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SUMMARY

Viruses rely on the host translation machinery to
complete their life cycles. Picornaviruses use an
internal ribosome entry site to initiate cap-indepen-
dent protein translation and in parallel host cap-
dependent translation is shut off. This process is
thought to occur primarily via cleavage of host trans-
lation initiation factors eIF4GI and eIF4GII by viral
proteases. Here we describe another mechanism
wherebymiR-141 induced upon enterovirus infection
targets the cap-dependent translation initiation
factor, eIF4E, for shutoff of host protein synthesis.
Knockdown of miR-141 reduces viral propagation,
and silencing of eIF4E can completely reverse the
inhibitory effect of the miR-141 antagomiR on viral
propagation. Ectopic expression of miR-141 pro-
motes the switch from cap-dependent to cap-inde-
pendent translation. Moreover, we identified a tran-
scription factor, EGR1, which is partly responsible
for miR-141 induction in response to enterovirus
infection. Our results suggest that upregulation of
miR-141 upon enterovirus infection can facilitate viral
propagation by expediting the translational switch.

INTRODUCTION

In general, viruses are predisposed to evolve new antigenic vari-

ations and drug resistances that impede the development of
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effective antiviral therapies. Nearly all viruses rely on the host

translationmachinery to complete their life cycles. Virus infection

may induce shutoff of host protein synthesis, particularly in

picornavirus, the protein translation of which is cap independent

(Belsham and Sonenberg, 2000; Schneider and Mohr, 2003).

Enteroviruses in the Picornaviridae family are important human

pathogens that can cause fatal diseases including cardiopulmo-

nary failure, aseptic meningitis, paralysis, myocarditis, and

encephalomyelitis (Chang et al., 2007; Whitton et al., 2005).

Recently, enterovirus 71 (EV71) has become a newly emerging

life-threatening pathogen, particularly in the Asia-Pacific region

(Chang et al., 2007; Wang et al., 2004).

The genome of picornaviruses is a single-stranded plus sense

RNA molecule and uses internal ribosome entry site (IRES) to

initiate protein translation, independent of cap structure. The

IRES-mediated translation requires both canonical initiation

factors and IRES transactivating factors (ITAFs), many of which

have been proven to only facilitate cap-independent translation

(Lin et al., 2009; Martinez-Salas et al., 2008). The ITAFs enhance

IRES-mediated translation by acting as RNA chaperons of high-

order structural organization or activators of IRES activity. The

canonical initiation factors, eIF4G, eIF4A, eIF3, and eIF2, but

not eIF4E, are required for IRES-mediated picornaviral transla-

tion. The picornavirus infection induced a dramatic inhibition of

host protein synthesis (Goldstaub et al., 2000). Although eIF4GI

and eIF4GII have different kinetics cleavages in certain picorna-

virus infections, it is well known that both eIF4GI and eIF4GII

cleavages contributed to virus-mediated host protein synthesis

shutoff (Gradi et al., 1998; Svitkin et al., 1999). In addition, the

cleavage of poly(A)-binding protein (PABP) and dephosphoryla-

tion of eIF4E binding protein 1 (4E-BP1) as well as the eIF4E
c.

https://core.ac.uk/display/82695093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cnalee@ntu.edu.tw
mailto:pcyang@ntu.edu.tw
http://dx.doi.org/10.1016/j.chom.2010.12.001


Cell Host & Microbe

miR-141 in Virus-Induced Translational Shutoff
relocalization have been reported to contribute to the shutoff of

host protein synthesis (Gingras et al., 1996; Kuyumcu-Martinez

et al., 2004; Sukarieh et al., 2010). Therefore, the host factors

that are involved in the blockage of host protein synthesis during

enterovirus infection might not be completely identified. eIF4E is

a cap-binding protein guiding cap-dependent or cap-indepen-

dent translation (Figure 1A) (Fraser and Doudna, 2007). Whether

eIF4E is involved in this protein synthesis switch is still unclear

and remains to be investigated.

MicroRNAs (miRNAs) are a recently discovered class of

small non-protein-coding RNAs that may act via endogenous

RNA interference (Hammond, 2006). By posttranscriptional

regulation of target gene expression, miRNAs govern a wide

range of biological functions including host-virus interaction

(Umbach and Cullen, 2009). Nevertheless, our understanding

of their role in the reciprocal interaction between virus and

host is quite limited. Recent evidence indicates that certain

DNA viruses encode miRNAs that are able to regulate viral or

cellular gene expression (Gottwein et al., 2007; Pfeffer et al.,

2004; Umbach et al., 2008). On the contrary, it is also known

that certain cellular miRNAs could modulate human hepatitis

C virus (HCV) and human immunodeficiency virus type 1

(HIV-1) replication (Jopling et al., 2005; Triboulet et al., 2007).

However, few studies have explored the role of miRNAs in virus

infection, and whether miRNAs contribute to the blockage of

host protein synthesis is totally unknown. To address this

issue, the miRNA profile of enterovirus-infected cells was

generated by real-time reverse transcriptase-polymerase chain

reaction (real-time RT-PCR). Our results suggest that upregula-

tion of miR-141 upon enterovirus infection could facilitate viral

propagation by expediting a shift from cap-dependent to cap-

independent translation (this process termed as ‘‘translational

switch’’ hereafter).

RESULTS

The Expression of MicroRNA-141 Is Induced
by Enterovirus 71 Infection
To investigate the role of miRNAs in EV71 infection, we deter-

mined the replication cycle of EV71 in rhadomyosarcoma (RD)

cells. The replication cycle of EV71 was approximately 8 hr at

a multiplicity of infection (moi) of 10 (see Figure S1A available

online). Next, we optimized the time points for the assay and

determined the best moi for EV71 infection. The time-lapse

microscopy data indicated that RD cells infected with EV71 at

an moi of 10 showed an almost 50% cytopathic effect (CPE) at

8 hr postinfection (h.p.i.) (Figure S1B). To ensure the majority of

the cells were infected simultaneously and to avoid the unex-

pected cellular responses caused by massive infection at

a high viral input, the cells were infected with EV71 at an moi

of either 5 or 10. The infected cells were stained for viral protein

1 (VP1) (Figure S1C), and the staining results showed that

approximately 85% and 100% of the cells were infected at 8

and 12 h.p.i., respectively, when moi of 10 was used. However,

less than 50% cells were infected when lower viral input was

used. Hence, RNAs from EV71-infected cells at an moi of 10

were extracted for the miRNA profiling analysis at 4 and 8 h.p.i.

The expression profiles of 250 miRNAs in EV71-infected cells

were analyzed by quantitative real-time RT-PCR. The expression
Cell
of 16 miRNAs had a greater than 2-fold changes upon EV71

infection. The expression levels of two miRNAs (miR-141 and

miR-146a) were increased, but the expression levels of the other

14miRNAs were decreased (Figure 1B). It makes sense because

a lot of studies demonstrated that the synthesis of host RNAs

was decreased to 10%–30% during poliovirus infection (Fen-

wick, 1963; Holland, 1963; Zimmerman et al., 1963). We asked

whether the miRNAs induced by EV71 infection could play

a role in facilitating viral proliferation and the induction of CPE

via miRNA-mediated negative gene regulation. It has been

reported that miR-146a is induced upon infection with Epstein-

Barr virus (EBV) and vesicular stomatitis virus (VSV) (Cameron

et al., 2008; Hou et al., 2009; Motsch et al., 2007). MiR-141

was chosen for further analysis since it showed the greatest

upregulation, with a greater than 16-fold change, and has never

been studied as part of host-pathogen interactions. To investi-

gate whether the upregulation of miR-141 is a common charac-

teristic in enterovirus infection, the expression of miR-141 was

determined in cells infected with poliovirus 3 (PV3) and coxsack-

ievirus B3 (CVB3). As shown in Figure 1C, CVB3 and PV3 infec-

tions induced miR-141 expression by up to 14- and 31-fold,

respectively, at 8 h.p.i., compared with mock infection.

To understand the kinetics of miR-141 induction in EV71 infec-

tion, we measured the expression of mature miR-141 and

primary miR-141 (pri-miR-141). The induction of mature

miR-141 was coincided with that of pri-miR-141 and occurred

as early as 2 h.p.i. (Figures S1D and S1E). Next we used a thiour-

idine incorporation assay to measure the de novo-synthesized

miR-141. The data indicated that the thiouridine-labeled miR-

141 was gradually increased in a time-dependent manner

(Figure S1F).

eIF4E Is a Target of miR-141
Twenty-seven potential target genes of miR-141 were predicted

by the target prediction program TargetCombo using the option

involving intersection of the generation programs PicTar,

TargetScanS, and miRanda (Sethupathy et al., 2006). One of

the targets is eIF4E, which is a key element in the cap-dependent

translation of host proteins (Figure 1A). Out of the 27 predicted

targets for miR-141, eIF4E is the only one involved in the host

translational machinery. We further used the PicTar (http://

pictar.org/) and RNA22 (http://cbcsrv.watson.ibm.com/rna22.

html) to predict the potential miR-141-binding sites within the

30 untranslated region (30UTR) of eIF4E, and only one miR-141-

binding site was predicted (Figure 1D and Table S1) (Krek

et al., 2005; Miranda et al., 2006; Sethupathy et al., 2006). To

determine the effect of miR-141 on the expression of eIF4E,

miR-141 was overexpressed in RD cells and the expression

levels of miR-141 were measured by real-time RT-PCR (Fig-

ure 1F). The results showed that ectopic expression of miR-

141, but not negative control, was able to specifically reduce

the protein level of endogenous eIF4E (Figure 1E). We cannot

rule out the possibility that the decreased eIF4E induced by

ectopic expression of miR-141 was due to nonspecific effects.

To assess this possibility, RD cells were transfected with non-

eIF4E-targeting miRs and analyzed for eIF4E expression. We

constructed five random selected miRs (miR-137, miR-372,

miR-146a, miR-10a, and miR-27a) that did not target eIF4E

predicted by the miRNA target prediction programs, and one
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Figure 1. Expression of eIF4E Is Suppressed by miR-141

(A) Cap-dependent and cap-independent translation initiation.

(B) The differentially expressedmiRNAs induced by EV71 infection. The open bar and the closed bar represented 4 and 8 hr postinfection (h.p.i.), respectively. All

the data are normalized against mock infection.

(C) miR-141was induced by CVB3 or PV3 infection. The expression of miR-141wasmeasured by real-timeRT-PCR in the RD cells infectedwith CVB3 or PV3.MI,

mock infection (without virus infection).

(D) Predicted miR-141 binding site within the eIF4E 30UTR. A potential miR-141 binding site located at nucleotides 905–926 of eIF4E downstream (the first nucle-

otide following the stop codon was designated as +1).

(E and F) The effect of miR-141 on endogenous eIF4E. RD cells were transfected with pSilencer vector harboring negative control miRNA (NC) or miR-141 (141).

The expression of endogenous eIF4E and miR-141 was analyzed by western blot (E) and real-time RT-PCR (F). MT, mock transfection (transfection reagent

control); h.p.t., hours posttransfection.

(G and H) The effect of EV71 (G), CVB3, or PV3 (H) infection on endogenous eIF4E. The protein expression of eIF4E and eIF4G was detected by western blot, and

the RNA expression of eIF4E was measured by real-time RT-PCR. The relative expression of eIF4E protein and of eIF4E mRNA are indicated at the bottom. The

intact and digested eIF4G were indicated by arrowheads.

All the data are normalized against mock infection or mock transfection and error bars present as means ± SD (n = 3).
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Figure 2. eIF4E Is a Target of Virus-Induced

miR-141

(A) Predicted sequence of the miR-141 binding

site within the eIF4E 30UTR.
(B) The effect of miR-141 on the luciferase activity

of reporter vectors with wild-type (close bar) or

mutant (open bar) eIF4E 30UTR. HEK293T cells

were transfected with the reporter vector and

miRNAs, as indicated, and firefly luciferase activity

measured 48 hr later. NC, 5 pmole of negative

control miRNA. Error bars, mean ± SD; *p < 0.05

(two-tailed Student’s t test).

(C) The effect of miR-141 on the expression of

eIF4E with wild-type or mutant 30UTR. Various

amounts of miR-141 (25, 12.5, 6.25, and 3.125

pmol) were transfected into RD cells stably ex-

pressing V5-eIF4E.

(D) The effect of virus infections on the expression

of eIF4Ewith wild-type ormutant 30UTR in RD cells

infected with EV71, CVB3, or PV3.
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mutant miR-141, named miR-141M (six point mutations in

miR-141 seed region). The result showed that neither five miRs

nor miR-141M could decrease the expression of endogenous

eIF4E at 72 hr posttransfection (Figure S1G).

Next, the effect of different enterovirus infections on endoge-

nous eIF4E expression was examined. The protein level of eIF4E

was gradually reduced in a time-dependent manner from 2 h.p.i.

onward, while the mRNAs of eIF4E remained in a steady state

during the conditions analyzed (Figures 1G and 1H). To clarify

the major reason causing eIF4E decrease, we performed

pulse-labeling assays. RD cells were mock infected (MI) or in-

fected with EV71 and pulse labeled with [35S] methionine. The

data showed that the de novo-synthesized eIF4E decreased

from 1 h.p.i. onward and remained 7% compared with mock

infection at 2 h.p.i. (Figure S1H). These findings imply that the

reduction in eIF4E might be regulated by miRNAs and that

miR-141 might play a crucial role. To clarify whether eIF4E is

a direct target of miR-141, a luciferase assay was performed.

A four base pair mutation (mutant type) was introduced into

the miR-141 binding site within the 30UTR of eIF4E cDNA (Fig-

ure 2A). As shown in Figure 2B, miR-141 significantly sup-

pressed the luciferase activity of the reporter vector harboring

the wild-type 30UTR at all the three doses assayed, but mutant

type was not suppressed by miR-141. To further explore the

posttranscriptionally regulatory effect of miR-141 on eIF4E,

two expression vectors encoding V5-eIF4E fusion proteins, in

which the open reading frame of eIF4E was followed by either

the wild-type or mutant type 30UTR, were constructed and are

designated as V5-eIF4E-30UTR-WT and V5-eIF4E-30UTR-Mut,

respectively. These two vectors were individually used to

generate V5-eIF4E stable expression cell lines. These stable

clones were then transfected with miR-141 and assayed for
Cell Host & Microbe 9, 58–6
the expression of V5-eIF4E and miR-

141 (Figure 2C and Figure S2). Paralleling

the previous results, miR-141 negatively

regulated V5-eIF4E with a wild-type

30UTR in a dose-dependent manner, but

not with the mutant one. Interestingly,

the expressions of miR-141 were
increased to 20.3 and 9.1 times after pre-miR-141 transfection

compared with MT control (column 5 and 6 in left panel of Fig-

ure S2). The upregulations of miR-141 were 25.0 and 12.3 times

compared with MI control at 4 and 8 h.p.i., respectively, in

Figure 1B. In the case of Figure 2C, the overexpression level

of miR-141 is comparable to that of EV71 infection. To elucidate

whether miR-141 does directly mediate the suppression of

eIF4E during virus infection, the V5-eIF4E-30UTR-WT and

V5-eIF4E-30UTR-Mut stable expression cells were infected

with EV71, CVB3, or PV3 at an moi of 10, and their V5-eIF4E

protein expression levels were measured at the indicated time

points by western blot. The expression of V5-eIF4E with the

wild-type 30UTR was markedly suppressed when the RD cells

were infected with EV71, CVB3, or PV3 virus at all time points

assayed (Figure 2D). However, there was no significant effect

on the expression of V5-eIF4E with the mutant 30UTR. To vali-

date the effect of miR-141 on endogenous eIF4E,the antago-

miR-141, an anti-sense RNA molecule complementary to

miR-141, was used to block the induction of miR-141 in EV71-

infected cells. RD cells were transfected with antagomiR-141

or an antagomiR-negative control before EV71 infection. The

protein expression of eIF4E and eIF4G was determined by

western blot. The suppression of eIF4E caused by EV71 infec-

tion was almost eliminated in antagomiR-141 transfected cells

but not in antagomiR-negative control transfected cells or the

mock transfected cells at 4 h.p.i. (Figure 3A). These results

clearly demonstrated that miR-141 has an important role in the

suppression of eIF4E during virus infection.

MiR-141 Involved in Virus-Induced Translational Switch
We investigated whether virus-infection-induced miR-141,

which targets eIF4E, did contribute to translational switch.
9, January 20, 2011 ª2011 Elsevier Inc. 61



Figure 3. The Protein Translation Switch

Induced by Virus Infection Is Attenuated by

AntagomiR-141

(A) The reduction in eIF4E was restored by antago-

miR-141. RD cells were transfected with antago-

miR-141 followed by EV71 infection.

(B) Shutoff of host protein synthesis was delayed

by antagomiR-141. RD cells were infected with

EV71, and de novo protein synthesis was detected

at the indicated time points using metabolic

labeling. The [35S]methionine incorporation assay

was quantified by densitometry and showed at

the bottoms. The viral proteins were indicated by

arrowheads. The expressions of miR-141 and

eIF4E were assayed by semiquantitative RT-PCR

and western blot assay, respectively.

(C) miR-141 specifically attenuated cap-depen-

dent translation. Luciferase is expressed through

cap-dependent translation and EGFP is ex-

pressed through cap-independent translation.

The expression of Luc-EGFP was measured by

northern blot assay. 18S and 28S acted as RNA

loading control.

Cell Host & Microbe

miR-141 in Virus-Induced Translational Shutoff
Isotope metabolic labeling was performed to characterize the

role of miR-141 in the shutoff of host protein synthesis during

virus infection. We performed semiquantitative RT-PCR instead

of real-time RT-PCR to check the expression of miR-141 due to

isotope issue and performed western blot to determine the

eIF4E expression. As the above results showed, antagomiR-

141 could attenuate the decrease of eIF4E companied with

suppression of miR-141. The antagomiR-141, but not the anta-

gomiR-negative, slowed down EV71-infection-induced shutoff

of host protein synthesis compared with the mock transfection

control (13% versus 42% reduction of protein synthesis at

4 h.p.i.) (Figure 3B). Even at 12 h.p.i., there was still 28%,

compared with 5% in the antagomiR-negative control, of host

protein synthesis remained in antagomiR-141 transfected cells.

The drastic decrease of host protein synthesis at 16 h.p.i. might

be due to detachment of infected cells. The blockage of

miR-141 expression with antagomiR-141 could manifestly delay

the process of translation switching, with host protein synthesis

remained relatively stable at 4 h.p.i. and partially decreased at

12 h.p.i. To investigate whether miR141 can directly cause

protein synthesis switch, we construct a plasmid, which tran-

scribes a transcript containing fire luciferase gene and

enhanced green fluorescence protein (EGFP) driven by cap-

dependent CMV promoter and type II cap-independent IRES

structures, respectively. The plasmid was cotransfected with

pSilencer-miR-141 or pSilencer-miR-NC into RD cells, and the

relative expression of Luc and GFP was determined by western

blot. We found that miR-141 could reduce the expression of

luciferase and increase the expression of GFP (Figure 3C). On

the other hand, we performed northern blot to check the intact-

ness of Luc-IRES-EGFP transcript in all transfectants. The data

showed that the transcripts in miR-141 transfectants kept in

a steady state compared with mock transfection and negative

control transfectants (Figure 3C).
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Silencing of miR-141 Delays CPE Occurrence
and Reduces Virus Production
To directly evaluate the effect of antagomiR-141 on the

synthesis of viral proteins and viral RNA replication, the antago-

miR transfected RD cells were infected with EV71, and the viral

capsid proteins (VPs) and genomic RNAs were detected by

western blot assay and real-time RT-PCR at indicated time

points, respectively. The VPs and genomic RNAs became

detectable from 8 h.p.i. onward and the expression of viral

proteins and genomic RNAs were moderately inhibited at 8,

12, and 16 h.p.i. in the presence of antagomiR-141 as

compared with the absence of antagomiR-141 (Figure 4A and

Figure S3A). Furthermore, the onset of cytopathic effects

induced by EV71 infection was delayed in the presence of anta-

gomiR-141 as compared with antagomiR-negative controls

(Figure 4B). As shown in Figure S3B, CPE was imaged with

503 magnification and quantified at indicated time points. To

address whether antagomiR-141 can reduce viral replication,

the virus titers were determined in the presence or absence of

antagomiR-141. A 1000-fold reduction in viral propagation,

accompanied by the complete digestion of eIF4G, was

observed when the virus-induced miR-141 was neutralized by

antagomiR-141 (Figures 3A and 4C). The IFN-alpha levels

were measured at all of time points assayed to understand

whether the reduction of virus production is due to off-target

effect of siRNA transfection. The results showed that RD cells

transfected with antagomiR-141 did not increase the IFN-alpha

level compared with antagomiR-NC transfectants and mock

transfection (Table S3B). The roles of eIF4E in enterovirus

replication were further validated by an RNAi strategy. Three

eIF4E-pecific siRNAs were individually introduced into RD cells

in the presence of antagomiR-141 followed by virus infection.

The results indicated that the silencing of eIF4E was able to

entirely rescue the decrease in viral propagation caused by
c.



Figure 4. The Virus Virulence Is Attenuated

by AntagomiR-141

(A) Expression of viral proteins was suppressed by

antagomiR-141. The antagomiRs transfected RD

cells were infected with EV71, and the viral

proteins (VPs) were immunoblotted with anti-

EV71 antibody at the indicated time points in trip-

licate.

(B) CPE was attenuated by antagomiR-141. RD

cells were infected with EV71, and CPE was moni-

tored at the indicated time points. Magnification,

503.

(C) Virus production was attenuated by antago-

miR-141. Virus yield was measured by plaque

assay. Error bars, mean ± SD.

(D) Reduction of virus production, which was

induced by antagomiR-141, was rescued by

eIF4E siRNAs. The expression of eIF4E and virus

yield in antagomiR-141 transfected cells with/

without eIF4E siRNAs was measured by western

blot and plaque assay, respectively. Error bars,

mean ± SD.
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antagomiR-141 (Figure 4D). The results clearly demonstrated

that the effect of antagomiR-141 on virus production was

mainly, if not totally, via regulation of eIF4E. Additionally,

EV71 infection is known to cause acute neurological disorders

and severe sequelae (Chang et al., 2007; Huang et al., 1999).

To ascertain whether themiR-141-mediated eIF4E suppression

also occurs in neural cells, the eIF4E expression in EV71-

infected SF-268 cells in the presence or absence of antago-

miR-141 was measured. Consistent with the findings in RD

cells, EV71 infection induced eIF4E suppression, which can

be rescued, accompanied with decrease EV71 replication, by

antagomiR-141 (Figures S3A–S3C). These data suggest that

the miR-141-mediated regulatory mechanism might be a

general phenomenon for EV71-infected cells and that miRNA-

mediated eIF4E suppression might not only play a role in viral

pathogenesis but also in viral replication.

miR-141 Is Partly Regulated by EGR1
Recently, a database of miRNA promoters has been generated

by silica genomic analysis (Saini et al., 2007), and one of the

regulatory mechanisms of the miR-200 family (miR-200a,

miR-200b, and miR-429) has thus been elucidated (Bracken

et al., 2008). Although the transcription start site of miR-141

has been predicted to be 800 bp upstream from miR-141, the

regulation of miR-141 expression has not been well studied. To

explore the regulatory mechanisms adopted by EV71 to induce

miR-141 expression, the regulatory element responsible for

miR-141 induction was determined by luciferase reporter assays

using pGL reporter vectors harboring a series of truncated

upstream fragments of miR-141. Individual construct was trans-

fected into RD cells seeded onto 96-well culture plates the day

before infection. After 16 hr, all transfectants were infected

with EV71 at an moi of 10 and the luciferase activities of cell

lysatesweremeasured at 8 h.p.i. (Figures 5A and 5B). A fragment

(�1309 to �2382 relative to the first nucleotide of the miR-200c
Cell
precursor) was found to increase the luciferase activity up to

27-fold compared with the pGL vector control (Figure 5B). Using

TRANSFAC software, 105 potential transcription factor binding

sites within the miR-141 upstream region (�1 to �2382) were

predicted. Next, the expression profile of transcription factors

after EV71 infection was determined by microarrays, and the

expression of 20 transcription factors had a greater than 2-fold

change (FDR < 0.05) as compared with mock infection at 4 or

8 h.p.i. (Table S2). Further matching the results from prediction

of binding sites and the expression profile of transcription factors

identified the early growth response 1 (EGR1). Hence, the mRNA

and protein expression levels of EGR1 in EV71-infected cells

were determined. Consistent with the microarray results, EGR1

expression was dramatically induced by up to 100-fold at 4

and 8 h.p.i. compared with mock infection control both at the

RNA and protein levels (Figure 5C). To further understand the

kinetic response of EGR1 signaling, we determined the EGR1

expression in the early stage of EV71 infection. Surprisingly,

the increase of EGR1 was occurred at 0.25 h.p.i. (Figure S4F).

Two potential EGR1 binding sites were predicted in the putative

regulatory element of miR-141 (Figure 5A). Next, a chromatin

immunoprecipitation (ChIP) assay was performed to pinpoint

whether EGR1 could directly bind onto the two predicted binding

sites. The ChIP assay was performed using exogenous EGR1

with a V5 tag because commercial anti-EGR1 antibody yielded

nonspecific bands. RD cells were transfected with an expression

vector expressing V5 tag EGR1, and anti-V5 antibody was used

to perform ChIP assays. The results indicated that both EGR1

binding sites were able to bind EGR1 (Figure 5D), and both sites

were essential for maximal expression of miR-141 (Figure 5B).

To evaluate whether the EGR1 binding sites are also important

to miR-141 regulation in nature context, the luciferase activity

of reporter vector containing full-length regulatory fragment

(�1 to �2382) with or without mutant EGR1 binding site was

assayed. EV71 infection could activate the transcriptional
Host & Microbe 9, 58–69, January 20, 2011 ª2011 Elsevier Inc. 63



Figure 5. Regulation of miR-141

(A) Schematic organization of miR-141. EGR1 binding sites were predicted by TRANSFAC software.

(B) Identification of the regulatory elements of miR-141. Transcriptional activity of miR141-truncated upstream sequences with or without EGR1 binding site

mutations was determined by luciferase activity assays. Data are normalized against the vector control and error bars present as means ± SD (n = 3).

(C) EGR1 induced by EV71 infection. The mRNA and protein expression levels of EGR1 were determined by real-time RT-PCR and western blot, respectively.

Data are normalized against mock infection and error bars present as means ± SD (n = 3).

(D) EGR1 binding sites were determined by ChIP assays. Ctrl-1 and ctrl-2 primers located at the 3 kb downstream of EGR1 binding site 1 and site 2 act as PCR

primer controls.

(E) EGR1 activated miR-141 expression. RD cells were transfected with the V5-ERG1-expressing plasmid and assayed for miR-141 and eIF4E. Data are normal-

ized against mock infection and error bars present as means ± SD (n = 3).

(F) EGR1 siRNAs attenuated virus propagation. Upper panel, virus yield wasmeasured by plaque assay in the presence of a negative control siRNA (siNC) or three

kinds of EGR1 siRNAs (siEGR1-1, siEGR1-2, and siEGR1-3). Error bars present as means ± SD. Lower panel, EGR1 expression was measured by real-time

RT-PCR and normalized against TBP compared with mock transfection. Error bars present as means ± SD (n = 3).
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activity of vector containing wild-type regulatory element. The

mutations at site 1 and site 2 attenuated the luciferase activity

to 50% approximately after EV71 infection (Figure S4A). More-

over, EGR1, just like miR-141, was also induced after CVB3 or

PV3 infection (Figure S4B). It has been predicted that

miR-200c and miR-141 form a cluster and are located within

a same pri-miRNA (Saini et al., 2007). EGR1 should activate

miR-141 expression as well as miR-200c if miR-141 shares

a promoter with miR-200c. Thus, we examined whether miR-

141 and miR-200c were located within the same pri-miRNA.

We designed two sets of specific primers to amplify the

pri-miRNA containing miR-141 and miR-200c. We observed

that both pairs of primers could specifically amplify the expected

products using RT-PCR. The results revealed that the expres-

sion of both miR-141 and miR-200c was induced in the

V5-EGR1 transfectants but not in themock transfection or vector

control transfectants (Figures S4C and S4D). These data imply

that miR-141 is clustered with miR-200c and that miR-200c

expression is also regulated by EGR1.

To directly demonstrate the importance of EGR1 in miR-141

regulation, the expression levels of miR-141 and its target,

eIF4E, were determined in the presence or absence of exoge-

nous EGR1. As shown in Figure 5E, EGR1 induced the expres-

sion of miR-141 and the suppression of eIF4E. Next, the role of

EGR1 in EV71 replication was elucidated by knocking down

the expression of EGR1 with three EGR1 siRNAs. When treated

with each of these EGR1-specific siRNAs, EV71 production was

attenuated ranging from 3- to 20-fold (Figure 5F). Subsequently,

experiments were performed to rule out the possibility that the

suppressive effect of EGR1 siRNAs on the virus production

was due to a nonspecific interferon response induced by

EGR1 siRNAs or an off-target effect of the EGR1 siRNAs. The

levels of interferon a in the EGR1 siRNA and negative control

transfectants were measured by interferon a multisubtype

ELISA; the interferon a expression levels were then compared

with the cell controls. The results showed that there was no

induction of interferon a by the EGR1 siRNAs or the negative

control compared with the cell controls (Table S3B). We also

evaluated the potential off-target effects of EGR1 siRNAs using

sequence alignment to calculate whether the viral genomemight

be targeted by these siRNAs. The alignment revealed that

sequences with no three or fewer mismatches could be identi-

fied (Table S3C), suggesting that the reduction of virus produc-

tion caused by the EGR1 siRNAs was not due to a nonspecific

off-target effect. To experimentally demonstrate that the

suppressive effect of EGR1 siRNAs was not due to off-target

effect, we evaluate the inhibitory activity of EGR1 siRNAs on

the production of viral proteins with or without eIF4E siRNAs.

In Figure S4E, siEGR1 (mixture of siEGR1-1, siEGR1-2, and

siEGR1-3) could inhibit the expression of viral proteins. siEV71

2C (against EV71 protease 2C) has been successfully used to

inhibit EV71 replication through protease 2C suppression (Tan

et al., 2007). siEV71 2C acts herein as a control that targets on

the genome of EV71. sieIF4E (mixture of sieIF4E-1, sieIF4E-2,

and sieIF4E-3) could block the suppressive activity of siEGR1

but not siEV71 2C on viral protein expression. These data

provide direct evidence that the suppressive activity of siEGR1

is not due to off-target effect and both EGR1 and eIF4E seem

to belong to a same regulatory pathway. If the effect of siEGR1
Cell
results from off-target effect, the suppressive activity of siEGR1

should be not able to rescue by sieIF4E.

DISCUSSION

In this studywe investigated the role ofmiRNAs in viral replication.

Up to now, only a few reports have shown that cellular or viral

miRNAs are involved in reciprocal interactions between virus

and host cells (Gottwein et al., 2007; Jopling et al., 2005; Pfeffer

et al., 2004; Triboulet et al., 2007; Umbach et al., 2008). Picorna-

virus infection is known to induce a dramatic shutoff of host

protein synthesis that subsequently contributes to the pathogen-

esis of virus infection.However, it does not completely understand

how viruses, particularly the picornaviruses, can specifically block

host protein synthesis, although poliovirus 2A protease-mediated

cleavage of eIF4G, which shuts down host protein synthesis, has

been reported (Belsham and Sonenberg, 2000; Goldstaub et al.,

2000; Schneider and Mohr, 2003). We found that enterovirus

infection may disturb the expression of host miRNAs; specifically,

miR-141 is upregulated and then inhibits host protein synthesis by

posttranscriptional repression of its target gene, eIF4E, which is

a key element involved in the cap-dependent translation. The

availability of eIF4E is regulated at least by eIF4E repressors,

4E-BPs (Gingras et al., 1996; Kuyumcu-Martinez et al., 2004),

and by nuclear assortment. To date, 4E-BPs and digested

eIF4G could induce the relocalization of eIF4E to nucleus (Sukar-

ieh et al., 2009, 2010). Sukarieh and coworkers found that the

nuclear relocalization of eIF4E corresponds with shutoff of host

protein synthesis in response to poliovirus infection (Sukarieh

et al., 2010). However, no study investigates whether picornavirus

infection can directly regulate the expression of eIF4E itself. In this

study, we demonstrated that picornavirus infection could repress

eIF4Eexpressionand that theknockdownofmiR-141byaspecific

inhibitor, antagomiR-141, is able to restore host eIF4E expression,

delay the occurrence of CPE, and reduce viral propagation.

Consistently, silencing of eIF4E was able to completely block

the effect of antagomiR-141 on viral propagation. We have also

demonstrated that the induction of miR-141 is at least partially

due to increased expression of EGR1 upon EV71 infection;

furthermore, the silencing of EGR1 attenuated virus production.

These evidences imply that enterovirus infection promotes the

expression of the host miRNA, miR-141, which, by suppression

of host cap-dependent translation, switches the host machinery

to support viral replication through cap-independent translation.

However, we noted that antagomiR-141 moderately suppressed

the accumulation of VPs and replication of viral genomic RNAs,

but it dramatically reduced the virus production. A possible expla-

nation, we reasoned, is that the formation of infectious viral

particles requires multiple steps, including viral genomic RNA

replication, incorporation, virus assembly, and so on. Therefore,

any disruption between the viral protein synthesis and release of

infectious virus particles may contribute to a significant decrease

of virus yield. It implied that the reduction of virus productionmight

be the sum of multiple effects. Suppression of viral proteins, relief

of host translational shutoff, and reduction of viral genomic RNA

as well as certain unidentified mechanisms might contribute to

the virus titer reduction.

The fact that EV71 supports its own replication through

regulation of cellular miRNAs may post a potential target for
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antiviral intervention. Recent reports have identified several

cellular miRNAs that contribute to viral replication. HIV-1 was

shown to suppress the expression of the host miR-17/92 cluster

that targets the cellular cofactor of HIV-1 tat, and such suppres-

sion is necessary for efficient HIV-1 replication (Triboulet et al.,

2007). Another example is miR-122, which is specifically

expressed in the liver and is able to stabilize HCV genomic

RNA (Jopling et al., 2005). Consequently, the suppression of

miR-122 by a locked nucleic acid-modified oligonucleotide

was found to attenuate HCV infection in the chimpanzee model

(Lanford et al., 2010). A phase I clinical trial has been conducted

to assess the safety and efficacy of such a miRNA-based anti-

viral strategy. This growing number of examples suggests that

miRNAs may serve as targets for antiviral therapy in the future.

MiR-141 suppressed the luciferase activity and the expression

of recombinant eIF4E with the wild-type eIF4E 30UTR but not

with the mutant eIF4E 30UTR. In addition, antagomiR-141

rescued the expression of eIF4E and inhibited viral replication

during EV71 infection. Importantly, the metabolic labeling data

provided two additional pieces of evidence to support our

model. First, at 4 hr after EV71 infection, eIF4G was near

completely degraded, but the protein switch did not begin in

presence of antagomiR-141. The downregulation of eIF4E is

likely associated with the initiation of host protein synthesis

switch. Second, in presence of eIF4E we can determine how

much of the observed repression of host protein synthesis is

due to the contribution of other translational factors including

eIF4G depletion, 4E-BP phosphorylation, and so on. The treat-

ment of EV71-infected cells with eIF4E siRNAs completely

abolished the suppressive effect of antagomiR-141 on viral

replication. These results ruled out the possibility that the

suppression of eIF4E was caused by a mechanism(s) other

than miR-141. Hence, the seed region of the miR-141-binding

sites within eIF4E 30UTR is the critical determinant for the

suppressive effect of virus infection on eIF4E expression. Taken

together, these findings suggest that virus-infection-induced

miR-141 might play a major role in controlling the suppression

of eIF4E and the success of viral replication.

Our results showed that EGR1 is, at least partially, responsible

for the upregulation ofmiR-141. Althoughwe have demonstrated

that miR-141 and miR-200c were located within the same

transcript and induced by EGR1, the increase of miR-200c

(1.54-fold) is much less than that of miR-141 after EV71 infection.

Recently Buck and coworkers demonstrated that CMV infection

specifically suppresses miR-27a expression but not miR-23a

and miR-24 located in the same genomic cluster through

posttranscriptional regulation (Buck et al., 2010). Hence it is

possible that the posttranscriptional processing and/or decay

of miRNAs may also contribute the unequal upregulation

between miR-141 and miR-200c during EV71 infection. EGR1

is a cellular transcription factor involved in several cellular

functions such as cell proliferation, apoptosis, and differentiation

(O’Donovan et al., 1999; Thiel and Cibelli, 2002). It has recently

been reported that EGR1 is induced during various virus infec-

tions, including JC virus, hepatitis B virus, EBV, and herpes

simplex virus type 1 (HSV-1), and that this induction promotes

viral replication (Chang et al., 2006; Chen et al., 2008). However,

we noticed that the suppression of virus-infection-induced

miR-141 by antagomiR-141 led to a decrease in virus production
66 Cell Host & Microbe 9, 58–69, January 20, 2011 ª2011 Elsevier In
of up to 1000-fold but that the neutralization of virus-infection-

induced EGR-1 by siRNAs only caused a 20-fold decrease.

This suggests that, in addition to the EGR1-mediated pathway,

other unidentified mechanisms also contribute to the upregula-

tion of miR-141 on virus infection.

In conclusion, we have identified a virus-host interaction

pathway wherein virus infection results in EGR1-mediated

miR-141 induction and that this leads to the silencing of eIF4E,

a switch from cap-dependent to cap-independent translation

in the host cells, augmentation of CPE, and increased virus

production (Figure 6).

EXPERIMENTAL PROCEDURES

Cell Cultures and Virus Infection

RD and SF-268 were cultured in MEM medium or RPMI-1640. RD cells were

used in propagation and plaque titration of PV3, CVB3, and EV71. The virus

infection was performed in serum-free condition. The cytopathic effect

induced by virus infection was photographed by ZEISS Axiovert 200M (Zeiss)

with 503 magnification. Details are given in the Supplemental Information.

RNA Extraction and miRNA Profiling

RNAs were extracted from virus-infected or mock-infected RD cells by Trizol

reagent (Invitrogen). Theexpression levelsof250humanmiRNAsweremeasured

using the TaqMan MicroRNA Assays (Applied Biosystems) as described previ-

ously (Yu et al., 2008). Details are given in the Supplemental Information.

Oligonucleotide Microarray Analysis

cRNA preparation and array hybridization were performed according to the

AffymetrixGeneChipExpressionAnalysis TechnicalManual by theNTUMicroar-

rayCore Facility ofNationalResearchProgram forGenomicMedicineofNational

Science Council in Taiwan. Details are given in the Supplemental Information.

Individual Real-Time RT-PCR

Quantification of miR-141, Pri-miR-141, and eIF4E was performed using

TaqMan MicroRNA individual assay and TaqMan gene expression assay

(000463, Hs03303157_Pri, and Hs00913390_m1; Applied Biosystems)

according to the manufacturer’s instructions as described previously

(Yu et al., 2008).

Western Blot

Cells were harvested in RIPA lysis buffer. Proteins were resolved by 12.5%

sodium dodecyl sulfate polyacrylmide gel electrophoresis and reacted with

primary antibodies. b-actin acts as an internal control. Details are given in

the Supplemental Information.

Thiouridine Incorporation Assay

The thiouridine incorporation assay was performed as described previously

(Norman and Sarnow, 2010). RD cells were infected with EV71 and the culture

medium contained 4-thiouridine at 100 mM. Total RNAs were collected at indi-

cated time points and further conjugated with EZ-Link Biotin HPDP (Pierce).

The biotinylated RNAs were captured with streptavidin beads (Invitrogen).

The captured RNAs were quantified by real-time RT PCR for miR-141 and

U6 snRNA. Total RNA input was normalized based on the Ct values of the

TaqMan U6 snRNA assay as an endogenous control.

Luciferase Assay

HEK293T cells (13 104 per well/96-well plate) were seeded 24 hr prior to trans-

fection. The luciferase reporter constructs along with the control plasmid

(pRL-TK Vector; Promega) were cotransfected into cells by RNAi fect reagent

(QIAGEN). After 48 hr incubation the Dual-Glo luciferase substrate (Promega)

was added and the luminescent signals were measured by Victor3 multilabel

counter (PerkinElmer) The activity of Renilla luciferase was used as an internal

control to normalize transfection efficiency. Details are given in the Supple-

mental Information.
c.



Figure 6. Model for the Regulatory Role of

miR-141 in Enterovirus Infection

The upregulation of EGR1 induced by virus infec-

tion increasesmiR-141 expression. Consequently,

miR-141 represses the expression of eIF4E via

imperfect base pairing between miR-141 and the

30UTR of eIF4E. The reduction in eIF4E causes

a protein synthesis switch from cap-dependent

to cap-independent translation that might

contribute viral pathogenesis and virus propaga-

tion. EGR1, early growth response 1; XPO5, ex-

portin 5; RISC, RNA-induced silencing complex;

eIF, eukaryotic translation initiation factor;

4E-BP, eIF4E binding protein; PABP, poly(A)-

binding protein; IRES, internal ribosome entry site.
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Plasmid Constructions

The full-length eIF4E 30UTRwas amplified from genomic DNA of RD cells using

forward primer F1 (Table S2) and the reverse primer R1. Two paired primers (F1

plus mutR1 and mutF1 plus R1) were used to generate mutant-type eIF4E

30UTR in which the four mutated nucleotides were underlined within the

seed region of miR-141-binding site by PCR-based mutagenesis method.

Both PCR fragments were cloned into pMIR-reporter luciferase vector

(Ambion). The full-length eIF4E fragments were amplified from cDNA of RD

cells and cloned into pcDNA 3.1 expression vector (Invitrogen) along with V5

tag and eIF4E 30UTR. The miR-141 precursor fragment was amplified by

PCR-based ligation and constructed into psilencer vector (Ambion). Three

upstream fragments of the miR-200c precursor were constructed into pGL

reporter vectors. Regulatory element (RE) primers were used for amplification

of wild-type regions of EGR1, and EGR1 MutF1, EGR1 MutR1, EGR1 MutF2,

and EGR1 MutR2 primers were for mutant EGR1-binding site constructs.

EGR1F and EGR1R primers were used for EGR1 ectopic expression construct.

EGR1 PCR fragments were cloned into pcDNA3.1 (Invitrogen). For PCMV-Luc-

IRES-GFP construct, EMCV-derived type II IRES and EGFP fragments were

amplified from pLKO AS2 and pEGFP C3 (Clontech) plasmids, respectively,

and cloned into pMIR reporter vector (Applied Biosystems). Details are given

in the Supplemental Information.

Stable eIF4E Transfection of RD Cells and AntagomiR and siEGR1

Transfections

To generate the stably eIF4E-expressing cell lines, RD cells were transfected

with 2 mg of plasmid DNA encoding V5-eIF4E fusion protein with wild-type or

mutant 30UTR by Lipofectamine 2000 reagent (Invitrogen) and treated with

G418 (1 mg/mL; Invitrogen). For antagomiR transient transfection trypsinized

RD cells at 33 105/mL were transfected with antagomiRs (Ambion) by siPORT

NeoFX transfection reagent (Ambion) according to the manufacturer’s instruc-

tions. For the EGR1 transient silencing experiments, three siRNAs against
Cell Host & Microbe 9, 58–6
EGR1 (s4537, s4538, and s4539; Applied Biosys-

tems) were transfected into RD cells by Lipofect-

amine 2000 reagent (Invitrogen) and the

transfected RD cells were infected with virus after

24 hr. RNAs and culture supernatants were

collected and assayed for SYBR Green real-time

PCR (Applied Biosystems) and plaque assays,

respectively.

Metabolic Labeling and

Immunoprecipitation

For characterizing the role ofmiR-141 in the shutoff

of host protein synthesis during virus infection, RD

cells were transfected with antagomiRs 24 hr

before metabolic labeling experiments. Cells

were infected with EV71 and then incubated in

methionine-free DMEM (Invitrogen) for 20 min. De

novo-synthesized proteins were labeled by incu-
bation in pulse medium supplemented with 20 Ci/mL [35S] methionine (NEN)

for 15min. Cells were harvested and analyzed by 12%SDS-PAGE. To evaluate

the newly synthesized eIF4E RD cells were MI or infected with EV71 and pulse

labeled with [35S] methionine. Cells were infected with EV71 for the indicated

periods of time and then incubated in methionine-free DMEM (Invitrogen) for

30 min. De novo-synthesized proteins were labeled by incubation in pulse

medium supplemented with 20 Ci/mL [35S] methionine (NEN) for 15 min. Cells

were harvested in protein lysis buffer and total proteins were incubated with

protein A/Gbeads (SantaCruz) for immunocleaning. The supernatantswere re-

acted with anti-eIF4E antibody (Upstate) for 16 hr at 4�C and then incubated

with protein A/G beads for 1 hr at 4�C. The beads were resolved by 12.5%

SDS-PAGE. A tenth of total proteins were analyzed by western blot. Details

are given in the Supplemental Information.

Northern Blot

Of total RNAs, 20 mg was mixed with equal volume of glyoxal dye (Applied bio-

systems) and incubated at 50�C for 30 min. The RNAs were then resolved on

a 0.8% agarose gel and transferred to membrane (Immobilon-NY+, Millipore).

The membrane was reacted with DNA probes labeled with P32-dCTP. Details

are given in the Supplemental Information.

Plaque Assay

EV71 plaque assays were carried out in triplicate in 6-well plates. RD cells were

infected with 100 ml per well of diluted viral stocks. After 1 hr incubation the

infected cells were washed and incubated for 3 days in 0.3% agar medium

overlay. Cells were fixed with formaldehyde and stained with crystal violet.

The plaques were counted.

Chromatin Immunoprecipitation Assay

In vivo binding of EGR1 to the regulatory element of miR-141 was investigated

using the ChIP assay according to the protocol of Upstate Biotechnology.

Details are given in the Supplemental Information.
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Statistical Analysis

Student’s t test was used to compare the miRNA expression at different time

points during EV71 infection. The p value < 0.05 for significance and two-tailed

tests were used in this study. The significant miRNAs with greater than 2-fold

change of expressions at both 4 and 8 h.p.i. compared with mock were

selected for further study.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, three tables, and Supple-

mental Experimental Procedures and can be found with this article at doi:10.

1016/j.chom.2010.12.001.
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