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Abstract 

Kuz’min, Yu.V., On the growth function of direct decompositions associated with homology of 

free abelianized extensions, Journal of Pure and Applied Algebra 86 (1993) 223-229. 

Let G be an arbitrary group given by a free presentation G = F/N. We deal with the homology 

group H”(@, L) where @ = FI[N, N]. It is known that if G has no p-torsion then the 

p-component of H,(@, L) (p odd) h as a natural direct decomposition of the form 

Bk HnI(G, ZipL). The number of direct summands is a function of dimension n. We prove 

that this function grows faster than n’ for any s but slower than a” for any a > 1. Indeed a more 

precise asymptotic estimate is given. We also study maximal multiplicity of the group H,(G, Z/ 

pZ) in the above decomposition and get information on decomposition of two other periodic 

groups related to y,(@, L). 

Let G be an arbitrary group given by a free presentation G = FIN. The group 

@ = FIN’, where N’ is the commutator subgroup, is called a free abelianized 

extension of G. We briefly recall some results on the homology groups of @ with 

trivial coefficients. For a more detailed discussion see [3-51. The abelian group 

A4 = N/N’ is a G-module with action coming from conjugation in @, and the 

n-fold exterior power A” M is a G-module with diagonal action of G. The 

embedding M+ @ induces the corestriction map H,(M, Z) BG .Z--+ H,(@, Z) 

and, since M is free abelian, it can be written as 
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By C, and K, denote the cokernel and the kernel of this map and let T, stand for 

the torsion subgroup of H,(@, Z). It was proved in [4] and [5] that C,, K, and T,, 
have finite exponents; moreover, the exponents of C, @Z[f] and K, @Z[$] 
divide n - 1 while the exponent of T @Z[ $1 divides II (Z[ 11 is the ring of 

2-rational numbers). To give a description of the odd torsion in C,, K, and T, in 

terms of the homology groups of G we need some more notation. 

For an arbitrary abelian group A and prime number p denote by t,A the 

p-component of A. If m is a natural number then by definition mA = A @. . . @ A 
(with m summands), and mA = 0 if m = 0. For a polynomial f(x) = c mkxk with 

non-negative integral coefficients and any G-module A we set 

fK(G> A) = T mkHn+,(G, A) 

At last we define polynomials fy’ (n > 1) by 

: 

X2 ifn=p, 

P = 
ifn#O,lmodp, 

ifn=lmodp, 

ifn=Omodpwithn>p. 

(1) 

Let p be an odd prime, G a group with no p-torsion, and n > 1. 

It is proved in [3], that if n = 1 mod p then 

and if n = 0 mod p then 

t 
P 

T, = f jlP)H,z(G, Zp) . (3) 

We remind the reader that for any group G, t,,C,, = t,K,, = 0 if n f 1 mod p and 

t,T,,=Oifn#Omodp. 

In this note we study the asymptotic behavior of the number of direct 

summands in the above decompositions (Theorem 1). As a consequence we 

deduce asymptotic estimates for the maximal multiplicity of the groups 

H,(G, z,,) in (2) and (3) (Corollary 2). In particular it turns out that these 

numbers have intermediate growth as functions of the dimension. By definition a 

function y(n) has intermediate growth if for any natural S, lim,,,, -y(n)/n” = 30, 
while for any a > 1, lim,,, y(n) la” = 0. We also calculate the difference between 

the number of summands of even and odd dimension. 

Of course some of the homology groups H,(G, Z!,) in the decompositions (2) 

and (3) may be trivial. This depends on G. However, in general the number of 

direct summands is evidently 
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fEr(1) for t,,Cn,tpK,, (n = 1 mod p) , 

f’“‘(1) n fort T (a =Omod p). P ‘1 

Since in both cases p divides the subindex 
following function 

~(m)=f$(l) (m=1,2,...). 

of the polynomial, we consider the 

From (1) it is clear that y(1) = 1 and for m > 1 

r(m-1) if m Z O,l mod p , 

y(m) = r(m - 1)+ Y(( m - 1)/p) if m = 1 mod p ~ 

ytm - 1) + ~{m/~) ifm=Omodp; 

that is 

y((k - 1)p + 1) = r((k - 1)p + 2) = ’ * * = Y(@ - 1) 

and 

(see Fig. 1). 

y(kp + 1) = y(kp) + r(k) 

(4) 

Functions of this type have been considered before. Let w(n) be the number of 
partitions of the integer n into powers of p. It is easy to prove that 

I 

(k- 1)p-t 1 k~-1 kp kp+l m 

Fig. 1. 
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w(n) = 
w(n - 1) ifp#Omodp, 

w(n - 1) + w(nlp) if p = 0 mod p . 

For p = 2 this function was studied by Euler [l] (see also [2,6]). Our function 

r(n) is somewhat different to m(n) and although it may be possible to deduce 

properties of y from w, we give direct proofs that are selfcontained and quite 

short. 

The increment of r(m) on each segment [(i - 1)~ + 1, ip + l] is 2y(i) (i = 

1,. . , k), hence 

y(kp + 1) = 1 + 2 C y(i) . 
,=L 

(5) 

It is quite easy to explain why for any natural s, lim,,, r(m) im” = m. Indeed, 

by (5) y(kp + 1) 2 1 + 2k, therefore -y(m) 2 q,(m) for a linear function q(m) 
(one can take q,(m) = 1 + 2(m - 1)/p). Again because of (5) 

y(kp + 1) z- 1 + 2 5 p,(i). 
i=l 

The sum q,(l) + . . . + q,(k) is already a polynomial of degree 2. Continuing in 

this way, we see that there exists a polynomial cp,(m) of degree s such that 

r(m) 2 cp,(m). Since s is arbitrary, lim,,, r(m) lm” = 30. 
Now we are going to give a precise estimate. Write a(m) -C p(m) if 

lim,,, u(m) /p(m) = 0. 

Theorem 1. For any e >O, 

m(l l?-~)log,,m < r(m) < m(“2)‘W,,m . 

First of all we want to explain where 112 comes from. 

on the segment [(k - 1)p + 1, kp + l] is 2-y(k). Dividing 

segment, one can write 

The increment of r(m) 
by p, the length of the 

(y(kp + 1) - y((k - 1)~ + 11)/p = 5 r(k) . 

This equality suggests the idea that a continuous model for r(m) should be a 

function f(x) such that f’(x) = Af(xlp) for some real A > 0. 

Take for example f(x) = ax (a > 1). Then 

f’(x)if(x/p) = s = a x(‘P”P) In a~ x ) 

so ax grows too fast. It is natural to try 
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f(x) = xl%x = Xa ‘%pX . 

The reader will easily verify that for this choice of f(x), 

f’(x) = f(x) 2a ]xugpx ) fWP) =f(x) f . 

Therefore, 

_ & x2a -1 log x . f’(X) 
fWP) Pa P (6) 

It follows that 

f ‘(x> 1 00 ifarll2, -= 
k f(xlp) 0 ifa< 

and l/2 really plays a special role. 

Proof of Theorem 1. Consider the upper bound r(m) <f(m) = WZ(“~)‘~~“~. We 

shall compare the increments of f(m) and r(m) on the segment [(k - 1)~ + 1, 

kp + 11. By the Mean Value Theorem 

Af = f(kp + 1) - f((k - 1)~ + 1) = f ‘(x)p 

for some x E [(k - 1)p + 1, kp + 11. Because of (6), with (Y = 112, 

Af = f(x/p) 
log,7 
e p >f(k - 1)v’P log,,(k - 1)~ . 

On the other hand. 

Ay = y(kp + 1) - y((k - 1)p + 1) = 2y(k) < 4y(k - 1) , 

so 

Y< 4 r(k - ) < 1 y(k - 1) 

Af vFlog,,(k-Up f(k-1) 2 f(k-1) 

if k > p5 + 1. We can assume by induction that y(k - 1) < f(k - 1). There is no 

problem with the base of induction because one can replace f(x) by Cf(x) if 

necessary (C E R). It does not change the asymptotic behaviour and also (6) 

remains valid. Thus Ay < ;Af. Evidently it is sufficient to conclude that -y(m) < 

f(m). Similar arguments prove that ma logpm < y(m) if (Y < l/2. 0 

The multiplicities of the groups H,(G, Z,) in decompositions (2) and (3) are 
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just coefficients of the polynomials f mp. (‘) Hence the following corollary gives 

information on the maximal multiplicities. 

Corollary 2. By p(m) denote the maximal coefficient off $). Then for any F > 0, 

Proof. The upper bound is clear because p(m) 5 r(m). It is easily proved by 

induction that f mp (‘) has degree 2m. If F > 0 then 

p(m) 2 r(m) /2m > m(1’2PF’2)‘og~mlm 

= m(li2~F)l%pm . 
m(~W~QP 

m 
> m( l/2-s)logp 

0 

Corollary 3. The functions y(m) and p(m) have intermediate growth. 0 

Denote by llnllP the p-adic norm, that is, the maximal i such that pi divides n. 

Proposition 4. Suppose that n = 0 mod p and let t = llnll p, pp) = f r’ - 
c := 1 X2n’p’. Then pip’(-1) = 0. 

Proof. For n = p we have pp’ = x2 - x2 = 0. For n > p f LPI = x’f z; + f 2: and 

we shall use induction on n. If n/p Z 0,l mod p then f 2: = 0, SO f I”’ = x’f I”_b. In 

this case llnllP = Iln -pllP = 1 and 

&q-l) = f ?‘(-I) - I= f FP(_l) - 1 = pFp(-1) = 0. 

If n/p = 0 mod p then lln - pJI = 1, therefore 

pV)(-1) = f P’(-1) - t = (f I”-b(-1) + f I’;;<-1)) - t 

= (f I”-b<-1) - 1) + (f 2; - (t - 1)) 

= pK\(-1) + pi:;< - 1) = 0. 

At last if n/p = 1 mod p, then lInllP = 1, Iln -pllP = Ilnlp - II),, and fy’ = 
x’f EP + xf $j+, hence 

p~‘(-l)=f~)(-1)-1=(fl”-b(-l)-f~;_,(-1)-l 

=p~;(-l)-&,(-l)=o. 0 

Denote by h’(C,) and h (C,) the number of summands of even and odd 
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dimension in .decomposition (2) for C,, and let h*(K,) and h’( Tn) be these 

numbers for K, and T,,, respectively. The following corollary is an obvious 

consequence of decompositions (2), (3) and Proposition 4. 

Corollary 5. Zf tz = 1 mod p then 

h+(G) - h-(C,,) = (-l)“jln - 111, , 

h+(K,J - h-(K,) = (-l)n+l((n - 111,. 

If n = 0 mod p then 

h+(T,) - hp(T,) =(-l)“llnll, . q 

By Proposition 4 1 + x divides p p’ (n = 0 mod p). It means that summands of 

p(‘) appear in pairs of even and odd degree; in particular, maximal coefficients of 

ev”en and odd degree are equal and both have intermediate growth. 

In conclusion we write down polynomials f y’ for II 5 p3 (n = 0 mod p). 

f y; = x2’, (15r,sp-l), 

r*-1 

f (PJ = X2w + x 
r2P 

2r* + (1 + x> c p-r,hJ+r)- 1 
r=l 

(lSr,Sp-l), 

f (P) = 

r2PZ+r,P 

X2(r*p+r,) + (1 + x) 2 X2((r2m’b+rl+‘)b’ 

r=l 

(15 r,,r,sp - 1) ) 

p-1 

f y = p2 + x2P fx2 + (1 +x) c X2((P-r)P+‘)-1 . 

r=l 
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