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In the present paper we establish some new criteria for the oscillatory and
asymptotic behavior of certain class of functional differential equations of the form

x1) + p(x" 0 — by = H(1, x(g(1).
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1. INTRODUCTION

We consider the functional differential equation
x() + p)x" Nt — h) = H(t, x(g(1))), n=2, (E)

where p: [ty, ©) = [0, ©), 1, = 0, g: [ty, ®) — R = (—=, =), and
H: [t;, ©») X R — R are continuous, & is a positive real number, and
gty — o ast— .

We assume that there exist a continuous function g: [t;, ) — [0, ®),
and not identically zero for all large ¢, and a positive constant ¢ such that

H(t, x) sgn x = q(t) |x|° forx#0,t=1{,. (1)
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OSCILLATION OF DIFFERENTIAL EQUATIONS 305

In what follows, we consider only solutions of Eqs. (E) which are
defined for all large 1. The oscillatory character is considered in the usual
sense; i.e., a solution of Eq. (E) is called oscillatory if it has no last zero.
Otherwise, it is called nonoscillatory. Equation (E) is said to be oscillatory
if all its solutions are oscillatory.

The oscillatory behavior of functional differential equations with deviat-
ing arguments has been intensively studied in the last two decades. Most
of the literature on the subject has been focused on equations of the form
of (E) with p(t) = 0. For typical results regarding Eq. (E) with p(¢) = 0,
we refer to [4, 8, 10, 12] and the references cited therein. Although much
less is known regarding the oscillatory behavior of solutions of equations
with the middle term of order n — 1 of the form

x"(1) + p(6)x" V() + H(t, x(g(1)) = 0, n is even, (E)

and p(z) satisfies the condition:

r exp (J’S —p(u) du) ds =

fo

a number of authors have considered this problem. As a recent contribu-
tion in this direction we refer the reader to [5-7] and the references

cited therein.
Very recently, the present author [1], considered Eq.

x(t) = p(x" V(¢ + h) + g(O)f(x(g(t)), nisodd, (Ey

where p, q, g: [t;, *) — R and f: R — R are continuous, p(f) = 0,
g(t) = 0 are not identically zero for all large ¢, xf(x) > 0 for x # 0 and
g(t) — o as t— o, and we established some new sufficient conditions in-
volving the middle term which ensure that every solution of Eq. (E;)
1s oscillatory.

It seems that nothing is known regarding the oscillatory and
asymptotic behavior of Eq. (E). Therefore, the purpose of this paper is
to study the effect of the middle term on the solutions of Eq. (E) and
establish some new sufficient conditions involving the middle term which
ensure that every solution x(¢r) of Eq. (E) is oscillatory if n is even
and either x(¢) is oscillatory or else x'’(t) — 0 monotonically as t — o,
i=0,1,..,n—2, if nis odd. The obtained criteria are independent of
our earlier results in [1-3]. Examples are inserted in the text to illustrate
the relevance of the theorems.
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2. MAIN RESULTS

We introduce the following notation: For T = ¢, we let

Als, t] = exp (fp(u) du) fors=r=T,
!

B[v,u]=qu[s,t]ds forv>u>t=T,

A, ={tE€[ty,®): g(t) > 1},

and, as is done by Kitamura [8], we define the function r(t) by

r(t) = min{max{s, g(s)}: s = 1}.
Note that the following inequality holds:

g(s) =r() for t < s < r(1).
THEOREM 1. Suppose that for some m,0 <= m < 1,
f s™q(s) ds = oo,

p'(t) =0, @p()" =0 fort = t,,

t
liminf| p(s)ds>1/e,

[—x t—h

and either
: 1 o (glw) = r(r))"-2>
lim sup oo j’ BIr(1), ulq(u) <_----—-(n ) du>1,

or

. l r(1) (g(u) _ r(t))n_2>c
hr?_’iupmfr B[r(t), ulg(u) (~—(—'T:~—2-)—'-~— du >0,

*

2
()
)

ife=1,
(%)

ifc>1.
(6)

Then for n even, every solution of Eq. (E) is oscillatory, while for n
odd, every solution x of Eq. (E) is either oscillatory or else x(t) — 0

monotonically ast — <, i =0, 1, ..., n — 2.
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Proof. Without loss of generality we assume that x(¢) is an eventually
positive solution of Eq. (E), say x(¢t) > 0 for 1 = t; = 0. First, we claim
that x*~(¢) is eventually of one sign. To prove it, suppose that there
exists a f, = 1y + h such that x*"~"(¢z, — h) = 0. Then from Eq. (E), we get

xt) = H(ty, x(g(ty)) > 0.

Thus, x"~(¢) is increasing at any t,, (¢, = t, + h) for which it is zero.
Therefore, x*~1)(¢) cannot have any zeros on (f,, ®).
There are two possibilities:
(@ x""1) <0;
(b) x” (1) > 0 eventually.

(a) Assume x""D(r) < 0 eventually. Thus
x™(t)y + p(O)x" "t — h) = H(t, x(g(1))) = 0,
eventually. Set w(t) = x" "(#). Then
w'(t) + p(w(t — h) =0 eventually. )

But, by Theorem 2 in [9], condition (4) implies that inequality (7) has no
eventually negative solution. This is a contradiction.
(b) Assume x"~ (1) > 0 eventually. Now, we distinguish the following

three cases:

(i) Suppose x"~I(¢) > 0, x*"2(¢) < 0, and x'(f) > 0 eventually.
Clearly, x*~3(¢) cannot be negative eventually, because together with the
fact that x"~9(¢) < 0 eventually, we get a contradiction to the positiveness
of x(). Hence x"~3(t) > 0 eventually. Now, since x'(t) > 0 for ¢t = ¢,,
there exist a positive constant k and a ¢, = max {1, ¢, + A} such that

x(g) =k fort=t,. ®

We multiply Eq. (E) by 1, 0 = m =< 1, and integrate (by parts) from ¢,
to t = t, to obtain

!
fmxn=(gy _j ms™=1x®=V(s) ds + "p(1)x"D(t — h)
2

- f'(s'"p(s))’x"'“z’(s —h)yds=C+ fls”’H(s, x(g(s))) ds,
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where C is a constant. Use (1) and (8) in the above equation and integrate
the fourth term by parts; we get

!
e = m [ sm (s ds = (p(O) X )
5

+ ft (s"p(s))'x" s — h)ds = C* + k"f s™q(s) ds,
-2

L

where C* is a constant. Thus,

!
tmx () — mf s sy ds = C* + k¢ fl: s™q(s) ds.
L
Therefore, we conclude that

lim |:t"'x‘”_”(t) -m f[s’"“x‘"*”(s) ds] = 4=, 9)

1—

Let us define

t
y(f) =J- smflx{nfl)(s) dS;

5]
then
y'(e) = 1m0,

Hence, (9) becomes

lim [ty’(t) - my(t)] = +o0,

1>

By Lemma 1 of Staikos and Sficas [13], we know that

limy(t) = .

{—x

Therefore, since x"~(¢t) is positive, we have that

t
limf s™ I D(s) ds = 4o,
X Vg
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Since0 = m < land ¢t = I, we have that "~ ! < [ and so

t 4
+o0 = limf s x5y ds = limf x"D(s) ds,
12 1—x 7y,

—x

which gives a contradiction to the fact that x"~?2(t) < 0 eventually.

(i) Suppose x'(t) >0,i= 0,1, ..., n — 1, eventually. Integrating
Eq. (E) from t to s, s = t = T (say), we obtain

XD (s) = x"70(@) + p(s)x" s — h) — p(O)x" 72t — h)

- fsp’(u)x("_Z)(u —hdu= f q(u)x(g (1)) du
] H

or

xU(s) + p(s)x"=(s — h) = f q(u)x“(g(u)) du.
In view of the increasing nature of the function x"~?, we see that

X 0(s) + p(s)xV(s) = f q(u)x(g(uw)) du
t
or
d (n-2) ’ ‘
2 (Als, 1k 2(s)) = [ Als, 11q)x“(g(w) du. (10)
M !

Integrating (10) from t to r(¢) >t = T, where r(2) is defined by (*), we have

ALF(0). 11D (1)) — x5-2(1) = f " f " Als, 11qQu)x“(g(w)) du ds

= J'rm < r(l)A[s, t] ds) g(u)x(g(u)) du

r(t)
= f Blr(t), ulg(u)x(g(w)) du,

or

r(e)
Alr(), t]x"D(r(1)) = f Blr(1), ulg(u)x(g(u)) du. (1D
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On the other hand, by Taylor’s formula with integral remainder, for v =
w=T

n-3 i
o w=w)y (v— -
x(v) = J;) T xYiw) + j‘ 3)‘ x( Mz) dz

or

(U — w)n'Z

o X, (12)

x(v) =

From (12) with v and w be replaced by g(u«) and r(z), respectively, and in
view of g(u) = r(t) for T < t < u < r(r), we see that

(g(u) — r())"2

X)), (13)

x(g(u)) =
Using (13) in (11), we have

n—=2\c¢
AlF(), XD () = j BIr(r), ulq(u) (&‘ZL‘?_%P_..)

X (X" D(r(1)))° du
or

o () — r)" %Y

P ((3)) Blr(n), u]q(u)( =) )( du. (14)

Alr (t) 11/

Now, if ¢ = 1, then

1 rit)
= Ao, B[’(”’“]"‘“)( —y (15)

Taking the lim sup. of both sides of (15) as t— =, we obtain a contradiction
to (5).
Next, if ¢ > I, then by taking the lim sup of both sides of (14), we have

(gu) — r(z))"—2> du.

0 = lim sup (x“"2(r(1)))! ¢

SOELTE A

r(t)
= llm sup f B[r([)s u]‘l(“) ( (n _ 2)!

1
% A["(t)v 11/

a contradiction to (6).
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(iti) Suppose (—1)x() > 0,i =0, 1, ..., n — 2, eventually. This
is the case when n is odd. Clearly x'(t) < 0 for t = r* = 1,. We claim that
x(t) — 0 monotonically as t — . Suppose to the contrary that x(tr}) — b
> 0 as t — =, Then there exists a 7* = ¢* such that

x(gt) = b fort=T* (16)

Integrating Eq. (E) from T* to ¢, using (16), and proceeding exactly as in
case (i), we obtain the desired contradiction. This completes the proof.

We are next concerned with the case when ¢ > 1.

THEOREM 2. Let conditions (1)-(4) hold with ¢ > 1. If for every T = ¢,

J, Ale@, D' (2 — 0" lq) du = =, a7)

then the conclusion of Theorem 1 holds.

Proof. Let x(t) be a nonoscillatory solution of Eq. (E), say x(z) > 0
for t = ty = 0. As in the proof of Theorem 1, we see that x""~'(¢) is
eventually of fixed sign and by (4), the case when x" (1) < 0 eventually
is impossible. Furthermore, if x*~'(¢) is eventually positive, the proof of
the case (i) and (iif) follows exactly as the proof of these cases in Theorem
1 and, hence, is omitted. Thus, we only need to consider case (iii).

(ii) Suppose xN¢) >0,i=0,1, ..., n — 1, eventually. Integrating
eq. (E) from T = ryto s > T, we can easily get (10) with ¢ being replaced
by 7, that is,

2L AL, 126 = [ gl (o) du.

Dividing this inequality by (A[S, T]1x""~?(s))¢ and integrating it from T to
T* = 7, we obtain

T* (A[S, T]x(n—Z)(s)): S e (x(g(u)))
r @, T2 & f j (Als, TV™q0) | Tomaig) ) du ds

-7 [ cats, Ty <at )("fng;’;”)) ds du

= J'g (Als, TP gfuw) (x((ngz()u))> ds du.
AN T Y (s)
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From (13) with r(#) replaced by s, gu) = 5 = T,t = T, we have

AT T T
| Y- dy

Palt)]

() _on=2\¢
= L nIT.) (Lg (Als. TV (%) ds) q(u) du

Now,
&0 1-¢ ((g(u) - s)‘"‘z)“)
[ ais - (e =) @
= e [ g Z 9
= (Alg(),T] J'u PR
=C*(Alg(w), T “(glw) — u)n-Dett
where
c*= L
(n-2)n—2c+ 1)
Thus,

A[T*.T].t‘"—’.(r*) ~
o> | yedy=c*[  (Algw), '™

D AN

X (gu) — w)" 2"'qu) du.

This contradicts (17) and, hence, the proof is complete.

Remark 1. If g is nondecreasing and g(t) = ¢, then r(f) = g(t) and
conditions (5) and (6) are equivalent to

1)
lim sup 5757 (t) t]jg Blg(t), ulq B g())) du>1,

(n
ifc=1 ()
and
g1 n-2
lim PO (t) r]J Bl g(t), ulg(u) ((-5%—_&@*) du >0,
ife>1, (6)

respectively.
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The following examples are illustrative.

ExaMpLE 1. The functional differential equation
x(8) + e"xV( — h) = e 'x(20), >0, he" > 1, (L

has a nonoscillatory solution x(f) = e’ — x as t — . Only conditions
involved with the function g(f) are not satisfied; i.e., conditions (2) and
(5) are violated.

ExaMpPLE 2. The functional differential equations

x9(r) + x® (: - 3—?) = 2x(t + 2) (L,
xO(r) + x® (t - 3?—) =2 (t + §2E) (Ly)

have an oscillatory solution x(¢) = sin ¢, and the equation

x3(t) + xD( = k) = (e" — 1)) |x(20)| sgn x(20),t =0,c= 1, he > 1,
(Ly)

has a nonoscillatory solution, x(¢) = e™".
It is easy to check that the hypotheses of Theorem 1 are satisfied for
Eqgs. (Ly-(Ly).

ExaMPLE 3. Consider the functional differential equation

M) + x"0( — h) = |x(20)| In(e + x*(21)) sgn x(2¢),
t=z0,c=l,eh>1,n=2.

(Ls)
Here we take

plt) =1, q(t) = 1, gt) =2t =r(1).
It follows that

Als, t} =7, s>r=0,

B[2t,u]l = ' — "™, 2t>u>1=0,

and

(L_Z—)Ce"fm (¢! — " Nu — )" Vdu— = ast—x, ¢ =1,
(n —2)! 1
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Thus, all the conditions of Theorem 1 are satisfied and, hence, for n
even every solution of Eq. (L), is oscillatory, while for n odd, every
solution x(¢) of Eq. (L;) is oscillatory or else x“(#) — 0 monotonically as
t—> o, i=0,1,..,n—2.

'We note that none of the known oscillation criteria cover these ex-
amples.

3. SOME IMPORTANT REMARKS

Remark 2. We observe that when n is odd and m = 0, condition
(4) of Theorems 1 and 2 can be disregarded. To show this, we consider
only case (a) when x"~ () < 0 eventually. Since n is odd, we must have
x"D(t) > 0 and x'(¢r) > 0 eventually. Thus, there exist a t, = , and a
positive constant k such that

x(g®) =k fort=t,.

Integrating Eq. (E) from ¢, to ¢, we have
1] t
X0y = 2V (e) + [ pl)x V(s — hy ds = [ He, x(g(s) ds
1 n
or
14
x() = x" () + k‘f q(s)ds— >  ast—x,
n

a contradiction.

Based on this remark, we see that the condition ke > 1 in Eq. (L,) can
be disregarded.

Remark 3. If an additional term is added to Eq. (E), i.e., Eq. (E) takes
the form

x(t) + p()x" (= h) = QOfx(G()) + H(t, x(g(1))),  nis even,
(E5)

where Q, G: [t,, *) — R and f: R — R are continuous, Q(t) > 0 for ¢t =
ty, G(t) < t, and G(r) — = as t — o, then we can replace condition (4)
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by ‘“Every bounded solution of the delay equation
Y1) = QO fx(G(1))),  nis even, (Ey)

is oscillatory, provided the constant m in conditions (2) and (3) is zero.”

We observe that x"~(z) < 0 implies that x**~? > 0 and either x'(¢) >
0 or x’(¢t) < 0 eventually. The proof of the first case can be done as in
Remark 1. Thus, we consider the case when x"~(¢) < 0, x""2(z) > 0,
and x'(¢) < 0 eventually. In this case, we see that x(¢) satisfies

(- DixD) > 0, i=0,1,...,n,t =1t (say),
x™() = Q) fx(G())), 1=, (18)

Integrating (18) from 7 to u, repeatedly n — times and letting u — », we find

n-1
x( = [ e o) x G ds. (19

But, by a result of Philos [11], if inequality (19) has an eventually positive
solution x(¢), then the corresponding equation,

n—1
y0 = [ QG ds,

has also an eventually positive solution y(z). It follows then that Eq. (E,)
has an eventually positive solution, a contradiction.

For illustration, we consider the following functional differential
equation

x99ty + kx® (t - %H) = kx(z — 2II) + x(¢ + 2I0), t=0, (L)

where k is a positive constant. It is easy to check that all the bounded
solutions of the delay equation,

ye) = kx(z — 21D,

are oscillatory if k > 3/2IT* (see [8]).

Now if & € (3/2I1%, ), then by the result in Remark 3, every solution
of Eq. (L) is oscillatory. Equation (L) has an oscillatory solution x(f) =
sin f.

We note that condition (4) fails if we take k € (3/211%, 2/3¢I1].
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Remark 4. If h = 0, then Eq. (E) takes the form
x() + p()x"N() = H(t, x(g(1)),
or
(P()x"~ M) = P(OHH(, x(g(1)), (Es)

where P(t) = exp(f p(s) ds), t = t, = 0. In this case, the oscillatory
behavior of Eq. (ES) can be investigated by Kitamura’s results [8], pro-
vided that

x

'I;‘(';—)ds—

As an application of Theorem 1, we consider the functional differen-
tial equation

x(8) + px Y — h) = gx(t + k), n=2, (L)

where h, k, p, and g are positive real numbers, which is a special case of
Eq. (E).

COROLLARY 1. Let n be even. If

phe > 1, 20)

n—1 i
;)(—1)”'(—”;’!‘w)>p", @

then Eq. (L) is oscillatory.

COROLLARY 2. Let n be odd and let condition (21) hold. Then every
solution x(1) of Eq. (L) is either oscillatory or else x')(t) — 0 monotonically
ast— >, i=0,1,...,n— 2.

Proof. Here, we apply Theorem 1 when ¢ = 1. It is easy to check that
Als, ] = ePb™1, s>t=ty,
Alt + k, t] = eP*,
B[t + k, u]) = (1/p)ePk — ePw=9), t+k=u,

and obviously, conditions (4) and (5) are reduced to conditions (20) and
(21), respectively.
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Remark 5. The characteristic equation associated to Eq. (L) is

w4+ whle T = gekw, (22)
From Corollaries 1 and 2, one may conclude that Eq. (22) has no real
roots if n is even and both conditions (20) and (21) are satisfied , while
Eq. (22) has no real roots or else has negative real roots if n is odd and
condition (21) holds.

Remark 6. 1. The results of this paper are presented in a form which
is essentially new. From Theorems 1 and 2, there exists a class of equations
of type (E) with n even, for which the oscillation situation is completely
characterized. The reason for that is due to the presence of the middle
term with the retarded argument in Eq. (E).

2. The results of this paper are applicable to equations of type (E)
which are linear or superlinear and when the argument g(¢) is either
advanced or a mixed type.

3. The results of this paper are extendable to more general equations
of the form

x(0) + p()x"V(h(D) = 21 H(t, x(g,(1))),

where g;, h, p: [ty, *) = Rand H;: [t;, *) X R—R,i= 1,2, ..., m, are
continuous, A(f) < t, h(t) — o ast— < and g(1) — xast— =, i= 1,2,
..., m. The details are left to the reader.

4. It would be interesting to obtain results similar to those presented
here for the sublinear case (i.e., the constant ¢ in condition (1) is less than
1) and to present a complete criteria for the oscillation of Eq. (E) when
n is odd. Also, to establish results for the oscillation of Eq. (L) via the
kinds of roots of its associated characteristic equation (22).

REFERENCES

1. S. R. Grack, Oscillatory and asymptotic behavior of certain functional differential
equations, J. Math. Anal. Appl. 162 (1991), 177-188.

2. S. R. GRACE, Oscillation theorems for damped functional differential equations, Funk-
cial. Ekvac. 35 (1992), 261-278.

3. S. R. Grack, Oscillatory and asymptotic behavior of damped functional differential
equations, Math. Nachr. 142 (1989), 297-305.

4. S. R. GRrACE, Oscillation criteria for forced functional differential equations with deviat-
ing arguments, J. Math. Anal. Appl. 145 (1990), 63-88.

5. S. R. GRaCE AND B. S. LaLLI, Oscillation theorems for nth order delay differential
equations, J. Math. Anal. Appl. 91 (1983), 352-366.



318

6.

S. R. GRACE

A. G. KArTsaTos, Recent results on oscillation of solutions of forced and perturbed
nonlinear differential equations of even order, in *‘Stability of Dynamical Systems:
Theory and Applications,”” pp. 17-72, Lecture Notes in Pure and Applied Math., No.
28, Dekker, New York, 1977.

. A. G. KartsaTos AND J. Toro, Comparison and oscillation theorems for equations

with middle term of order n — 1, J. Math. Anal. Appl. 66 (1978), 297-312.

. Y. KitaMuRra, Oscillation of functional differential equations with general deviating

arguments, Hiroshima Math. J. 15 (1985), 445-491.

. G. LADAs aND 1. P. STAVROULAKIS, On delay differential inequalities of first order,

Funkcial. Ekvac. 25 (1982), 105-113.

. CH. G. PHiLOs, Oscillatory and asymptotic behavior of all solutions of differential

equations with deviating arguments, Proc. Roy. Soc. Edinburgh Sect. A 81(1978), 31-48.

. Cu. G. PHILOS, On the existence of nonoscillatory solutions tening to zero at = for

differential equations with positive delays, Arch. Math. 36 (1980), 168-178.

. V. A. Staikos, Basic results on oscillation for differential equations with deviating

arguments, Hiroshima Math. J. 10 (1980), 495-516.

. V. A. Staikos AND Y. G. Sricas, Forced oscillations for differential equations of

arbitrary order, J. Differential Equations 17 (1975), 1-11.



