A formula which connects the determinant of the Demjanenko matrix with the relative class number of the cyclotomic field is given. A close relation between this matrix and the Hodge group of some Abelian variety is also revealed.

In [2], Folz and Zimmer investigate the rank of the Demjanenko matrix D_p for a prime p (see [2] for the definition) in connection with the problem of giving an explicit bound for the order of torsion points on some elliptic curves. They call a prime p exceptional or nonexceptional according to whether the mod 2 rank of D_p drops or not. And they explain "the significance of the distinction between exceptional and non-exceptional primes." In the present article we prove that p is nonexceptional if the relative class number h_p^- of the cyclotomic field $\mathbb{Q}(\zeta_p)$ is odd. (This also explains the occurrence of asterisks in the Table 1 of [2].) Moreover we show that this matrix is essentially the same as the one which appears as a matrix representation of the character group of the Hodge group of some abelian variety of CM-type. This shows another significance of the Demjanenko matrix. A similar kind of matrix was used in [1] to obtain a bound for h_p^-; therefore our result may be of use for this purpose as well as for actual calculation of h_p^- for small values of p.

I thank the referee for his kind advice.

Notation

Throughout this paper, we fix an odd prime p and put $g = (p - 1)/2$. We denote by F_p the finite field with p elements. Let f denote the multiplicative
order of 2 in $F_p^* = F_p - \{0\}$. We put $e = (p - 1)/f$. We denote by S the set \{1, ..., g\}, which is considered as a subset of F_p, and denote by $\chi(S)$ the sum $\sum_{x \in S} \chi(x)$. For a positive integer n, we denote by ζ_n the primitive root of unity, $\exp(2\pi i/n)$, and denote by h_p^- the relative class number of the cyclotomic field $Q(\zeta_p)$. Finally, for a real number x, we denote by $\{x\}$ (resp. $\lfloor x \rfloor$) the distance of x to the nearest integer in Z (resp. in pZ) and by $\lfloor x \rfloor$ the integral part of x.

2. Hodge Group and Demjanenko Matrix

Let A be an abelian variety defined over C. The Hodge group $Hg(A)$ of A is a reducible algebraic group over Q (see [4, 7] for the definition and its fundamental property). When A is of CM-type, $Hg(A)$ is an algebraic torus and its character group can be given in terms of the embeddings of the corresponding CM-field into C (see [8, 33]). In particular, when A has complex multiplication by $Q(\zeta_p)$ and its "type" is given by the embeddings defined by $\zeta_p \rightarrow \zeta_p^i (i = 1, ..., g)$, the character group of $Hg(A)$ is isomorphic to $Q[\text{Gal}(Q(\zeta_p)/Q) \cdot \sum_{i \in S} (i - (-i))]$, where we identify the Galois group $\text{Gal}(Q(\zeta_p)/Q)$ with F_p^* naturally.

Now we introduce the following three g by g matrices:

$A = (a_{ij})$, where $a_{ij} = 1$ if $i \cdot j \in S$ and $= -1$ otherwise;

$H = (h_{ij})$, where $h_{ij} = 1$ if $i \cdot j \in S$ and $= 0$ otherwise;

$D = (d_{ij})$, where $d_{ij} = 1$ if $\{(i+1)j\}_p - \{(i-1)j\}_p > 0$

and $= 0$ otherwise.

Since the matrix D is obtained by an elementary row operation from the modified Demjanenko matrix D'_p (cf. [2]), their rank (over Z or F_p) coincide. Recall that D'_p is defined to be a submatrix of the original Demjanenko matrix D_p, and that D_p is of full rank if D'_p is. Moreover the matrix H can be transformed into A by a number of elementary row operations, so it is easy to see that $2^{g-1} \det H = \det A$ (it is known that H is nondegenerate [5, 8]). Now we observe the following:

Proposition 2.1. $D = H$.

Proof. Since $\{(i+1)j\}_p - \{(i-1)j\}_p = \{ij + j\}_p - \{ij - j\}_p$ holds, we are reduced to showing the following: for any $r \in (0, 1/2)$ and $a \in (0, 1/2)$, $\{(a+r)j\}_p + \{a-r\} > 0$ if and only if $a \in (0, 1/2)$. Assume that $a \in (0, 1/2)$. When r is smaller than or equal to a, we have

\[
\{a+r\} - \{a-r\} = \begin{cases} (a+r) - (a-r) = 2r > 0 & \text{if } a + r \leq \frac{1}{2} \\
(1-(a+r)) - (a-r) = 1 - 2a > 0 & \text{if } a + r > \frac{1}{2}.
\end{cases}
\]
On the other hand, when \(r \) is greater than \(a \), we have
\[
\{a + r\} - \{a - r\} = \begin{cases} (a + r) - (r - a) = 2a > 0 & \text{if } a + r \leq \frac{1}{2} \\ (1 - (a + r)) - (r - a) = 1 - 2r > 0 & \text{if } a + r > \frac{1}{2}. \end{cases}
\]
The converse is proved similarly.

3. Determinant of Demjanenko Matrix

In [9], Wang gives an argument to obtain a formula for the Maillet determinant. A similar argument enables us to obtain the following (see [8] for a formula expressed by the character sums \(\chi(F_p^*) \)):

Proposition 3.1. \(\det H = (-1)^{[g/2]} \cdot 2^{1-g} \prod_{\chi \text{ odd}} \chi(S). \)

On the other hand, we have the following formula due to Kubota [5] which relates the "half sum" \(\chi(S) \) with the Bernoulli number \(B_{1, \chi} \):

Proposition 3.2. \(\chi(S) = (1 - 2 \cdot \chi(2)) \cdot B_{1, \chi}/\chi(2). \)

(Note that Kubota used \(\Theta_\chi = \sum_{a=1}^{p-1} \chi(a)a \) instead of \(B_{1, \chi} = \sum_{a=1}^{p-1} \chi(a)a/p = \Theta_\chi/p. \))

Moreover we have the following well known formula:

Theorem 3.3 (see [6], for example). \(h_p^- = 2p \cdot (1 - \chi(2)) \cdot B_{1, \chi}/\chi(2). \)

Combining these three equalities, we prove the main theorem:

Theorem 3.4. We have
\[
\det D = \det H = (-1)^{[g/2]} \cdot 2^{1-g} \prod_{\chi \text{ odd}} \chi(S) \quad \text{and} \quad (2f - 1)^{e/2} \quad \text{if } f \text{ is even}
\]
\[
(2f - 1)^{e/2} \quad \text{if } f \text{ is odd}
\]
(see Section 1 for the meaning of \(e \) and \(f \)).

Corollary 3.5. A prime \(p \) is nonexceptional if \(h_p^- \) is odd.

Proof. We have the following equalities:
\[
\det H = (-1)^{[g/2]} \cdot 2^{1-g} \prod_{\chi \text{ odd}} \chi(S) \quad \text{(by Prop. 3.1)}
\]
\[
= (-1)^{[g/2]} \cdot 2^{1-g} \prod_{\chi \text{ odd}} \left((1 - 2\chi(2)) \cdot B_{1, \chi}/\chi(2) \right) \quad \text{(by Prop. 3.2)}
\]
\[
= (-1)^{g + [g/2]} \cdot h_p^- \cdot p^{-1} \prod_{\chi \text{ odd}} \left((1 - 2\chi(2))/\chi(2) \right) \quad \text{(by Th. 3.3)}
\]
\[
= (-1)^{g + [g/2]} \cdot h_p^- \cdot p^{-1} \prod_{\chi \text{ odd}} (\chi(2) - 2)
\]
The last factor on the rightmost side is computed as follows. Since f is the order of 2 in \mathbb{F}_p^* and $e = (p - 1)/f$, the values $\chi(2)$ for odd χ are given by (*) $\zeta_f, \zeta_f^3, \ldots, \zeta_f^{p-2}$.

Case 1. f is even: The $(f/2)$th roots of -1 are given by $\zeta_f, \zeta_f^3, \ldots, \zeta_f^{f/2}$, hence we have

$$\prod_{\chi: \text{odd}} (X - \chi(2)) = (X^{f/2} + 1)^e$$

which implies

$$\det H = (-1)^{\left\lfloor \frac{f}{2} \right\rfloor} \cdot h_p^{-1} \cdot (2^{f/2} + 1)^e \cdot (-1)^g$$

$$= (-1)^{\left\lfloor \frac{f}{2} \right\rfloor} \cdot h_p^{-1} \cdot (2^{f/2} + 1)^e.$$

Case 2. f is odd: Since the first f numbers in (*) are the fth roots of 1, we have

$$\prod_{\chi: \text{odd}} (X - \chi(2)) = (X^f - 1)^{e/2}$$

which implies

$$\det H = (-1)^{\left\lfloor \frac{f}{2} \right\rfloor} \cdot h_p^{-1} \cdot (2^f - 1)^{e/2}.$$

This completes the proof of the theorem.

REFERENCES