments (gray curves) for the intergenic
SAGEs compared to verified ORFs.

These microarray results were confirmed by real-time
PCR performed on cDNAs primed with sequence spe-
cific oligonucleotides (Figure 1C), indicating that, in at
least six out of eight test regions, signal increase re-
sulted from higher transcript amounts rather than from
polyadenylation of a preexisting RNA. These new re-
gions thus differ from loci containing noncoding RNAs
(snRNAs, snoRNAs, rRNAs, etc.). Oligo-directed RNase
H cleavage and Northern blots performed for four of
these transcripts, corresponding to Affymetrix features
NELO25c¢ (Figure 2A), NBLOO1c, NPL040w, and NGRO60w
(Figure S1), revealed that they consisted in RNAs of
heterogeneous sizes (250-600 nt). The oligo-directed
RNase H cleavage experiments showed that, except for
NPLO040W, these transcripts had a discrete 5’ end, and
their heterogeneity thus resulted from multiple 3’ ends.
We chose NEL025C (located on chromosome V be-
tween RMD6 and DLD3) for further studies. RNaseH
cleavage with oligo dT increased mobility of NELO25¢c
transcripts but did not abolish size heterogeneity (Fig-
ure 2A, compare lanes 7 and 8). The polyadenylation
status of these heterogeneous transcripts was further
confirmed by oligo-dT affinity selection (Figure 2B).
Taken together, these data indicate that these tran-
scripts extend from a defined 5’ end to multiple, closely



Cryptic Transcripts Degradation
727

A 100000

10000

s NBLOO1c
NELO025¢
gNLO7

1000

NGRO60w

NKLO36c
NLRO21w

« ORFs

« intergenic SAGEs

o 9 s
52:? &y 3‘: o Intergenes
1o » % e, °
[o:a °a oy @ snANAs & snoRNAs
. 5 . 5
lo @ SAGEs next to or
© overlapping ncRNAs
»* orRNA
1 ks >
1 10 100 1000 10000 100000
wt
s verified ORFs —wi-2iwt 1 s Intergenic SAGEs —wt-2/wt 1
—— Amp8-21Amp6-1 —— ArTpB-21rTp6-1
—— AmpS-1/wt -1 —— amp6-1/wt-1
04 amp6-2ivt -2 o4 Amp6-2iwt -2
3 | —— ArpBAtrd W 2 N ——
S 03 Co3
3 o
: : ‘
£ ‘ &
w 0.2 w 0.2 \
i 3 \
© © |
0.1 01 \
0.0 0.0
5 -4 -2 0 2 4 [ - -4 2 0 2 4 6
Log2(ratios) Log2(ratios)
35
<
=
a g
=
£E2s
=i
T 9
= <
© 9
© T {51
$g15
c.N
£ ®©
2k
uw c 51

spaced 3’ ends to which poly(A) tails have been added.
The oligo-dT-selected RNAs were also hybridized with
a probe specific for the NGRO60W transcripts and
showed that these RNAs are also polyadenalylated in
the rrp64 strain (data not shown).

0
NBLOOTc NEL025c NGR0O60w NHR027c NKLO36c NLRO21w gBLO4w

gNLO7w

Figure 1. Genome-Wide Expression Profile of
rrp64 Mutant versus Wild-Type

(A) Dot plot of signal intensities (average dif-
ferences between perfect-match and mis-
match oligonucleotides [Affymetrix MAS4.0
software], logarithmic scale) in wild-type (x
axis) and rrp64 strain (y axis). Different
classes of transcripts are color coded as in-
dicated on the figure. The “SAGEs next to or
overlapping ncRNAs” class represents fea-
tures that were initially defined as intergenic
SAGEs but that we found overlapping or di-
rectly juxtaposed to known noncoding
RNAs—essentially snRNAs and snoRNAs;
see Table S3). Arrows and labels point to
dots corresponding to features that were an-
alyzed by RT-PCR in Figure 1C.

(B) Distribution (class frequencies, one-third
unit increments) of log2 transformed ratios
(fold changes determined by the Affymetrix
MAS4.0 software). Four microarrays were
hybridized, two using RNAs from RRP6 wild-
type strains (BMA64) and two using RNAs
from rrp64 strains (LMA164, see Table S1).
The figure shows results obtained for the
comparisons between wild-type-1 over wild-
type-2 (black) or rrp64-1 over rrp64-2 (gray,
controls) and rrp64-1 over wild-type-1 or
rrp64-2 over wild-type-2, orange for verified
ORFs and green for intergenic SAGE probes.
Only verified ORFs (i.e., features defined as
“ORF, verified” in the Saccharomyces Ge-
nome Database, www.yeastgenome.org) were
taken into account in order to avoid statisti-
cal bias due to misannotated ORFs that
should rather be classified as “intergenic
features.” Intergenic SAGE probes are as de-
fined in the yeast S98 Affymetrix microarray
and were cured for probes overlapping or di-
rectly next to known noncoding transcripts
(see Table S3).

(C) The histogram shows the results of real-
time PCR analysis after reverse transcription
with specific oligonucleotides for eight arbi-
trarily chosen intergenic transcripts exhibit-
ing a 3- to 30-fold signal increase in the
rrp64 versus wild-type microarrays experi-
ments (see Figure 1A). RNA amounts normal-
ized to ACTT mRNA were expressed relative
to the wild-type. Error bars were calculated
from three independent experiments and
represent standard deviations.

Cryptic Transcripts Define New Pol Il

Transcription Units

Given their structure, we assessed whether NEL025c-
derived RNAs are independent Pol Il transcripts or

readthrough products from neighboring genes. Immu-
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Figure 2. Characterization of the NEL025C Transcripts

(A) Northern blot characterization of the transcripts from the NEL025C region. Total RNAs from wild-type (lanes 1, 2, 5, and 6) or rrp64 (lanes
3, 4,7, and 8) strains were separated on a 5% denaturing polyacrylamide gel. RNAs were treated with RNaseH in the presence of oligonucleo-
tide P4rev (Table S2, lanes 2 and 4) or oligo-dT (lanes 6 and 8). The positions of the randomly primed double-strand DNA probe and
oligonucleotide P4rev relative to the NELO25c RNA are indicated. After hybridization with the NELO25c probe, the filter on the right panel was
stripped and rehybridized with a probe against the RPS28A mRNA for oligo-dT RNaseH cleavage control. Detection of U1, U4, and U6
snRNAs was used for loading control and size markers.

(B) Analysis of the polyadenylation status of NELO25c transcripts in different genetic backgrounds. Total RNAs (total) or oligo-dT-selected
RNAs (poly[A]*) were analyzed by Northern blots after separation on a 5% denaturing polyacrylamide gel and hybridization with a NEL025¢c
random primed probe as in (A) (top panels). (Lanes 5-8) Cell cultures were shifted to 37°C for 1 hr prior to RNA extraction in order to inactivate
Pap1p in the rrp64/pap1-1 strain. The filters used in the NELO25c panels were stripped and probed for RPS28A RNA as a control for Pap1p
inactivation (RPS28A panels) and 5S RNA for loading control.

(C) Pol Il occupancy (upper panel) in the NELO25c region in a wild-type (gray) and rrp64 strain (black). Chromatin immunoprecipitation (ChIP)
was performed with an anti-Rpb1 antibody, and the DNA was analyzed by real-time PCR (top panel) with oligonucleotides spanning the entire
region (primer pairs PP1-PP8, see Table S1) as schematized on top of the figure. RNAs were analyzed in parallel with the same primer pairs
(bottom panel) by real-time RT-PCR.

noprecipitation with anti-cap antibodies (H20, kind gift 1987) and grown at nonpermissive temperature (37°C),
of R. Lihrmann) indicated that these transcripts are resulted in the strong reduction of NELO25c transcript
capped, which is a distinctive feature of Pol Il tran- levels compared to a Pol Ill 5S ribosomal RNA control
scripts and a specific mark of the transcription initiation (Figure S3A). A similar result was also obtained for
site (Figure S2). Furthermore, inactivation of Pol Il in a other intergenic transcripts (Figure S3B). Finally, the
double mutant rrp64/rpb1-1, expressing a thermosen- NEL025c-transcribed sequences expressed from their

sitive form of the largest Pol Il subunit (Nonet et al., genomic locus but under the control of a heterologous
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Pol Il promoter (tetO7 operators under the control of
the tetracycline repressible tTA transactivator; Gari et
al. [1997]) were also strongly upregulated (~15 fold) in
the absence of Rrp6p (Figure S3C). Together, these re-
sults indicate that these rrp64-induced intergenic
RNAs are independent, capped, and polyadenylated
Pol Il transcripts.

Cryptic Transcripts Are Unstable

in Wild-Type Strains

To demonstrate that these intergenic RNAs are pro-
duced in both the wild-type and the rrp64 strain but
have higher turnover rates in the former strain, we as-
sessed Pol Il occupancy at the NEL025c locus by chro-
matin immunoprecipitation (ChIP) in both strains. Real-
time PCR analysis of the DNA immunoprecipitated with
anti-Rpb1p antibodies was performed with primer pairs
spanning the whole NELO25c locus. RNAs were ana-
lyzed in parallel by real-time RT-PCR with the same
primer set. In striking contrast with the differences in
transcript amounts, Pol Il density was similar (or even
slightly higher) in the wild-type strain compared to the
rrp64 strain in the region tested (Figure 2C). This ChIP
signal was specific since abolished by mutation of the
largest Pol Il subunit in an rpb7-1 strain (Nonet et al.,
1987; Schroeder et al., 2000) at the nonpermissive tem-
perature (Figure S4). Pol 1I-ChIP analysis of other in-
tergenic regions gave essentially identical results (data
not shown). To further confirm that NELO25c transcripts
are transcribed but more rapidly degraded in the pres-
ence of Rrp6p, we compared their turnover rates in a
wild-type and rrp64 strains. Some NEL025c¢ transcripts
could be detected above background by real-time PCR
in a wild-type strain, consistent with the existence of a
SAGE tag in this genomic region (Velculescu et al.,
1997). Use of an rpb71-1 mutant (Nonet et al., 1987) al-
lowed fast transcription shutoff in an otherwise wild-
type or rrp64 context. As expected, the turnover rate
of NELO25c transcripts was significantly higher in the
rpb1-1 strain compared to the rpb1-1/rrp64 strain, al-
though the very low amount of transcripts in the
rpb1-1 strain precluded precise determination of the
half-life of these RNAs (t1/2 <3 min in the rpb1-1 strain
and ~10 min in the rpb1-1/rrp6 4 strain); ACT1 turnover
rate was not significantly different in the two strains
(Figure S5). Altogether, these data indicate that the
NELO025c RNAs are produced in both the rrp64 and the
wild-type strains, but, in the latter, the RNAs are more
rapidly degraded. Degradation of these RNAs was also
dependent on the integrity of the core exosome, as de-
pletion of Rrp41p resulted in a similar stabilization of
the NEL025c transcripts (Figure S6). Given the proper-
ties of the RNA products of these regions, revealed in
the rrp64 strain, we named them CUTs for cryptic un-
stable transcipts.

NEL025c Transcripts Are Mainly Polyadenylated

by a Pap1p-Independent Process

For most Pol Il transcripts, the standard polyadenyla-
tion machinery adds poly(A) to a limited number of sites
generated by cleavage. The heterogeneous 3’ ends of
the CUTs were thus unexpected. To test the involve-
ment of the standard polyadenylation machinery in

NEL025c CUT poly(A) formation, we analyzed its poly-
adenylation status in an rrp64/pap1-1 double mutant
shifted for 1 hr at the nonpermissive temperature (37°C).
Oligo-dT-selected RNAs were analyzed by Northern blot
(Figure 2B). Strikingly, Pap1p mutation did not strongly
affect the amount and profile of the most abundant
polyadenylated forms of these heterogeneous transcripts
(300-400 nucleotides long), although the amount of the
less abundant longest forms (>500 nucleotides) appear
to decrease in the rrp6.4/pap1-1 strain compared to the
rrp64 strain (Figure 2B, lanes 1-8). As a control, poly-
adenylation of RPS28A mRNA, a standard Pap1p sub-
strate, was strongly inhibited in these conditions (Fig-
ure 2B). These observations suggested that the main
polyadenylated forms of the NELO25c heterogeneous
transcripts were polyadenylated by a machinery not in-
volving Pap1p.

TRF4 Is the Catalytic Subunit of a Second Yeast
Nuclear Poly(A) Polymerase
These results suggested the presence of at least an-
other yeast poly(A) polymerase in addition to the classi-
cal machinery. Database searches revealed the pres-
ence of two highly related proteins, Trf4p and Trf5p,
with distant similarity to Pap1p. These factors are sim-
ilar to Cid1 and Cid13 from S. pombe and to Gld2 from
C. elegans and related mammalian proteins that were
recently described as cytoplasmic poly(A) polymerases
(Kwak et al., 2004). While this work was in progress, a
role for Trf4p in the polyadenylation of aberrant hypo-
modified tRNAMet was proposed (Kadaba et al., 2004).
To directly test whether Trfdp was endowed with
poly(A) polymerase activity, we purified Trf4p and con-
trol factors from yeast using the TAP method (Rigaut et
al., 1999) and assayed their poly(A) polymerase activity
by following the incorporation of radiolabeled ATP in
acid insoluble material using total yeast RNA as sub-
strate. A strong incorporation was specifically detected
with Trf4p-TAP (Figure 3A). In a similar assay, a Trf5p-
TAP preparation was poorly active (data not shown).
RNA polymerase activity of the Trf4p-TAP preparation
is specific for ATP and could be primed by all tested
substrates, including oligo(A) and tRNAs, with the ex-
ception of poly(U) (data not shown). Extension of an
in vitro-transcribed RNA occurred in a time (data not
shown) and Trf4-TAP concentration (Figure 3B) depen-
dent manner in an apparent distributive reaction incor-
porating up to 500 residues. Mutation of two catalytic
site residues (Wang et al., 2000) abolished the poly(A)
polymerase activity of a Trf4-236-TAP preparation (Fig-
ure 3C). Overall, these data demonstrated the existence
of a new yeast poly(A) polymerase having Trf4p as a
catalytic subunit that we confirmed to be nuclear (Huh
et al. [2003] and data not shown).

Air1p, or Air2p, Associates with Trf4p

to Form Active Polymerases

While our results demonstrate that Trf4p is a subunit of
a new poly(A) polymerase, recombinant Trf4-produced
in E. coli was inactive in polyadenylation assays (see
below), suggesting the requirement for additional fac-
tors and/or protein modification(s). Mass spectrometry



Cell

730
A B Tri4-TAP Figure 3. TRF4 Is a Subunit of a New Yeast
Poly(A) Polymerase
- ‘ (A) Incorporation of radioactive o32P-ATP
100 1 into acid insoluble poly(A) was assayed in
2 time course reactions using TAP-purified
3;-E ’ proteins and yeast RNA as substrate. Back-
> E 80 ~ ground activity was detected using TAP-puri-
'g s fied Hos3, Pgk1, and Pbp1 control proteins.
o3 = 500 Identical quantities of the various proteins,
@ g 601 as estimated from a Bradford assay, were
g g' used for each test.
>0 (B) The polyadenylation activity associated
g_ % 40 ~ —e— Tri4-TAP = 300 with TRF4 and product length was tested by
- ; i denaturing gel electrophoresis. An internally
‘E;,.E 20 :E :13513;::: labeled RNA was used as substrate (lane 1)
[-IT] 7 for a 30 min reaction. The product size ob-
o® --%--Pbp1-TAP - )

- = 200 served at various concentrations of TAP-
purified Trf4 complex was estimated by
comparing with the migration of a single-

) ; stranded DNA marker (left, size in nucle-
Time (min) otide).
= 150 (C) Mutation of the TRF4 catalytic center
abolishes poly(A) polymerase activity. Incor-
poration of radioactive 032P-ATP into acid
1000 4 insoluble poly(A) in 30 min reactions was
tested for TAP-purified wild-type trf4 and the

T trf4-236 mutant. Complex concentration was

£= 800 normalized by Western blotting using an an-
g :: - 100 tibody directed against Trf4 with concentra-
@ _0_ tion 0.5 corresponding to the quantity used
§ g 600 in (A).
o2
EQ
A % 400 —e—Tri4-TAP '
-~ -8 -tri4-236-TAP
4 .
23 2004
£3
0 : g . i
0 1 2 3 4 5 -
Relative standardized complex amount
12 3 4

analysis of the purified Trf4p-TAP complex (Figure 4A)
revealed the presence of additional factors, two of
which that were identified as the related Air1 and Air2
proteins, which are located in the nucleus and have
been previously implicated in nucleocytoplasmic mRNA
transport (Inoue et al., 2000). A larger protein present
at substoichiometric levels was identified as Mtrdp, a
putative RNA helicase that was shown to interact func-
tionally with the exosome (de la Cruz et al., 1998), sup-
porting a role for Trf4p in the degradation of CUTs (see
below). In addition, several ribosomal proteins were
found in the purified fraction, possibly as a conse-
quence of the implication of Trf4p in rRNA processing
(see below). All these data are consistent with previous
large-scale studies (Ho et al., 2002; Ito et al., 2001; Kro-
gan et al., 2004). TAP purifications of Airlp-TAP and
Air2p-TAP (Figure 4B) and the substoichiometric pres-
ence of either protein in the Trf4p-TAP preparations
support the existence of two independent complexes
containing either Air1p or Air2p associated with Trf4p.

Both Airip-TAP and Air2p-TAP complexes were
shown to be active in poly(A) synthesis (data not shown).
The presence of either one of the two proteins is, how-

ever, required, as only in the absence of both Airlp and
Air2p was the poly(A) polymerase activity abolished
(Figure 4C).

Purified recombinant Airlp or Air2p failed to restore
the activity of a recombinant Trf4p (Figure 4D). How-
ever, recombinant Airlp and Trf4p coexpressed in
E. coli cells copurified with Trf4p, thus confirming a di-
rect interaction. Most importantly, the resulting com-
plex was active in polyadenylation (Figure 4D, a similar
result was obtained for Air2-Trf4, data not shown).
Thus, either Airlp or Air2p directly binds Trf4p, and
these proteins are necessary and sufficient to form
active polyadenylation enzymes.

Trf4 Is Required for the Polyadenylation and
Degradation of the NEL025c Transcripts

To assess whether Trf4p plays a role in polyadenylation
and/or degradation of NELO25¢c CUTs, we constructed
strains deleted for TRF4 in a wild-type or rrp64 back-
ground. The combination of the two mutations resulted
in a strong synthetic growth impairment (see Figure S7),
suggesting that Rrp6p and Trf4p are functionally linked.
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Figure 4. Trf4 Associates with Air1 or Air2 to Form an Active Poly(A) Polymerase

(A) A Coomassie blue-stained gel of proteins associated with TAP-purified Trf4p. Proteins identified by mass spectrometry are labeled.
Position of migration of a molecular weight marker is indicated on the right.

(B) Proteins present in the TAP-purified fractions associated with Air1-TAP or Air2-TAP. Position of migration of the tagged proteins and Trf4
(identified by Western blotting) are indicated on the right, while the position of migration of a molecular weight marker is indicated on the left.
(C) Poly(A) polymerase activity requires Air1 or Air2. Concentration of the Trf4-TAP-purified complexes obtained from the strains of indicated
genotypes were normalized by Western blotting using an antibody directed against Trf4. Poly(A) polymerase activity was assayed as de-

scribed for Figure 3A.

(D) The poly(A) polymerase activity of recombinant Trf4, recombinant Air1, a mixture of both proteins, or a recombinant complex generated
by coexpression of Trf4 and Air1 was tested. Protein concentration was normalized by Bradford assay.

To quantify the levels of both polyadenylated and non-
adenylated transcripts in these strains, we first per-
formed real-time PCR analyses after priming cDNA syn-
thesis either with an oligonucleotide specific for NEL0O25c
transcripts (total) or with oligo-dT (polyadenylated frac-
tion) (Figure 5A). All data were normalized using ACT1
mRNA levels. Strikingly, deletion of TRF4 leads to stabi-
lization of NEL0O25c¢ transcripts (and other CUTs, Figure
5B and data not shown) to a level that is even higher
than the one observed in an rrp6A strain. However,
these transcripts appear to be mostly nonadenylated,
in contrast to what was observed in the absence of
Rrp6p (Figure 5A). Northern blot analysis confirmed
that depletion of Trf4p resulted in a strong accumula-
tion of NELO25c transcripts (Figure 2B, lane 11) as well
as other CUTs (Figure S1). Note that, in the absence of
TRF4, deletion of RRP6 strongly enhances the accumu-
lation of the NEL0O25c and other CUT transcripts, as
shown both by quantitative RT-PCR and Northern blot
analyses (Figures 5A, 5B, and 2B and Figure S1), sug-
gesting that degradation of a fraction of these RNAs

still occurs despite Trf4p absence. The most abundant
NEL025c RNA species (~ 350 nt long) were absent from
the oligo-dT selected fraction, in contrast to what was
observed in the rrp64 single mutant strain, confirming
that the polyadenylation of these transcripts is Trf4p
dependent. In contrast, however, a larger polyaden-
ylated product (enriched upon oligo-dT selection), of
relative low abundance in the total RNA samples (Fig-
ure 2B, lane 12), was strongly stabilized in the absence
of both Rrp6p and Trf4p. This polyadenylated transcript
was completely absent from the oligo-dT selected frac-
tion when Pap1p was inactivated, suggesting that it
corresponds to a small fraction of NEL025c¢ transcripts
polyadenylated by the normal Pap1p-dependent ma-
chinery. Most interestingly, this polyadenylated RNA
species accumulated only when both Rrp6p and Trf4p
are absent, suggesting that, even though it might result
from the normal, Papi1p-dependent, polyadenylation
pathway, its precursor and/or itself are degraded by the
coordinated actions of Rrp6p and Trf4p (see Discus-
sion). In order to assess the generality of this observa-
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Figure 5. Real-Time RT-PCR Analysis of
CUTs in Mutants of the Trf4/Exosome Degra-
dation Pathway

(A) Real-time RT-PCR analysis of NEL025c
transcripts in mutants of the Trf4p/exosome
degradation pathways. cDNA synthesis was
performed with a specific oligonucleotide
(total) or oligo-dT (dT-primed) before real-
time PCR analysis with primer pair PP4.
These signals are proportional to the total
and polyadenylated fraction, respectively.
Relative normalization was performed using
ACT1 mRNA as follows: the amount of every
sample was divided by a normalization index
representing the ratio between the ACT?
value in that given sample and the average
value of ACT7T mRNA in all samples. The dT-
primed/total ratio for NELO25c transcripts in

tion, we analyzed with Affymetrix microarrays (which
detect mainly polyadenylated species, as they use
oligo-dT primed cDNAs), the global effect of the rrp64/
trf44 double deletion on the stabilization of such poly-
adenylated forms of CUTs. Figure 1B (red curves)
shows that stabilization of these minor, Trf4p-indepen-
dent, polyadenylated forms of CUTs is widespread, as
the signals of a large number of intergenic SAGEs were
enhanced in the double mutant relative to the wild-
type. Finally, the depletion of Trf5 had no marked effect
the amount of CUTs (Figure 5A and data not shown) or
on the profiles of the oligo-dT-selected NEL025c tran-
scripts (data not shown). These data indicate that Trf4p
is involved in polyadenylation of CUTs and, together
with Rrp6p, in their degradation.

The Trf4-Associated Poly(A) Polymerase Activity

Is Required for CUT Degradation

Because the Trf4p complex is a poly(A) polymerase
in vitro and because Trf4p is involved in polyadenyla-
tion and degradation of CUTs in vivo, we assessed
whether the enzymatic activity of the complex is re-
quired for CUTs degradation. We asked first whether
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B <« (B) Real-time RT-PCR analysis of other CUTs
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E 350 rrp64 strains. The amount of each transcript
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s OtrfdA ype strain. Average
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ﬁ 250 below the histogram. Stabilization values in
E an rrp64 background are reported for com-
S 200 parison. In (A) and (B), error bars represent
S standard deviations calculated from three in-
2 150 dependent experiments.
[
o 100
e
g 50 I
=]
£ 0 i A
| NBLOOTc | NEL025¢c _NGFiOSOw | NHRO27c | NKLO36c ‘NLROZ:’W | gBLO4w
|mwt | 1 | 1 | 1 | 1 | 1 1
Ormp6A 16 13 14 2 30 7 21
\Otrf4A | 22 | 80 | 36 3 41 13 | 29
| rrpBALrf4A 59 | 221 135 10 156 45 70

the poly(A) polymerase catalytic site mutant (trf4-236)
would affect CUT stability. As shown in Figure 5A, non-
adenylated NEL025c transcripts were readily detected
in a trf4-236 strain, although they were stabilized to a
lower extent than upon TRF4 deletion. This intermedi-
ate effect was paralleled by the growth of the trf4-236
mutant strain that was less affected than the trf44
strain (Figure S7). Interestingly, deletion of the TRF4
paralogue TRF5 in the trf4-236 strain led to a stabiliza-
tion of NELO25c transcripts that was greater than the
one observed in a trf4-236 strain, strongly suggesting
a role for Trf5p in CUT degradation when Trf4p is not
fully functional (Figure 5A). To further confirm that the
poly(A) polymerase activity of the Trf4 complex is in-
volved in CUT degradation, we analyzed CUT levels in
a strain lacking both Air1 and Air2, as both proteins
were required for poly(A) polymerase activity (see
above). Real-time RT-PCR (Figure 5A, and data not
shown) and Northern blot analyses (Figure 2B and Fig-
ure S1) of CUTs in this strain revealed a strong stabiliza-
tion of these RNAs. For NEL025c, only the largest tran-
script accumulated in a polyadenylated form (Figure
2B). Altogether, these results strongly suggest that the
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poly(A) polymerase activity of Trf4p is associated with
its role in CUT degradation.

Polyadenylation of rRNAs, snRNAs, and snoRNAs

in an rrp64 Background Is Trf4p Dependent

Having established that Trf4p is involved in polyaden-
ylation of CUTs, we tested whether the polyadenylated
forms of the rRNAs, snRNAs, and snoRNAs observed
in the rrp64 strain are also Trf4p dependent. Indeed,
the presence of polyadenylated forms of U6, 5S, or 5.8S
RNAs were dependent upon the presence of Trf4p (Fig-
ure 7 and data not shown). Inactivation of Pap1p had
some effect on polyadenylation, in particular on the
longest forms, but these effects were always weaker
than the effect of trf44. A similar observation was made
for the snoRNA U18 (data not shown). Most importantly,
the polyadenylated forms of these transcripts represent
a small fraction of the total RNAs, and the absence of
Trf4p had no strong influence on the amount of the ma-
ture forms of these transcripts (Figure 7), which is in
sharp contrast with what we observed for CUTs.

Discussion

Our results support the existence of a quality control
mechanism monitoring nuclear transcripts. This mech-
anism targets transcripts made by all three nuclear
RNA polymerases. A characteristic feature of this pro-
cess is the addition of poly(A) tail to the target mole-
cules before their proper processing or degradation in
an exosome-dependent manner

Numerous new RNA species accumulate in a 4rrp6
strain. These include Pol | transcripts or derivatives
thereof (e.g., 7S rRNA); Pol Il transcripts, such as U18
snoRNA transcripts; and Pol lll transcripts (e.g., spe-
cies detected with the 5S probe). As previously re-
ported (Allmang et al., 1999a; Kuai et al., 2004; van Hoof
et al., 2000), we also found that a large fraction of these
new species are polyadenylated in a Arrp6 strain but
not in a wild-type strain. These poly(A)* species may
represent normal processing intermediates with very
short half-lives. Alternatively, they could represent non-
functional transcripts targeted for degradation. Poly-
adenylation of such RNA species is unlikely to be re-
stricted to S. cerevisiae and offers to cells a mean to
control maturation or processing of these targets. Con-

W rp6atrf4A

250 Figure 6. Most Intergenic Transcripts Are
Stabilized in a rrp6.4/trf44 Double Mutant
200 Real-time RT-PCR analysis in a rrp64/trf44

strain of intergenic transcripts that exhibited
alow rrp6 4-dependent signal increase in the
150 microarray experiments (ranging from 1.5- to
3.6-fold, 2.7-fold on average). Levels normal-
ized to ACTT mRNA are expressed relative
to the amount in a wild-type strain. Error
bars were calculated from three independent
50 experiments and represent standard devia-
tions. Note that analysis for NPLO40w is re-
ported on a different scale, as this RNA is
strongly stabilized in this strain.

100

sistently, polyadenylated ribosomal RNAs were de-
tected in the pathogenic fungi Candida albicans in a
process controlled by the presence of serum (Fleisch-
mann et al., 2004).

Although it has been reported (Kuai et al., 2004) that
polyadenylation of several rRNA species in a rrp64
background depends on Papi1p integrity, our results
only partially support this notion. In fact, Pap1p-depen-
dent polyadenylation only accounts for a fraction of
the polyadenylated rRNA species detected in rrp6 mu-
tants. This observation is paralleled by the analysis of
snoRNA, snRNA, and CUTs. In most cases (e.g., for
NELO025c and 5S RNAs), this fraction is minor compared
to the fraction that is Trf4p dependent, and, most im-
portantly, in no cases did mutation of Pap1p lead to
stabilization of transcripts in a WT or rrp64 back-
ground. Currently, the significance of polyadenylation
of these transcripts by Pap1p is unclear; it does not
appear to stimulate their degradation, as shown here
for Trf4p-dependent polyadenylation.

Another group of polyadenylated RNA accumulating
in a 4rrp6 strain corresponds to new cryptic Pol Il tran-
scripts. These CUT transcripts are present at extremely
low concentration in wild-type cells, even though some
of these transcripts were apparently detected by SAGE
analyses (Velculescu et al., 1997). Nevertheless, they
appear to represent bona fide transcripts generated by
Pol Il, containing a 5’ cap. These intergenic cryptic Pol
Il transcripts are usually relatively short and do not con-
tain long or conserved reading frames. Thus, while we
cannot formally exclude that they have a physiological
role, their structure suggests that they result from the
presence of adventitious promoters at random genomic
locations. How widespread is the occurrence of cryptic
intergenic transcription in the genome? We have con-
firmed by RT-PCR analysis that most if not all of the
intergenic SAGE transcripts that exhibit an rrp64/WT
signal ratio >2 in the microrray experiments (roughly
20% of the total) are indeed responsive to mutation of
the TRF4p/exosome degradation pathways. To assess
whether intergenic SAGE transcripts exhibiting lower
rrp64/WT signal ratios are bona fide CUTs, we ex-
ploited the observation that, in a trf44/rrp64 mutant,
CUTs are stabilized to a higher level, which should im-
prove sensitivity. Microarray analysis in this context
was not informative, as stabilized CUTs are mostly non-
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polyadenylated, while the standard Affymetrix technol-
ogy only allows the detection of polyadenylated spe-
cies (Figure 1B, red curves). We then extended RT-PCR
analyses with sequence-specific primers to 13 addi-
tional intergenic SAGE regions that exhibited even a
very modest, rrp64-dependent signal increase in the
microarray experiments (1.5- to 3.6-fold increase; 2.7-
fold in average). Remarkably, all these RNAs species
were responsive to the trf44/rrp64 mutation (Figure 6),
strongly suggesting that they are bona fide CUTs. This
is consistent with the notion that a large fraction of the
intergenic regions containing SAGE tag (more than

Status of U6 and 5S rRNA in Different Ge-
netic Backgrounds

As in Figure 2B, except that the filters were
hybridized with [*2P]-labeled oligonucleo-
tides specific for U6 snRNA (top panels) or
58 rRNA (bottom panels).
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10% of the overall intergenic regions; Velculescu et al.
[1997]) encode genuine transcripts that are normally
targeted for degradation by the coordinated action of
the nuclear exosome and the Trf4-associated complex.
Consequently, as some intergenic transcripts might
have escaped SAGE detection, a minimal genome-wide
estimate of cryptic transcripts for all intergenic regions
is likely to be more than 5%-10%. Thus, spurious in-
tergenic transcription appears to be widely spread
within the yeast genome. This is likely to be evolution-
arily widespread. Indeed, microarray tiling experiments
revealed the presence of numerous unsuspected tran-
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scripts encoded by intergenic regions of mammalian
chromosomes (Johnson et al., 2005). A relatively low
specificity of promoter recognition might leave more
flexibility for evolution and/or regulation. Thus, parallel-
ing observations made with ribosome fidelity mutants
(Ruusala et al., 1984), promoter recognition by the Pol
Il machinery may remain suboptimal. We suggest that,
in addition to a chromatin-dependent repression of
cryptic promoters usage, a parallel and/or overlapping
strategy that involves a posttranscriptional quality con-
trol mechanism evolved to get rid of cryptic transcripts.

Our data demonstrate that Trf4 is a poly(A) polymer-
ase. While Trf4 was previously suggested to be a DNA
polymerase involved in DNA repair (Castano et al,
1996), we believe that these original data have to be
reinterpreted, as its DNA polymerase activity is ex-
tremely weak compared to its poly(A) polymerase activ-
ity (Wang et al., 2000). Furthermore, Trf4 clearly affects
polyadenylation in vivo, supporting the in vitro bio-
chemical activity. Nevertheless, we cannot exclude that
Trf4 has both activities. Identification of a second yeast
nuclear poly(A) polymerase targeting RNA for degrada-
tion by the exosome must also be reconciled with the
presence of poly(A) tails on (pre-)mRNA that are not
degraded. How the cell discriminates between aberrant
and functional transcripts remains unknown. Substitut-
ing the natural cryptic promoter by a heterologous one
(Figure S3C) or inserting a bona fide terminator (data
not shown) did not change the susceptibility of the
NELO025c CUT toward Rrp6p.

What is the role of the Trf4p complex in recognition
and degradation of unstable transcripts? Trf4p appears
to have a role in CUT degradation (most likely through
stimulation or targeting of the exosome) that is inde-
pendent of its polyadenylation activity as the trf4-236
point mutant, which completely lacks pol(A) polymer-
ase activity in vitro and is much less affected than the
trf44 mutant (Figure 5A and Figure S7). In at least some
cases, Trf5p might substitute for Trf4p function, which
is suggested by the stronger phenotype of a trf4-236/
trf54 mutant compared to either single mutants (Figure
5A and Figure S7). If Airlp/Air2p were also required for
Trf5p function (which is presently unclear), the stronger
phenotype of air1 4/air24 cells compared to trf44 might
be explained by a concomitant impairment of both
Trf4p and Trf5p activities. Finally, it is unclear whether
Rrp6p and the core exosome have different roles in the
degradation of CUTs. A distinct role might be consis-
tent with the observation that the patterns and the poly-
adenylation status of NEL0O25c transcripts are similar
but not identical in an rrp64 mutant and in the deple-
tion of the Rrp41p core component.

Degradation of NELO25c transcripts might be para-
digmatic for the Trf4p/exosome pathway. The long form
of the NEL0O25c¢ transcript (which might be the precur-
sor of the shortest forms) is polyadenylated by Pap1p
but degraded in a Trf4p-dependent manner (which is
polyadenylation independent, as its abundance but not
its polyadenylation status is affected by TRF4 deletion).
It is conceivable, for instance, that a polyadenylation-
independent role of the Trf4p/Air complex in this case
would be to target the exosome on CUTs or other sub-
strates, maybe through Mtrdp, a reported constituent
of the nuclear exosome that is also found associated

with the Trf4/Air complex. The shorter 300-500 nt tran-
scripts, on the contrary, would require prior polyaden-
ylation by the Trf4/Air complex for subsequent efficient
degradation. This might result from stalling of the exo-
some at secondary structures, which would require the
secondary addition of Trf4p-dependent poly(A) tails to
resume degradation. In the rrp64/trf44 double mutant,
the combination of compromised exosome activity and
lack of the Trf4/Air complex would result in both a very
inefficient targeting of the primary NEL0O25c transcript
as well as inefficient removal of degradation intermedi-
ates. The role of Trf4p poly(A) polymerase activity
would then be very similar to batcterial poly(A) polymer-
ases that have been shown to facilitate mRNA degrada-
tion by the degradosome (Dreyfus and Regnier, 2002).
Indeed, the group of D. Tollervey has recently found
that the Trf4p-associated complex enhances the nu-
clear exosome activity in vitro (LaCava et al., 2005). In
this vein, it is noteworthy that the degradosome is ho-
mologous to the eukaryotic exosomes (Aloy et al.,
2002; Symmons et al., 2002). The existence of Trf4p and
Airp homolgues in human and other species suggests
that the poly(A)-stimulated 3'-5’ nuclear degradation/
processing of RNA is conserved in all eucaryotes.

Experimental Procedures

Standard experimental procedures are given as Supplemental Data
under the section Supplemental Experimental Procedures.

Microarray Analyses

Microarray hybridizations were performed using the Affymetrix
Yeast Genome S98 Array using protocols described by Affymetrix,
Inc. (Santa Clara, CA). Data were analyzed using Affymetrix Micro-
array Suite 4.0 software for the rrp64 results and Affymetrix Micro-
array Suite 5.0 for the rrp64, trf44 results. Microarray data are ac-
cessible in the Gene Expression Omnibus database (http://www.
ncbi.nlm.nih.gov/geo/) under the accession number GSE2579.

Poly(A) Polymerase Assay

Reactions (20 pl) contained 20 mM Tris-HCI (pH 7.6), 50 mM KClI,
17.5 mM MgCI2, 1 mM DTT, 0.2 mM EDTA, 100 p.g/ml BSA, 10%
glycerol, 0.5 mM ATP, (32P) ATP (150-500 cpm/pmol) and 0.25 1.g
of substrate (total yeast RNA, poly[A] [250 nt], or oligo[A] [15 nt]).
The reaction was started by the enzyme addition (2.5-50 ng of TAP-
purified complexes or 50-400 ng of recombinant proteins), incu-
bated at 30°C for 30 min, and stopped by addition of 0.5 ml of 10%
TCA. The precipitate was collected on glass fiber filter, washed,
and counted. Alternatively 3?P-labeled LucA RNA was used as sub-
strate in reactions without («32P)ATP.

Supplemental Data

Supplemental Data include seven figures, three tables, and Supple-
mental References and can be found with this article online at
http://www.cell.com/cgi/content/full/121/5/725/DC1/.
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