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In this paper we propose a new method to solve integral inequalities of
Henry—Gronwall type and their Bihari nonlinear version. Nonlinear integral in-
equalities with weakly singular kernels and with multiple integrals as well as a
modification of the Ou-lang—Pachpatte inequality are also treated.  © 1997 Aca-
demic Press

1. INTRODUCTION

In the contemporary geometric theory of semilinear parabolic differen-
tial equations, PDEs are studied as evolution equations in appropriate
infinite dimensional Banach spaces. Linear operators defining linear parts
of such equations are unbounded linear operators and it is impossible to
apply all standard methods generally used in the theory of ODEs with
finite dimensional state spaces. Special semilinear PDEs lead to so-called
sectorial evolution equations whose linearizations are defined by sectorial
operators (see D. Henry [4] and J. K. Hale [3]). These equations can be
written as Volterra integral equations with weakly singular kernels. There-
fore there are problems with many modifications of estimates standardly
used in the theory of ODEs on finite dimensional spaces. One of the basic
tools of finite dimensional theory is the well-known Gronwall linear
inequality and also the well-known Bihari nonlinear inequality (see [1, 2,
6—-10]). The infinite dimensional theory requires us to solve integral
inequalities with singular kernels. D. Henry proposed in his book [4] a
method to find solutions of such inequalities and proved some results
concerning linear integral inequalities of this type. A modification of
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Henry’s theorem concerning more general linear integral inequalities has
been recently proved by H. Sano and N. Kunimatsu [12]. All these results
are proved by an iteration argument and the resulting estimation formulas
are expressed as integrals with singular kernels from functions defined by
power series of very complicated form which are sometimes not very
convenient for applications.

In this paper we present a new method to solve nonlinear integral
inequalities of the Henry type and also their Bihari nonlinear version. Our
estimates are quite simple and the resulting formulas are similar to these
for the classical Gronwall-Bihari inequalities. We also present results on
integral inequalities containing multiple integrals which are some modifi-
cations of the author’s results published recently in [9] (see also [8]). Some
modification of a recent result by B. G. Pachpatte [10] concerning the
classical type of integral inequalities is also proved there.

2. HENRY-GRONWALL-BIHARI TYPE INEQUALITIES

A new approach to an analysis of nonlinear integral inequalities with
weakly singular kernels is used in the proof of our first theorem concern-
ing a nonlinear integral inequality. A linear integral inequality investigated
by D. Henry in his book [4] (see also [12]) is a special case of this nonlinear
one.

First let us define a special class of nonlinear functions.

DerFINITION 1. Let g > 0 be areal number and 0 < T < . We say that
a function w: R*— R (R™ = (0, »)) satisfies a condition (q), if

e " w(u)] <R(t)w(e "u?)  forallu e R, t{0,T), (q)

where R(r) is a continuous, nonnegative function.

Remark. 1f w(u) =u™, m > 0 then
e " w(u)]” = e Diw(e"u) (1)

for any g > 1, i.e., the condition (q) is satisfied with R(¢) = et~ D',

Let w(u) =u + au™, where 0 <a <1, m = 1. We shall show that o
satisfies the condition (q).
We need now and also in the sequel the well-known inequality

(A + A, + - +A4,) =0 YA, + Ay + - +47) (2)
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for any nonnegative real numbers A4, A,,..., A,, where r > 1 is a real
number and #n is a natural number. This inequality is a consequence of
Jensen’s inequality (see, e.g., [5, 11]. Using (2) with r = ¢ and n = 2 we
have

e "o(u)]’ =e 9 (u+au™)? <297 % (u? + a®ui™),  (3)

207 Yetmiy (e~ 9'y?) = 297 e 71Ut + ae” ™ u1™ |

=217t "™yt + aui™] = 297 e 1" [u? + alui™]

and thus the inequality (3) yields the condition (q) with R(t) = 29~ 1e4™,

THEOREM 1. Let a(t) be a nondecreasing, nonnegative C*-function on
{0, T), F(¢) be a continuous, nonnegative function on {0,T), w: R — R be
a continuous, nondecreasing function, v(0) =0, w(u) >0 on (0,T), and
u(t) be a continuous, nonnegative function on {0, T) with

u(t) <a(t) + fot(t — s)ﬁle(s) w(u(s)) ds, te<0,7), (4

where B > 0. Then the following assertions hold.:

(i) Suppose B> 1/2 and o satisfies the condition (q) with q = 2.
Then

1/2

u(r) se{Q[oRa)?) +a(n]} . re©. 1), (5)
where

r28-1) . i
8:(1) = %AR(S)F(S) ds,

where T is the gamma function, Q(v) = [, (dy/w(y)), vy > 0, Q1 s the
inverse of O, and T, € R" is such that Q(2a(1)?) + g,(t) € Dom(Q 1) for
allt €0, T,).

(i) Let B<(0,1/2) and o satisfies the condition (q) with g = z + 2,
where z = (1 — B)/B (i.e., B=1/(z + 1)). Then

u(t) = e {002 () +6,(0]) 7 re 0T, (8
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where

g,(t) = 297K¢ fO’F(s)qR(s) ds,

: (7)

z

(1 —ap)]”” z z+2
K=|l—1ta | + «
p

T, € R" is such that Q29 *a(t)?) + g,(t) € Dom(Q 1) forallt € {0, T,).

Proof.  First we shall prove the assertion (i). Using the Cauchy—Schwarz
inequality we obtain from (4)

u(t) <a(t) + /:(t - s)B_le“F(s)e_“w(u(s)) ds

2

<a(t) + [fot(t — 5)?F 22 dsr/z[/:F(s)zest(u(s))z as|
(8)

For the first integral in (8) we have the estimate

t _ t
/(f — S)zﬁ 2025 ds = / T2B=2020=7) 7
0 0

t 2e” t
= eth 7282727 dr = —5 f 0% 2" %do
0 47 Jy
2t

< F F(ZB - l).
Therefore we obtain from (8)

eZl

1/2 1
~7 @B - 1)] [[;F(s)ze_zsw(u(s))z ds

u(t) a(t) + N

Using the inequality (2) with n = 2, r = 2 we obtain

e?T(2B—-1) . , ,
u(t)® < 2a(r)” + % [OF(s) e~ 20(u(s)?) ds
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and applying the condition (q) with ¢ = 2 we have

(1) < a(t) + K[O’F(S)ZR(s)w(u(s)) ds, (9)
where

) , reg-1
v(t) = (e u(r)),  a(t) =2a(r)", K= %. (10)

Now we shall proceed in a standard way. Let V(¢) be the right-hand side
of (9). Then w(v([w(V ()] ! < 1 and this yields

[a'(t) + KF(1)*R(1) o(v(0))] [0(V(£))] *
< a'(H)w(a(t))] " +KF(1)*R(1),

V'(t) - a'(t)
w(V(1)) = w(a(r))

+ KF(1)°R(t)
or

d d 2
= V(1) = = Q(a(1)) + KF(1)"R(1).

Integrating this inequality from 0 to ¢ we obtain

V(1) = 0a() +8(0).
where
&i(1) =K ['F(s)°R(s) ds
and thus
0(1) £ V(1) £ 07 [0(a(0) +8(N)].
Using (10) we obtain (5).

Now let us prove the assertion (ii). Obviously, B — 1= —a = —z/
(z + 1). Let p, g be as in the theorem. Then 1/p + 1/g = 1 and using the
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Holder inequality we obtain

u(t) < a(t) + fo’(t — )P F(s) w(u(s)) ds

=a(r) + ft(t —s) "e'F(s)e w(u(s))ds
0
[ B 1/p ’ 1/q
<a(t) + [f (t—s) “Pers ds} [[ F(s) e “o(u(s))’ ds}
0 0
(11)
For the first integral in (11) we have the estimate

t — t e ! !
a _ _ pr —
/(t—S) pe’”ds ——e”’/ T “Pe pTdT_——l p / g “Pe do
0 0 p 0

eb!

< JEErT 'l - ap).

Obviously, 1 — ap = 1/(z + 1)> > 0and so I'(1 — ap) € R. Thus (8) and
the condition (q) yield

1/q

u(t)ga(t)+ef1<z[[o’F(s)"R(s)w(ewu(s)")ds . (12)

where K, is defined by (7). Now using the inequality (2) with n = 2, r = ¢
we obtain

u(t)" < 27 %a(r)" + 217 1eK? ['F(s)'R(s) w(e Pu(s)) ds (13)
0
and this yields
v(t) < ¢(t) + 297 1KY /O’F(s)"R(s)w(u(s)) ds, (14)

where

() = (e"u(r))',  o(r) =29 ta(r)". (15)

Now we shall proceed in the standard way. Let V(¢) be the right-hand
side of (14). Then o(V()) w(V(¢)]* < 1 and this yields

[¢'() + 297 KIF (1) R(t) w(v(1)) | [w(V(1))]
< ¢'()[w(d(1))] " + 297 KIF (1) "R(1),
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V(1) ¢'(1)

o((1)) = a(a(y) T2 KR,

or

lIA

d d
V() = 7 Q($(0) + 27 KIF()'R(). (16)

Integrating (16) from 0 to ¢ we obtain

QV(1) = Q$(1)) +8,(2),

where
g:(1) = 297 K? ['F(s)"R(s) ds
0

and this yields
v(t) = V(1) = Q7 [Q((1)) +85(1)].
Using (15) we obtain (6). [

As a consequence of Theorem 1 we have

THEOREM 2. Let 0 < T < o, a(t), F(t) be as in Theorem 1, and u(t) be
a continuous, nonnegative function on <0, T) with

u(t) <a(t) + [O’(t — $)P T R(s)u(s) ds, (17)

where B > 0. Then the following assertions hold.:
() If B> 1/2 then

2I'(28 — 1)

7 . 1€40,T). (18)

u(t) < \/Ea(t)exp[ fOtF(s)2 ds + 1t

(i) If B=1/(z+ 1) for some z = 1, then

g—1

K¢ ['F(s)"ds+1t|,  1€(0,T),
0

(19)

u(t) < <2q-1>”"a(r>exp[

where K, is defined by (7), ¢ = z + 2.
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The method used in the proof of Theorem 1 enables us to prove the
following theorem concerning the inequality (17), where a(z), F(¢), and
u(t) are integrable on €0, T).

THEOREM 3. Suppose a(t), b(¢) are nonnegative, integrable functions on
0, T) (0 < T < ) and F(t), u(t) are integrable, nonnegative functions on
0, T) with

u(t) < a(r) +b(t)f’(t — )P F(s)u(s) ds,  a.e.on0,T). (20)
0
Then the following assertions hold:
() If B> 1/2 then
u(t) < e'd(1)"? a.e.on0,T), (21)

where

(1) = 2a(1)’ + 2Kb(1)* ["a(s)*F(s)’ exp[K/’b(r)ZF(r)2 dr] ds

0 s

T2 - 1)
- =

(i) If B=1/(z+ 1) for somez = 1 then
u(t) <ew(n)¥?,  a.e.on{0,T), (22)
where
W(t) =27 a(t)’
+ Zq‘lKjb(t)tha(s)qF(s)q exp[zq-lKg fstb(r)qF(r)q dr] ds

q =z + 2, and K, is defined by (7).

Proof. First we shall prove the assertion (i). Using the same procedure
as in the proof of the assertion (i) of Theorem 1 one can show that

(1) 2 2000 + - b0 [ F(s) () .

where v(t) = (e 'u(t))?. From [6, Theorem 1.4] we obtain the inequality
(21). Using the procedure from the proof of the assertion (ii) of Theorem 1
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one can show that
v(t) <297 %a(t)? + 297 KIB(t)" ftF(s)qv(s) ds,
0

where v(r) = (e "u(#))? and the inequality (22) is a direct consequence of
[6, Theorem 1.4]. 1

Now we shall prove a result which is a modification of [4, Lemma 7.1.2].

THEOREM 4. Suppose a(t) is a nonnegative, nondecreasing C*-function
on {0,T) (0 < T < ) and F(t) is a continuous, nonnegative function on
{0, T). Let u(t) be a nonnegative, continuous function <0, T) with

u(;)ga(;)+fot(t—s)3‘lsv*1F(s)u(s) ds, t€0,T), (23)

where B > 0, y > 0. Then the following assertions hold.:

() If B>1/2 and y>1—1/2p, where p > 1 is a real number,
then

q
u(t) < 21_1/2”a(t)exp[2— K9L1 /IF(s)zqe‘“ ds+t|, t<(0,7T),
q 0
(24)
where
reg-1 r(2y=2p+1) 1" 1 1
K:%, L:[ (( v(zy_)z)p; R
4 p P q

(i) Let B=1/(m + 1) for some real numberm > 1,y > 1 — 1/kq,
where k > 1 is a real number, p = (m + 2)/(m + 1), g = m + 2. Then

u(r) < 2("’1’/q’a(t)exp[£ /te”F(s)"' ds + t}, t€40,7), (25)
kr Jo

where r > 1 is such that 1/x + 1/r = 1,

I'(1 - ap) ’/“

P = plfap

”’/”[F(qu - 1) +1)

kraty=H-1

and —a=B—-1= -m/(m + 1).
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Proof. Let us prove the assertion (i). From the inequality (23) we have

1/2

1/2
u(t) <a(t) + [[’(r ) ds] [[‘SszF(s)zehu(s)z ds]
0 0
, 1/2
<a(t) + e‘Kl/z[f s2772F () (e *u(s))’ ds} :
0
where K =T(Q2B — 1)/4#~1. This yields
u(t)’ < 2a(1)’ + 2e2’K‘/‘ts27_ZF(s)z(e_‘Yu(s))2 ds
0
and so

uo)§c0)+2KL%M*F@fu@)@, (26)
where
(1) = 2a(t)®,  o(r) = (e"'u(r))’. (27)

From (26) we have

v(t) <c(t) + 2Kj:szy_ze_jF(s)zeSU(s) ds

1/q

1/p
<e(t) + zK[/'smwem ds} [ffp(s)%q(u(s))qu ,
0 0
(28)
where ¢ > 1, 1/p + 1/q = 1. For the first integral in (28) we have

pt

t _ s e
/(;S(Zy Dpep: ds<mf((2'y—2)p+l)

Obviously the assumption yields

2y-2)p+1> |2 p+1=0andso

1
1——| -2
2p

I'((2y-2)p + 1) €R.
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Let L be as in Theorem 4. From (38) we have
q q 41 t 2 q
v(1)? <297 (1) + ?quj F(s5)* et v(s)" ds
0
and this yields
q -1 q 41 t 2q
(1) <297 (1) exp ?quf F(s)™ e ds|.
0

From this inequality and (27) we obtain (24). Now let us prove the
assertion (ii). From the inequality (23) we obtain

1/q

() sat) + | [0 =) e ds]w[ [l v ) uts) |

I'(1 - ap)

<a(t) +eé P

Ve 1/kq
[[ gKa(y=1)p = ks ds]
0

x[ﬂte"f’(s)”’(esu(s))w ds}l/w

T (kq(y = 1) + )7

<a-D-1

I'(1 - ap)

l1-—ap

<a(t) +eé

<[ freresy e uesnya]

where r is as in the theorem. We assume that y > 1 — 1/kq and thus we
have kg(y — D + 1> kg(-1/kq)+1=0, ie, I'(kg(y — D+ 1 €R.
The above inequality yields

v(t) < 2q'-1[a(t)q’ + Pj;e”F(s)rqv(s) ds},

where v(¢) = (e 'u(¢))"? and P is defined as in the theorem. Therefore we
obtain

v(t) < 2" ta(r)" exp[Pfo’e”F(s)”’ ds]

and this yields the inequality (25). I
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3. INEQUALITIES WITH MULTIPLE INTEGRALS

The following theorem is a modification of [9, Theorem 1] and
Theorem 1.

THEOREM 5. Let a(t),a'(t),...,a" () (a® = d'a/dt") be nonnega-
tive, continuous functions on {0,T) (0 < T < »), F(¢) (i =1,2,...,m) be
nonnegative, continuous functions on {0,T), w:R"— R, dw(u)/du be
continuous, nondecreasing functions, »(0) = 0, w(u) > 0 on (0, T), and u(t)
be a continuous, nonnegative function on {0, T) with

u(t) <a(t) + /ot(t — )P E(s) w(u(s)) ds
t oty _SBZ_l S)owUu(s Ky
[ = )P R w(u(s)) dsdt, +

L [ e = )P TR () w(u(s) ds . diy, (29)

where B;>1/2 (i =1,2,...,m) and o satisfies the condition (q) with
q = 2. Then

u(t) cex(1)”?  1€0,Ty), (30)

where x(t) = QL O{(m + Da(®)?} + G()],

G(1) = hy(1) +.[VQ(S)ds+~~-+ftf”-~/m“1hm(s)ds”.dq,

Irz2p —1
h(1) = m(m + DE)'R(D), = %= 1,2,...,m

(31)

and T, € R" is such that Q{(m + Da(t)*} + G(¢t) € Dom(Q ™) for all
te<0,T,).

Proof. The inequality (29) yields

/2

() sae) + | [0 =9 te ds]m[ [ ‘Fl(s)ze“w(u(snzds]l

t rt t e
+ e +[/ /1 f’”’l(tmfl ) T ds...dtl]
0’0 0
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t ot t 2 1/2
X LLI---L"'_lFl(s) e 2w(u(s))ds.. }

1/2

<a(t) + e 1/2[f Fy(s)’e” Sw(u(s))zds] .

1/2
+enl/2[f /'1 / CFL(5) e Pw(u(s))” ds... } » (32)

where n;, i = 1,2,..., m, are defined by (31). We have used there the
estimate

t ot t_ 28—
fflf Sty — )P e ds .ty

07’0 0

ft/t__.ftl 2,21, 1/’ o2Bi~1-20 4o dt,
0“0 0 0

e?! t ti sy
_ _ e (2 20 g
o2 T(2B 1)/0 fo fo e2i-idt, ... dt,

e?'T (2B, — 1)
= o2B+i-1

I\

The inequalities (32) and (2) yield

Mﬁg(m+ﬂ%0f+¥%fﬂ@fe@ﬁwﬂfﬁ+m
0

O N e S zd...d}

et [ f / () e 2w (u(s))" ds...dn

and using the property (q) with ¢ = 2 we obtain
() 5 (m+ a0 + my [ R RE)o(0(5)) ds + -+
+nm/0[0 [0 Fm(s)R(s)w(U(s))ds...dtl}, (33)

where

v(t) = (e*fu(t))z. (34)



362 MILAN MEDVED

Let V(¢) be the right-hand side of (33) and

a(t) = (m+1)a(t)®,  h(t) = ch(m + 1)F(1)*R(t). (35)

Then
V(1) = a'(1) = hy(t) o(v()) = Vy(1), (36.1)
Vi(1) = hy((v(1) = Vy(1), (36.2)
(36.m — 1)

Vima(t) = by () o(0(1)) =V, _1(1),
Vi-i(t) = () o(v(1)) £ R, (1) o(V (1)) (36.m)
fort €40, 7). 1
We need the following lemma.

LEMMA 1. If H(¢) is a C*-function on <0,T), H(t) = 0 for t € {0, T),
and H(Q) = 0 then

[, O
0 w(V(s) © = (V)

te0,T). (37)

Proof. Integrating by parts of the left hand-side of (37) we obtain

(G o HO g 2T
fo ZO) Z0) +foH( : [o(V(s)]* v
H(t)
> .
— o(V(1))

Now let us continue the proof of the theorem. Using (37) and (36.m) we
have

Vo (1) </t Vi—a(s)
o(V(t)) =0 o(V(s))

The equality (36.m — 1) and the inequalities (37), (38) yield

Vo o(t) <ft Vo—a(s) Vu-1(s)
o(V(1)) =0 o(V(s)) w(V(s))

< (', (syds+ [ [“h,(s)dsdr,. (39)
A Lk

ds < /O’hm(s) ds. (38)

ds

dsgfothm,l(s) ds + fot
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Proceeding in this way one can prove that

% = j;thz(s) ds + /Otfotlhs(s) dsdt, + -

+f0tf0t1"'f;rﬂh’"(s) dsdt, _,...dt.

Using this inequality we obtain

V) e v e 20
o) w(a() = ey =T o)

hy(t) + fothz(s) ds + fotfo“hg(s) dsdt, + -

I\

+/’ff1.~ffm’lhm(s)dsdtm_l---dt1:=G(f)
and thus we have
v(t) = Q7 HO(a(t)) + G(1)]

for all t € {0, T,), where T, € R* is as in Theorem 5.
Using (34) we obtain (30). |

Remark. The assertion for the case 8, = 1/(z + 1), z > 1 for all j and
its proof is similar to the assertion (ii) of Theorem 1. We do not formulate
it here. The case B; > 1/(z + 1) for a real number z > 1 is more compli-
cated and we also do not formulate any result concerning this case.

4. HENRY’S VERSION OF THE OU-IANG-PACHPATTE
INEQUALITY

We shall study the inequality

u(t)? <a(t) + fo’(t —5)P T F(s)o(u(s))ds, B>0. (40)

Inequalities of such type with 8 = 1 and F continuous have been recently
studied by B. G. Pachpatte in [10].
We shall prove the following theorem.
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THEOREM 6. Let a(t) be a nondecreasing, nonnegative C*-function on
{0, T) (0 < T < ), F(t) be a continuous, nonnegative function, o be as in
Theorem 5, and u(t) be a continuous, nonnegative function satisfying the
inequality (40). Then the following assertions hold:

(i) Suppose B> 1/2 and o satisfies the condition (q) with g = 2.
Then

u(t) < e’{Al[A(Za(t)z) + KfO’F(s)ZR(s) ds]}1/4, (41)
t € €0, T,), where

r(2g - 1) o do
K=T, A(U)=j;0m,l}o>o (42)

and T, € R" is such that AQa(t)*) + K[{ F(s)*R(s)ds € Dom(A~Y) for
allt € €0, T,).

(i) Let B<(0,1/2) and o satisfies the condition (q) with g = z + 2,
where z = (1 — B)/B, i.e, B=1/(z+ 1). Then

u(t) < e’{A‘l[A(Z"‘la(t)q) + 2971K4 [O’F(s)qR(s) ds}}l/zq,
t€0,T,), (43)

where

L/p 1 z+2

I'(1-Bp)
e | 0 B= o PE

17
p Bp

z

(44)

T, € R* is such that AQ297*a(t)?) + 297 'K4[; F(s)/R(s) ds € Dom(A~1)
forallt € {0, T,).

Proof. First let us prove the assertion (i). Following the proof of
Theorem 1 one can show that

v(1)? < a(t) + K[O’F(S)ZR(s)w(u(s)) ds, (45)

2 ) rezp-1
v(t) = (e 'u(r))", a(t) = 2a(1)", K= %-1)- (46)
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Let 1/(¢) be the right-hand side of (45). Then v(¢) < y/V(¢) . This yields
w(v(1)) £ w(y/V(t)) and thus

V(1) a'(1) + KF(1)*R(1) w(v(1))
w(yV (1)) w(yV (1))
a'(t) 2
< ———— + KF(1)*R(1).
= a0 + KF(1)"R(1)
This yields
d V() do d alt) do 2
Efo —w( o] < E/o —w( o] + KF(1)*R(1). (47)

Thus we have
yy v “A KF(1)’R
A1) = - Aa(n) +KF()"R(1),
where A is defined by (42). This yields
V() < A‘l[A(a(t)) + K/’F(S)ZR(S) ds]
0

and thus we have

1/2
v(t) = V(1) < {A‘l[/\(a(t)) +1<[ F(s)°R(s) ds}} .
0
Using (46) we obtain (45).

Now we shall prove the assertion (ii). Following the proof of the
assertion (ii) of Theorem 1 one can show that

v(1)? < (1) + 297 1KY ]O’F(s)qR(s)w(u(s)) ds, (48)
where

o(1) = (e7u(1))’,  &(r) =277 "a(1)". (49)

Following the procedure from the proof of the assertion (i) we obtain

1/2
(1) 5 (A (A() + 207K [FO)'R() ds)

and using (46) we obtain (43). 1
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Remark. Of course it is possible to prove a result of that type as in

Theorem 5 for an inequality which is an analogue of the inequality (40)
with multiple integrals. We do not formulate such type of results because
their formulation would be technically very complicated.

10.

11.
12.
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