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How the (1+1) ES using isotropic mutations minimizes
positive definite quadratic forms�
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Abstract

The (1+1) evolution strategy (ES), a simple, mutation-based evolutionary algorithm for continuous optimization problems, is
analyzed. In particular, we consider the most common type of mutations, namely Gaussian mutations, and the 1

5 -rule for muta-
tion adaptation, and we are interested in how the runtime/number of function evaluations to obtain a predefined reduction of the
approximation error depends on the dimension of the search space.

The most discussed function in the area of ES is the so-called SPHERE-function given by SPHERE: Rn → R with x �→ x�Ix
(where I ∈ Rn×n is the identity matrix), which also has already been the subject of a runtime analysis. This analysis is extended to
arbitrary positive definite quadratic forms that induce ellipsoidal fitness landscapes which are “close to being spherically symmetric”,
showing that the order of the runtime does not change compared to SPHERE. Furthermore, certain positive definite quadratic forms
f : Rn → R with x �→ x�Qx, where Q ∈ Rn×n, inducing ellipsoidal fitness landscapes that are “far away from being spherically
symmetric” are exemplarily investigated, namely

f (x) = � ·
(
x2

1 + · · · + x2
n/2

)
+ x2

n/2+1 + · · · + x2
n

with � = poly(n) such that 1/� → 0 as n → ∞. It is proved that the optimization very quickly stabilizes and that, subsequently, the
runtime to halve the approximation error is �(� · n) compared to �(n) for SPHERE.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Methods for solving continuous optimization problems (search space Rn) are usually classified into first-order,
second-order, and zeroth-order methods depending on whether they utilize the gradient (the first derivative) of the
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objective function, the gradient and the Hessian (the second derivative), or neither of the two. 2 Zeroth-order methods
are also called derivative-free or direct search methods. Newton’s method is a classical second-order method. First-
order methods are commonly (sub)classified into quasi-Newton, steepest descent, and conjugate gradient methods.
Classical zeroth-order methods try to approximate the gradient in order to plug this estimate into a first-order method.
Finally, amongst the “modern” zeroth-order methods, evolutionary algorithms (EAs) come into play. EAs for continuous
optimization, however, are usually subsumed under the term evolution(ary) strategies (ESs). Although it is obvious, we
should note here that, in general, we cannot expect a zeroth-order method to out-perform first-order methods or even
second-order methods.

In cases when information about the gradient is not available, for instance, if f relates to a property of some workpiece
and is given by simulations or even by real-world experiments, first-order (and also second-order) methods just cannot
by applied. As the approximation of the gradient usually involves �(n) f-evaluations, a single optimization step of
a classical zeroth-order method is computationally intensive, especially if f is given implicitly by simulations. In
practical optimization, especially in mechanical engineering, this is often the case, and particularly in this field EAs
become more and more widely used. However, the enthusiasm in practical EAs has led to an unclear variety of very
sophisticated and problem-specific EAs. Unfortunately—from a theoretician’s point of view—, the development of
such EAs is solely driven by practical success and the aspect of a theoretical analysis is left aside. In other words,—
concerning EAs—theory has not kept up with practice, and thus, we should not try to analyze the algorithmic runtime
of the most sophisticated EA en vogue, but concentrate on very basic, or call them “simple”, EAs in order to build a
sound and solid basis for EA-theory.

Such a theory has been developed successfully since the mid-1990s for discrete search spaces, essentially {0, 1}n;
cf. [16,4]. Recently, first results for non-artificial but well-known problems have been obtained, e.g. for the maximum
matching problem [5], for the minimum spanning-tree [12], and for the partition problem [17].

The situation for continuous evolutionary optimization is different. Here, the vast majority of the results are based on
empiricism, i.e., experiments are performed and their outcomes are interpreted. Also, convergence properties of EAs
have been studied to a considerable extent (e.g. [14,6,3]). A lot of results have been obtained by analyzing a simplifying
model of the stochastic process induced by the EA, for instance, by letting the number of dimensions approach
infinity. Unfortunately, such results rely on experimental validation as a justification for the simplifications/inaccuracies
introduced by the modeling. In particular, Beyer has obtained numerous results that focus on local performance measures
(progress rate, fitness gain; cf. [2]), i.e., the effect of a single mutation (or, more generally, of a single transition from
one generation to the next) is investigated. Best-case assumptions concerning the mutation adaptation in this single
step then provide estimates of the maximum gain a single step may yield. However, when one aims at analyzing the
(1+1) ES as an algorithm, rather than a model of the stochastic process induced, a different, more algorithmic approach
is needed. In 2003, a first theoretical analysis of the algorithmic runtime, given by the number of function evaluations,
of the (1+1) ES using the 1

5 -rule was presented [11]. The function/fitness landscape considered therein is the well-know
SPHERE-function, given by SPHERE(x) := ∑n

i=1 x2
i = x�Ix, and the multi-step behavior that the (1+1) ES bears when

using the 1
5 -rule for the adaptation of the mutation strength is rigorously analyzed. As mentioned in the abstract, the

present article will extend this result to a broader class of functions, where we are going to apply differential geometry
in the analysis of fitness landscapes, which was already suggested in [1].

Finally, note that regarding the approximation error, for unconstrained optimization it is generally not clear how the
runtime can be measured (solely) with respect to the absolute error of the approximation. In contrast to discrete and
finite problems, the initial error is generally not bounded, and hence, the question how many steps it takes to get into
the ε-ball around an optimum does not make sense without specifying the starting conditions. Hence, we must consider
the runtime with respect to the relative improvement of the approximation. Given that the (relative) progress which a
step yields becomes steady-state, considering the number of steps/f-evaluations to halve the approximation error is a
natural choice. For the SPHERE-function, [11] gives a proof that the 1

5 -rule makes the (1+1) ES perform �(n) steps to
halve the distance from the optimum and, in addition, that this is asymptotically the best possible w. r. t. isotropically
distributed mutation vectors, i.e., for any adaptation of isotropic mutations, the expected number of f-evaluations is
�(n).

2 Note that here “continuous” relates to the search space rather than to f, and that, unlike in mathematical programming, throughout this paper
“n” denotes the number of dimensions of the search space and not the number of optimization steps; “d ” generally denotes a distance in the search
space.
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1.1. The Algorithm

We will concentrate on the (1+1) evolution strategy ((1+1) ES), which dates back to the mid-1960s (cf. [13,15]).
This simple EA uses solely mutation due to a single-individual population, where here “individual” is just a synonym
for “search point”. Let c ∈ Rn denote the current individual. Given a starting point, i.e. an initialization of c, the
(1+1) ES performs the following evolution loop:
(1) Choose a random mutation vector m ∈ Rn, where the distribution of m may depend on the course of the optimization

process.
(2) Generate the mutant c′ ∈ Rn by c′ := c + m.
(3) IF f (c′)�f (c) THEN c′ becomes the current individual (c := c′)

ELSE c′ is discarded (c unchanged).
(4) IF the stopping criterion is met THEN output c ELSE goto 1.

Since a worse mutant (w. r. t. the function to be minimized) is always discarded, the (1+1) ES is a randomized hill
climber, and the selection rule is called elitist selection. Fortunately, for the type of results we are after, we need not
define a reasonable stopping criterion. How the mutation vectors are generated must be specified, though. Originally,
the mutation vector m ∈ Rn is generated by generating a Gaussian mutation vector m̃ ∈ Rn each component of which
is independently standard normal distributed first; subsequently, this vector is scaled by the multiplication with a scalar
s ∈ R>0, i.e. m = s · m̃. Gaussian mutations are the most common type of mutations (for the search space Rn) and,
therefore, will be considered here. Let |x| denote the Euclidean length of a vector x ∈ Rn, i.e. its L2-norm. The crucial
property of a Gaussian mutation is that m̃, and with it m, is isotropically distributed, i.e., m/|m| is uniformly distributed
upon the unit hyper-sphere and the length of the mutation, namely the random variable |m|, is independent of the
direction m/|m|.

The question that naturally arises is how the scaling factor s is to be chosen. Obviously, the smaller the approximation
error, i.e., the closer c is to an optimum point, the shorter m needs to be for a further improvement of the approximation
to be possible. Unfortunately, the algorithm does not know about the current approximation error, but can utilize only
the knowledge obtained by f-evaluations (precisely for this reason, the optimization scenario is also called black-box
optimization). Based on experiments and rough calculations for two function scenarios (namely SPHERE and a corridor
function), Rechenberg proposed the 1

5 -(success-)rule. The idea behind this adaptation mechanism is that in a step of
the (1+1) ES the mutant should be accepted with probability 1

5 . Hereinafter, a mutation that results in f (c′)�f (c)
is called successful, and hence, when talking about a mutation, success probability denotes the probability that the
mutant c′ = c + m is at least as good as c. Obviously, when elitist selection is used, the success probability of a
step equals the probability that the mutation is accepted in this step. If every step was successful with probability 1

5 ,
we would observe that on average one fifth of the mutations are successful. Thus, the 1

5 -rule works as follows: the
optimization process is observed for n steps without changing s; if more than one fifth of the steps in this observation
phase have been successful, s is doubled, otherwise s is halved. Naturally, various implementations of the 1

5 -rule can
be found in the literature, yet in fact, one result of [11] is that the order of the runtime is indeed not affected as
long as the observation lasts �(n) steps and the scaling factor s is multiplied by a constant greater than 1 resp. by a

positive constant smaller than 1. Also the proofs presented here remain valid for such implementations of the 1
5 -rule;

the parameters n, 2, and 1
2 are chosen merely for notational convenience. We can even substitute any positive constant

strictly smaller than 1
2 for the “ 1

5 .”
The state of the art in mutation adaptation, however, seems to be the covariance matrix adaptation (CMA) [7] where

s · B · m̃ makes up the mutation vector with a matrix B ∈ Rn×n which is also adapted. Unlike B = t · I for some
scalar t, the mutation vector is not isotropically distributed. Obviously, an algorithmic analysis of CMA is a much more
complex task—apparently, too complex at present.

1.2. The function scenario

In this section we will have a closer look at the fitness landscape under consideration. Note that, as minimization is
considered, “function value” (“f-value”) will be used rather than “fitness”. Since the optimum function value is 0, the
current approximation error is defined as f (c), the f-value of the current individual. As mentioned in the abstract, we
are going to consider the fitness landscapes induced by positive definite quadratic forms (PDQFs).
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At first glance, one might guess that mixed terms (e.g. 3x1x2) may crucially affect the fitness landscape induced by

a PDQF x�Qx. However, this is not the case: first note that we can assume Q to be symmetric (by balancing Qij with
Qji for i �= j since they affect only the term (Qij+Qji) xij xji in the quadratic function to be black-box-optimized).
Furthermore, any symmetric matrix can be diagonalized since it has n eigenvectors. Namely, eigen-decomposition
yields Q = RDR−1 for a diagonal matrix D and an orthogonal matrix 3 R.

Thus, the quadratic form equals x�RDR−1x, and since x�R = (R�x)�, we have (R�x)�D(R−1x). As R� = R−1

for an orthogonal matrix, the quadratic form equals (R−1x)�D(R−1x). Thus, investigating x�Qx using the standard
basis for Rn (given by I) is the same as investigating x�Dx using the orthonormal basis given by R. Finally, note that

the inner product is independent of the orthonormal basis that we use (because (Rx)�(Rx) = x�R�Rx =
x�R−1Rx = x�Ix = x�x). In short, we can assume the basis to coincide with Q’s principal axes. Consequently, we
can assume in the following that Q is a diagonal matrix each entry of which is positive (Q’s canocial form). In other
words, when talking about PDQFs we are talking about functions of the form fn(x) = ∑n

i=1 �i · xi
2 with �i > 0,

and we can even assume �1 � · · · ��n. In fact, �1, . . . , �n are the n eigenvalues of Q (which need not necessarily be
distinct). Then Q’s condition number equals �1/�n.

For a given f-value of �, the corresponding level set is defined as {x | f (x) = �} ⊆ Rn and the lower level set is
given by {x | f (x) < �} ⊆ Rn. For instance, the level set defined by SPHERE = �2 forms the hyper-sphere with radius
� centered at the origin, and the corresponding lower level set forms the corresponding open hyper-ball. Furthermore,
for a non-empty set M ⊆ Rn \ {0} we let supx,y∈M{|x|/|y|} denote the bandwidth of the set. Note that 1 is the smallest
possible bandwidth, then all vectors in M are of the same length. The level sets of SPHERE have bandwidth 1, for
instance.

The level set E�2 defined by
∑n

i=1 �i · xi
2 = �2 > 0 forms a hyper-surface, namely a hyper-ellipsoid, and since

�1 � · · · ��n, min{|x| | x ∈ E�2} = �/
√

�1 and max{|x| | x ∈ E�2} = �/
√

�n so that the level sets of a PDQF have

bandwidth
√

�1/�n. Note the relationship between this bandwidth and Q’s condition number, namely, the condition
number equals the square of the bandwidth. We call the fitness landscape induced by a PDQF close to being spherically
symmetric if the bandwidth (and with it the condition number) is O(1), i.e., if the n eigenvalues are in [a, � ·a] for some
a > 0 (which may depend on n) and a constant ��1. We may also use the notion PDQF of/with bounded bandwidth
in such cases.

As mentioned in the abstract, besides of PDQFs with bounded bandwidth, we will exemplarily consider the following
class of (sequences of) quadratic forms, where n ∈ 2N and � = poly(n) such that 1/� → 0 as n → ∞:

fn(x) := � ·
(
x1

2 + · · · + xn/2
2
)

+ xn/2+1
2 + · · · + xn

2.

Since n/2 of the eigenvalues equal 1, respectively, and the other n/2 eigenvalues equal �, respectively, the corresponding
ellipsoidal fitness landscape has level sets of bandwidth

√
� = �(1), i.e., the condition number (which equals �) is

unbounded.
In the next section, some of the results presented in [11], which will be used here, will be shortly restated. In

Section 3, the complete class of fitness landscapes induced by PDQFs of bounded bandwidth are investigated, whereas
in Section 4 the fitness landscapes of unbounded bandwidth induced by the function class fn defined above is considered.
We end with some concluding remarks in Section 5.

2. Preliminaries

In this section, some notions and notations are introduced. Furthermore, the results obtained for the SPHERE-scenario
in [11] that we will use are recapitulated; for more details cf. [10].

Definition 1. A probability p(n) is exponentially small in n if p(n)� exp(−g(n)) for a function g(n) that is �(nε)

for a constant ε > 0. An event A(n) happens with overwhelming probability (w.o.p.) with respect to n if 1 − P{A(n)}
is exponentially small in n.

3 An orthogonal matrix R corresponds to an orthonormal transformation, i.e. a (possibly improper) rotation; then R−1 is the corresponding
“anti-rotation.”
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A statement Z(n) holds for n large enough if (∃ n0 ∈ N)(∀ n�n0) Z(n).

Recall the following asymptotics when g(n), h(n) > 0 for n large enough:
• g(n) = O(h(n)) if there exists a positive constant � such that g(n)�� · h(n) for n large enough,
• g(n) = �(h(n)) if h(n) = O(g(n)),
• g(n) = �(h(n)) if g(n) is O(h(n)) as well as �(h(n)),
• g(n) = poly(n) if g(n) = O(n�) for some constant �,
• g(n) = o(h(n)) if g(n)/h(n) → 0 as n → ∞,
• g(n) = �(h(n)) if h(n) = o(g(n)).
As we are interested in how the runtime (defined as the number of f-evaluations) depends on n, the dimensionality of
the search space, all asymptotics are w. r. t. this parameter (unless stated differently).

Let c ∈ Rn \ {0} denote a search point and m a scaled Gaussian mutation. Furthermore, we let � := |c| − |c + m|
denote the spatial gain of a mutation towards the origin, the optimum for SPHERE. Since SPHERE(c) = |c|2, we have
SPHERE(c + m) < SPHERE(c) ⇐⇒ � > 0, i.e., there is progress in the objective space iff there is progress towards
the (unique) optimum in the search space. The analysis of the (1+1) ES for SPHERE has shown that

P{��0||m| = �}�ε,

for a constant ε ∈ (0, 1
2 ) for n large enough

⇐⇒ � = O(|c|/√n),

i.e., the mutant of c is closer to a predefined point (here the origin) with probability �(1) iff the length of the isotropic
mutation vector is at most an O(1/

√
n)-fraction of the distance between c and this point. On the other hand,

P{��0||m| = �}� 1
2 − ε,

for a constant ε ∈ (0, 1
2 ) for n large enough

⇐⇒ � = �(|c|/√n),

in other words, the mutant obtained by an isotropic mutation of c is closer to a predefined point (here again the origin)

with a constant probability strictly smaller than 1
2 iff the length of the mutation vector is at least an �(1/

√
n)-fraction

of the distance between c and this point. (The actual constant ε correlates with the constant in the O-notation resp. in
the �-notation.)

Since |m̃|, the length of a Gaussian mutation, is �-distributed with n degrees of freedom, the expected length of the
mutation vector m equals s ·E[|m̃|] = s ·√n·(1−�(1/n)). Moreover, with �̄ := E[|m|] we have P{||m| − �̄ |�� · �̄ }�
�−2/(2n − 1) for � > 0, in other words, there is only small deviation in the length of a Gaussian mutation; e.g., with
probability 1 − O(1/n) the mutation vector’s actual length differs from its expected length by no more than ±1%. This
implies that—when scaled Gaussian mutations are used—the following three events/conditions are equivalent:
• s = �(|c|/n) ,
• �̄ = �(|c|/√n),
• ∃ constant ε > 0 such that P{��0} ∈ [ε, 1

2 − ε] for n large enough,
i.e., P{��0} is �(1) as well as 1

2 − �(1).
This equivalence will be of great help in the upcoming reasonings.

Concerning the (expected) spatial gain towards the optimum, recall that for SPHERE a mutation is accepted by elitist
selection iff ��0, i.e., negative gains are zeroed out so that the expected spatial gain of a step is E[� · 1{��0}]. For
scaled Gaussian mutations, we know that E[� · 1{��0}] is O(�̄/

√
n). Moreover, we know that E[� · 1{��0}] is O(|c|/n)

for any isotropic mutation, i.e., not only for an arbitrarily scaled Gaussian mutation, but for any distribution of |m|.
On the other hand, for scaled Gaussian mutations E[� · 1{��0} | s = �(|c|/n)] is �(�̄/

√
n), i.e. �(|c|/n). In other

words, the distance from the optimum is expected to decrease by a �(1/n)-fraction if s is chosen appropriately.
Furthermore, in this situation for any constant � > 0 the distance decreases (at least) by an �/n-fraction with probability
�(1).

Concerning the mutation adaptation by the 1
5 -rule for SPHERE, note that during an observation phase (in which the

scaling factor s is kept unchanged) the success probabilities are non-increasing since the distance from the optimum
is non-increasing. Hence, if P{��0} is smaller than, say, 0.1 in the first step of a phase, then the expected number
of successful steps (of the n steps) in this phase is smaller than 0.1n and, by Chernoff bounds, w. o. p. less than 0.2n

steps are observed so that s is halved. Analogously, if P{��0} is larger than, say, 0.3 in the last step of a phase then
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the expected number of successful steps in this phase is larger than 0.3n and, again by Chernoff bounds, w. o. p. more
than 0.2n steps are observed so that s is doubled. This can be used to show that w. o. p. the 1

5 -rule is able to keep the
scaling factor optimal up to constant factors, i.e. s = �(|c|/n), for an arbitrary polynomial number of steps, implying
that in each of these steps P{��0} is �(1) as well as 1

2 − �(1).

3. Fitness landscapes that are close to being spherically symmetric (bounded bandwidth/condition number)

In this section, we are going to formally prove that “slightly deforming” SPHERE does not affect the order of the
algorithmic runtime of a (1+1) ES using isotropic mutations. More important than this result itself, however, the line
of reasoning will be made clear so that we can concentrate on the crucial difference that “an unbounded deformation”
of SPHERE makes in the subsequent section.

As we have already noted in the introduction of the fitness landscape, the level set E�2 forms a hyper-ellipsoid. When

we want to utilize the results for SPHERE, we need to know what the maximum and the minimum curvature at points
in E�2 are. Since �1 � · · · ��n, it is sufficient to consider the plane curve defined by the intersection of E�2 with the

x1-xn-plane. Let I denote this intersection, which forms a plane curve. All points in I satisfy �1x
2
1 + �nx

2
n = �2, i.e.

xn =
√

(�2 − �1 · x2
1 )/�n as a function of x1 ∈ [−�/

√
�1, �/

√
�1 ]. Since the curvature at a point in I (as a function

of x1) equals

d2xn/(dx1)
2

(1 + (dxn/dx1)2)3/2
= �1 · �n · �2

(�n · �2 + (�1 − �n) · �1 · x2
1 )3/2

,

the maximum curvature of the plane curve I equals �1/(
√

�n · �) at the point (0, . . . , 0, �/
√

�n), which has maximum
distance from the optimum/the origin w. r. t. all points in E�2 . Analogously, the minimum curvature equals �n/(

√
�1 ·�)

at the point (�/
√

�1, 0, . . . , 0), which has minimum distance from the optimum w. r. t. all points in E�2 .

In particular, this result on the curvature tells us that for any c in E�2 , there is a hyper-sphere S+ � c with radius

� · √�1/�n such that the lower level set E
<�2 lies completely inside S+ (i.e. S+ ∩ E

<�2 = ∅ and E
<�2 is a subset

of the open hyper-ball B+ whose missing boundary is S+), and that there is another hyper-sphere S− � c with radius

� · √�n/�1 such that the open ball B− whose missing boundary is S− is a subset of the lower level set E
<�2 . Note

that, for PDQFs with level sets of bounded bandwidth, the radii of S+ and S− are of the same order, namely �(|c|).
This will be crucial in the following.

Now consider a mutation c′ := c + m. Then c′ is as good as c iff c′ ∈ E�2 and better than c iff c′ ∈ E
<�2 . Hence, the

mutation is accepted iff c′ ∈ E��2 := E�2 ∪ E
<�2 . As we have just seen, c′ ∈ E��2 ⇒ c′ ∈ B+ ∪ S+, and therefore

we obtain

E
[
� · 1{f (c′)�f (c)}

]= E
[
� · 1{c′∈E��2 }

]
�E

[
� · 1{c′ is at least as close to the center of S+ as c}

]
= E

[
� · 1{��0} | SPHERE(c) = �2�1/�

2
n

]
for the expected spatial gain—independent of the distribution of |m|, i.e., in particular, for any given scaling factor s
for a Gaussian mutation.

As noted in the preliminaries, the results for SPHERE have shown that in such a situation the expected spatial gain
is O(radius of S+/n), i.e. O((�/n)

√
�1/�n), independent of how the distribution of |m| is chosen. 4 However, we are

interested in how fast the f-value reduces during a run of the (1+1) ES rather than the distance from the optimum point.
Naturally, we obtain an upper bound if we assume that the spatial gain is realized completely along the component with

the heaviest weight �1. Hence, for an f-value of �2 we assume that the search were located at c = (�/
√

�1, 0, . . . , 0)

and that the mutant were located at c′ = (�/
√

�1 − ε · (�/n)
√

�1/�n, 0, . . . , 0) for some positive ε = O(1).

4 In fact, the expected gain is maximum if the RV |m| is concentrated on a certain value that is �(radius of S+/
√

n).
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Then

f (c′) = �1 ·
(

�√
�1

− � · ε ·√�1

n · �n

)2

= �1 · �2 ·
(

1

�1
− 2 · ε

n · �n

+ ε2 · �1

n2 · �2
n

)
��1 · �2 ·

(
1

�1
− 2 · ε

n · �n

)

= �2 ·
(

1 − 2 · ε · �1

n · �n

)
= f (c) ·

(
1 − O

(
�1/�n

n

))
.

Obviously, this upper bound is useful only when �1/�n = o(n). One reason for this is that the maximum radius of
curvature, which we have just used for the upper bound, is � ·√�1/�n, whereas the maximum radius of E�2 is only

�/
√

�n, i.e., the radius of S+ is by a factor of
√

�1/�n larger. However, for PDQFs of bounded bandwidth we have
(by definition) �1 �� · �n for a positive constant �, i.e. �1/�n = O(1), so that the upper bound on a step’s maximum
expected f-gain of O((f (c)/n)(�1/�n)) becomes O(f (c)/n)—which is the same order as for SPHERE. Consequently,
we obtain the same asymptotic lower bound on the runtime.

Theorem 2. Let a (1 + 1) ES using isotropic mutations minimize a PDQF of bounded bandwidth in Rn, i.e., the
corresponding condition number is O(1). Then, independently of the mutation adaptation, the number of steps to
reduce the approximation error to a 2−b-fraction, 1�b = poly(n), is �(b · n) in expectation and yet w. o. p.

Proof. Assume that the optimization starts at c ∈ Rn, and recall that the f-value is non-increasing during the
optimization (due to elitist selection). Then even when |m| is chosen optimally, the expected f-gain of a step is
O(f (c)/n) as we have just seen. Hence, there is a constant � > 0 such that the total expected f-gain in k := � · n

steps is greater than f (c)/5 but smaller than f (c)/4. By Markov’s inequality, with a probability of at least 1
2 , the total

gain in these k steps is smaller than f (c)/2. In other words, with a probability of at least 1
2 more than k steps are

necessary to halve the approximation error, and consequently, the expected number of steps to halve the approximation
error is larger than k · 1

2 = �(n). By iterating this argument using the linearity of expectation, we obtain a bound of
�(b · n) on the expected number of steps to halve the approximation error b times.

The next step is to apply Hoeffding’s bound to the total gain which a sequence of steps yields. Unfortunately, the
RVs corresponding to the single-step gains are not independent (which is not an issue above because of the linearity of
expectation). Recall the assumption that |m| were chosen optimally in each and every step; then the optimal choice for
|m| in the second step depends on the gain realized in the first step, for instance. However, also part of our best case
assumption is that c is, respectively, located at a point (in the respective level set) where the curvature is minimum (so
that the radius of the sphere that we use in the estimate, namely S+, is maximum, which again results in maximum
expected gain). As the f-value is non-increasing, we thus obtain an upper bound on the total gain of k subsequent
steps by adding up the gain of k independent instances of the first step. Therefore, let X1, . . . , Xk denote independent
instances of the RV corresponding to the f-gain in the first step, and let X := X1 + · · · + Xk . If 0�Xi �z > 0,
then [8] tells us that P{X�E[X] + v}� exp{−2(v/z)2/k} for v > 0. With v := E[X] this inequality becomes
P{X�2E[X]}� exp{−2(E[X]/z)2/k} =: p, and hence, the probability that k steps suffice to halve the approximation
error is not only bounded by 1

2 (as we have seen above) but also by p. If we can show that (E[X]/z)2 = �(n1+ε) for
some constant ε > 0, then p is exponentially small so that the arguments used above (for the bound on the expected
number of steps) yields that b · k = �(b · n) steps are necessary (to halve the approximation error b times) not only in
expectation but also w. o. p.

As we know from SPHERE that w. o. p. � = O(|c|/n1−�) for any positive constant �, substituting “n1−�” for
“n” in the estimation of f (c′), which precedes Theorem 2, yields that a step’s f-gain is w. o. p. O((f (c)/n1−�)

(�1/�n)), i.e. O(f (c)/n1−�), for any constant � > 0. Thus, when considering a polynomial number of steps, w. o. p. in
all these steps the f-gain is O(f (c)/n1−�)), respectively. We obtain

(E[X]/z)2 =
(

�(f (c))

O(f (c) · n�−1)

)2

= �(n2−2�),

which implies (as we have already seen above) that p is in fact exponentially small—and with it the probability to halve
the approximation error within k steps. �
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In the preceding lower-bound proof we assume optimal adaption of the length of the mutation vectors. Consequently,
the concrete adaptation mechanism is irrelevant, and moreover, the arguments for halving the approximation error can
simply be iterated to obtain a lower bound on the runtime necessary to reduce the approximation error to a certain
fraction. For an upper bound on the runtime, however, precisely these two aspects are the crucial points in an analysis.

Theorem 3. Let a (1+1) ES using Gaussian mutations adapted by a 1
5 -rule minimize a PDQF with bounded bandwidth

in Rn, i.e., the corresponding condition number is O(1). If the initialization is such that the success probability of the

mutation in the first step is �(1) as well as 1
2 − �(1), then w. o. p. the 1

5 -rule maintains this property for an arbitrary
polynomial number of steps.

Proof. The crucial property that will help us with the analysis is the bounded bandwidth. It implies that, for a given
f (c)-value of �2, either s is �(|c|/n) or it is not, independent of where the current search point c is located in the
ellipsoidal level set E�2 . Thus, we can switch back and forth between the assumptions that c is located at minimum or
at maximum distance from the optimizer (w. r. t. the given f-value). Equivalently (cf. Section 2), either s is such that
the probability of generating a better mutant is �(1) as well as 1

2 − �(1), or it is not—wherever c is located in E�2 .

For a fixed scaling factor s, we let pc := P{f (c′)�f (c)} denote the success probability (of the mutation in this step)
as well as

pmax
c := max

x∈Ef (c)
P{f (x′)�f (x)} and pmin

c := min
x∈Ef (c)

P{f (x′)�f (x)},

we may drop the subscript “c” in unambiguous situations. Thus, p ∈ [ε, 1
2 − ε] for a constant ε > 0 implies

ε′ �pmin �p�pmax � 1
2 − ε′ for a constant ε′ > 0 (because of the boundedness).

During a phase in a run of the (1+1) ES the scaling factor is kept unchanged, and since elitist selection is used, i.e.
the f-value is non-increasing, pmax as well as pmin are non-increasing during a phase, although p may increase from
one step to another within a phase. This enables us to apply the same reasoning to pmax and to pmin which was applied
to the success probability in the analysis of the minimization of SPHERE. This reasoning will be recapitulated in short
in the following.

We are going to show that (w. o. p. for an arbitrary polynomial number of steps) pmin = �(1), i.e., it does not drop

below a constant positive threshold, and that pmax = 1
2 − �(1) on the other hand.

Let p(i) denote the success probability in the first step of the ith phase. Assume that the mutation strength s is large
such that ε�pmax

(i) = �(1) for a constant ε, which we will choose appropriately small later, and n large enough. Since
pmax is non-increasing and p�pmax during a phase, in each step of this phase p�ε, and hence, we expect at most an
ε-fraction of the steps in this phase to be successful. By Chernoff bounds, w. o. p. less than a 2ε-fraction of the steps
are successful so that the scaling factor s is halved (we choose 2ε� 1

5 ), resulting in a larger success probability—when
comparing p(i+1) with the success probability in the last step of the ith phase. The crucial question is, however, whether
pmax

(i+1) is at least pmax
(i) . If this is the case, then pmin in the last step of the ith phase is the (lower) threshold for the

success probability we are aiming at (since pmax = �(1) ⇒ pmin = �(1) because of the boundedness). Here is the
point where the choice of ε comes into play. The (upper bound on the) (expected) number of successful steps in the
phase is proportional to ε, and since only successful steps can result in a gain, by choosing a smaller ε we can make
the phase’s total gain smaller. All in all, we can choose ε small enough such that the increase of the success probability
due to the halving of s (over)balances the (potential) decrease due to the phase’s (potential) spatial gain towards the
optimum. It remains to show that our choice satisfies ε = �(1). To this end we can use the lower bound on the runtime
we have already shown. Namely, the proof of Theorem 2 in Section 3 tells us that the spatial gain of a phase (of O(n)

steps) is such that after the phase the distance is at least a constant fraction of the initial one. This implies that the
success probability at the end of the phase is also at least a constant fraction of the initial one, i.e., if it is �(1) in the
first step, then it is �(1) also in the last step of the phase. This observation finishes the �(1)-threshold on the steps’
success probabilities.

Fortunately, the upper threshold of 1
2 − �(1) on the steps’ success probabilities is easier to show. Assume that the

mutation strength s is small such that in the last step of the jth phase the success probability is large, say, pmin ∈ [0.3, 0.4].
Since p�pmin �0.3 and during a phase (in which s is kept unchanged) pmin is non-increasing, we expect at least 30%
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of the steps in the jth phase to be successful. By Chernoff bounds, w. o. p. more than 20% successful steps are observed
so that s is doubled, resulting in a larger mutation strength and, as a consequence, in a smaller pmin in the first step of
the (j+1)th phase, compared to the last step of the jth phase, yet also compared to pmin

(j) , the success probability in the

first step of jth phase, because pmin is non-increasing during a phase. Then pmax
(j) is the upper threshold we are aiming

at. To see that pmax
(j) is at most 1

2 − �(1), recall that due to the boundedness pmin = 1
2 − �(1) ⇒ pmax = 1

2 − �(1),

and that due to the upper bound on the gain of a phase, we have pmin
(j) = 1

2 − �(1) if in the last step of the jth phase

pmin = 1
2 − �(1) (because the distance at the end of the phase is at least a constant fraction of the distance at the

beginning).
All together we have shown that w. o. p. in each of an arbitrary polynomial number of steps the success probability

is �(1) as well as 1
2 − �(1). �

Interestingly—and fortunately—, in the preceding proof of that the 1
5 -rule works, we merely need that the gain of a

phase is not too large. However, having proved that the 1
5 -rule works, we can now show that the gain of a phase is large

enough to obtain an upper bound on the runtime that asymptotically matches the more general (w. r. t. the adaptation)
lower bound obtained in Theorem 2 in Section 3.

Theorem 4. Let a (1+1) ES using Gaussian mutations adapted by a 1
5 -rule minimize a PDQF with bounded bandwidth

in Rn, i.e., the corresponding condition number is O(1). If the initialization is such that s = �(|c|/n), then the number
of steps to reduce the approximation error to a 2−b-fraction, 1�b = poly(n), is O(b · n) w. o. p.

Proof. First note that the assumption on the initialization implies that p(1) is �(1) as well as 1
2 − �(1) and that

Theorem 3 in Section 3 tells us that this also holds (at least w. o. p.) for an arbitrary polynomial number of steps. Hence,
s = �(|c|/n) in all these steps.

Analogous to the arguments preceding Theorem 2 in Section 3, we have f (c′)�f (c) ⇔ c′ ∈ E��2 ⇐ c′ ∈ B−∪S−,
and hence, we obtain

E
[
� · 1{f (c′)�f (c)}

]= E
[
� · 1{c′∈E��2 }

]
�E

[
� · 1{c′ is at least as close to the center of S− as c}

]
= E

[
� · 1{��0} | SPHERE(c) = �2�n/�

2
1

]

for the expected spatial gain of a step— for any distribution of |m|, i.e., in particular for scaled Gaussian mutations.
As noted in the preliminaries, the results for SPHERE have shown that the spatial gain is �(radius of S−/n), i.e.

�((�/n)
√

�n/�1) which is �(�/n) because of the boundedness, in expectation as well as with probability �(1), if the
scaling factor s is such that S− is hit with a probability that is �(1) as well as 1

2 − �(1), which is actually the case as
we have seen. Moreover, even when such a spatial gain is realized completely along the component with the lightest
weight �n, it corresponds to an f-gain of an �(1/n)-fraction. Thus, each step reduces the approximation error by an
�(1/n)-fraction with probability �(1). By Chernoff bounds, in a phase of �(n) steps, the number of steps each of
which does actually reduce the f-value by an �(1/n)-fraction is �(n) w. o. p. Consequently, w. o. p. the approximation
error/the f-value is reduced by a constant fraction within a phase. In particular, w. o. p. a constant number of phases, i.e.
O(n) steps, suffice to halve the approximation error, so that finally in O(b) phases, i.e. O(b ·n) steps, the approximation
error is reduced to a 2−b-fraction w. o. p. �

Now that we know how and why the 1
5 -rule works on PDQFs with bounded bandwidth, we are ready to consider

deformations that result in ellipsoidal level sets with unbounded bandwidth. In this section it has not been necessary to
care about the actual location of the search point in its respective level set. And precisely the answer to this question,
where the trajectory of the search points is located in the fitness landscape, whether in a region of high or of low
curvature, will be the crucial point in the analysis of how the (1+1) ES using Gaussian mutations adapted by a 1

5 -rule
minimizes such an “ill-conditioned” function.
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4. Fitness landscapes that are far away from being spherically symmetric (unbounded bandwidth/condition
number)

We focus on the (1+1) ES using Gaussian mutations adapted by a 1
5 -rule in this section, and as mentioned in the

abstract, we will exemplarily consider the following class of (sequences of) PDQFs, where n ∈ 2N and � = �(1):

fn(x) := � · (x1
2 + · · · + xn/2

2) + xn/2+1
2 + · · · + xn

2.

Since fn(x) = � · SPHEREn/2(y) + SPHEREn/2(z) where y := (x1, . . . , xn/2) and z := (xn/2+1, . . . , xn), the aim is
to minimize the sum of two separate SPHERE functions, one in S1 = Rn/2 and one in S2 = Rn/2, having weight �
resp. 1. For short: f (x) = � · |y|2 + |z|2. Recall that the mutation vector m equals s · m̃. As each component of m̃ is
independently standard normal distributed, m1 := (m1, . . . , mn/2) and m2 := (mn/2+1, . . . , mn) are two independent
(n/2)-dimensional Gaussian mutations which are, respectively, scaled by the same factor s. Obviously, m1 only affects
y, whereas m2 only affects z, and thus, the f-value of the mutant equals � · |y + m1|2 + |z + m2|2.

Hereinafter, all results will be obtained w. r. t. the scenario described in the preceding paragraph.

x1

E

S

M

xn

Let d1 := |y| and d2 := |z| denote the distance from the origin/optimum in S1 resp. S2. Since Gaussian mutations as
well as SPHERE are invariant with respect to rotations of the coordinate system, we may rotate S1 and S2 such that we are
located at (d1, 0, . . . , 0) ∈ S1 resp. (0, . . . , 0, d2) ∈ S2. In other words, we may assume w. l. o. g. that the current search
point is located at (d1, 0, . . . , 0, d2) ∈ Rn, i.e., that it lies in the x1-xn-plane. In fact, we have just described a projection
ˆ : Rn → R2. Note that, due to the properties of f and Gaussian mutations, this projection only conceals irrelevant
information, i.e., all information relevant to the analysis is preserved. Thus, we can concentrate on the 2D-projection
as depicted in the figure. For some arguments, however, it is crucial to keep in mind that this projection is based on the
fact that the current search point, and also its mutant, can be assumed to lie in the x1-xn-plane w. l. o. g. (obviously, for
the mutant to lie in this plane, S1 and S2 must almost surely, i.e. with probability 1, be re-rotated).

4.1. Gain in a single step

In this section we have a closer look at the properties of a single Gaussian mutation in the ellipsoidal fitness landscape
we consider. Since � = �(1), � > 1 for n large enough, and therefore, we assume � > 1 hereinafter. Furthermore, “f ”
will also be used as an abbreviation of the f-value of the current individual and “f ′ ” stands for the mutant’s f-value.

Recall that f = �·d1
2+d2

2 (for the current search point) and f ′ = �·d ′
1

2+d ′
2

2 (for its mutant), where d ′
1 := |y+m1|

and d ′
2 := |z + m2|. The crucial point to the analysis is the answer to the question how d1, d2, and the scaling factor

s—and with it |m|—relate when the success probability of a step, i.e. the probability that the mutant is accepted, is
about 1

5 . In other words, how does the length of the mutation vector depend on d1 and d2, and how do d1 and d2 relate.

Since ∇f̂ (d1, d2) = (� 2 d1, 2 d2)
�, for a search point satisfying d1/d2 = 1/�, an infinitesimal change of d1 has the

same effect on f as an infinitesimal change of d2. Though the length of a mutation is not infinitesimal, this may be taken
as an indicator that the ratio d1/d2 will stabilize when using isotropic mutations, and indeed, it turns out that the process
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stabilizes w. r. t. d1/d2 = �(1/�). In this section, we will see that near the gentlest descent in our ellipsoidal fitness
landscape, namely for d1/d2 = O(1/�), a mutation succeeds with a probability that is �(1) as well as 1

2 − �(1) iff the
scaling factor s is �((

√
f /n)/�). Furthermore, asymptotically tight bounds on the expected f-gain of a single step in

such a situation will be obtained. Therefore, we will show that a mutation of a search point c for which d1/d2 = O(1/�)

with a mutation using a scaling factor s = �((
√

f /n)/�) in the ellipsoidal fitness landscape is “similar” to the mutation
of a search point x in the SPHERE scenario with SPHERE(x) = �(f/�2) (when using the same scaling factor).

We start our analysis at a point c with ĉ = (0, �), i.e. d1 = 0 and d2 = �, so that f = �2. Consequently, ĉ is located
at a point with gentlest descent w. r. t. all points with f-value �2, and hence, the curvature of the 2D-curve given by the
projection Ê of the n-ellipsoid E�2 = {x | f (x) = �2} ⊂ Rn, is maximum at ĉ. By a simple application of differential

geometry as in Section 3, we get that the curvature of this 2D-curve at ĉ equals �/�. Consequently, the radius of the

osculating circle (Ŝ in the figure of Section 4) equals �/�. As this circle Ŝ actually lies in the x1-xn-plane, it is the
equator of an n-sphere S with radius �/� (the center of which lies on the xn-axis, just like the current search point c).
Note that this sphere lies completely inside E such that S ∩ E = {c}. Thus, the probability that a mutation hits inside
S is a lower bound on the probability that f ′ �f , i.e.,

P{f ′ �f }
= P{c + m lies inside E}
�P{c + m lies inside S}
= P{|x + m|� |x| for some x with |x| = radius of Ŝ = �/�}
= P{SPHERE(x + m)�SPHERE(x) | SPHERE(x) = (�/�)2}.

In fact, our arguments yields that the above (in)equalities hold for any fixed length � of an isotropic mutation vector
m, i.e., if the probabilities are conditioned on the event {|m| = �}, respectively. Since � is arbitrary here and the radius
of S is independent of �, they remain valid when this condition is dropped.

For an upper bound on the probability that a mutation hits inside E, consider a mutation (vector) having length
� < 2� (since for ��2�, E lies inside M). Let M = {x | |c − x| = �} ⊂ Rn denote the mutation sphere consisting
of all potential mutants. Then M̂ is a circle (cf. the figure in Section 4) with radius � centered at ĉ. (Note that, though

c′ = c + m (where |m| = �) is uniformly distributed upon M, ĉ′ is not uniformly distributed upon M̂ .) Now consider

the curvature at a point in Ê ∩ M̂ = {z1, z2} (there are exactly two points of intersection since 0 < � < 2�). Simple

differential geometry shows that the curvature at zi is �� = �(�/�) if � = O(�/�). As the curvature at any point of

Ê that lies inside M̂ is greater than �� (since � > 1), ĉ as well as zi lie inside the osculating circle at z3−i which has
radius r� := 1/�� = �(�/�) if � = O(�/�). Thus, there is also a circle with radius r� passing through ĉ such that
z1 and z2 lie inside this circle. Consequently, the circle passing through z1, z2, and ĉ has a radius smaller than r�, and
again, this circle actually lies in the x1-xn-plane of the search space and is the image of the n-sphere having this circle
as an equator. Hence,

P{f ′ �f ||m| = �}�P{SPHERE(x + m)�SPHERE(x) | SPHERE(x) = (b · �/�)2, |m| = �},

where b = �(1) if � = O(�/�). (Besides, b ↘ 1, i.e. r� ↘ �/�, as � ↘ 0.)

Recall that we assumed ĉ = (0, �) ∈ R2, i.e. d1 = 0 and d2 = �, in the above reasoning. The estimates we
have made to bound the probability that a mutation hits inside the n-ellipsoid E, however, remain valid as long as

d1/d2 = O(1/�) as we will see: since �/� is the maximum curvature of Ê, there is always a circle Ŝ with radius �/�
lying inside Ê such that Ŝ ∩ Ê = {ĉ}. And since Ŝ is in fact an equator of an n-sphere S, S lies completely inside E such
that S ∩ E = {c}. For the upper bound, we must merely consider the zi at which the curvature is smaller, and indeed,
it turns out that as long as d1/d2 = O(1/�) and � = O(�/�), the curvature �� remains �(�/�).

Hence, when f (c) = �2 such that c satisfies d1/d2 = O(1/�), we are in a situation resembling (w. r. t. the success
probability of a Gaussian mutation with a fixed scale) the minimization of SPHERE at a point having distance �(�/�)
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from the optimum point. Concerning the 1
5 -rule, we then know (cf. Section 2) that

P{f ′ �f } is �(1) as well as 1
2 − �(1)

⇐⇒ s = �((�/�)/n)

⇐⇒ �̄ = �((�/�)/
√

n).

Thus, we are now going to investigate the gain of a step when f = �2 and s = �((�/�)/n). As we have seen above,
there exists an n-sphere S with radius r := �/� lying completely in E such that S ∩ E = {c}. Again owing to the
results for SPHERE, we know that a mutation having length � = �(r/

√
n) hits with probability �(1) a hyper-spherical

cap C ⊂ M containing all points of M that are at least �(r/n) closer to the center of S than c. Consequently, with
probability �(1) the mutant lies inside E such that its distance from E is �(r/n), i.e. �((�/�)/n). If we pessimistically
assume that this spatial gain were realized along the gentlest descent of f, namely d1 = 0 as well as d ′

1 = 0 so that
d ′

2 = d2 − �((�/�)/n), we obtain that with probability �(1)

f ′ � (� − �((�/�)/n) )2

= �2 − 2b�2/(�n) + b2�2/(�n)2 for some b = �(1)

= �2 − b(2 − b/(�n))︸ ︷︷ ︸�2/(�n)

= �2 − �̄(1) �2/(�n)

= f − �(f/(�n)).

Let c′′ := arg min{f (c) , f (c′)} denote the search point that gets selected by elitist selection. Since mutants with a
larger f-value are rejected, i.e. f ′′ �f , this implies for the expected f-gain of a step

E
[
f − f ′′

∣∣∣s = �((
√

f /n)/�)
]

= �(f/(�n)).

Due to the pessimistic assumptions, this lower bound on the f-gain is valid only for s = �((
√

f /n)/�), yet it holds
independently of the ratio d1/d2, i.e. independently of where c is located in E�2 . A spatial gain of �(f/(�n)) could
result in a much larger f-gain, though. If d1/d2 = O(1/�), however, the f-gain is also O(f/(�n)) as we will see.

Therefore, let d1 = b · �/� with b = O(1) and still f = � · d1
2 + d2

2 = �2. Owing to the reasoning for the upper
bound on the success probability of a step, we know that there is an n-sphere S with radius r = �(�/�) such that c ∈ S

and I := M ∩ E ∈ S, where I is the boundary of the hyper-spherical cap C ⊂ M lying inside E. Owing to the results
for SPHERE, we know that E[dist(c′, I ) · 1{c′∈C}] = O(r/n) even for an isotropic mutation of optimum length (resulting
in minimum expected distance of the selected search point c′′ from the center of S). In other words, we know that if
a mutation hits inside E, its expected distance from E is O(r/n) = O((�/�)/n) anyway. Thus, if we optimistically
assume that the spatial gain were realized completely in S1, i.e. completely on the �-weighted SPHEREn/2, (so that
d ′

2 = d2, implying d ′′
2 = d2), we obtain

E
[
f ′′ | d1/d2 = O(1/�)

]
= E

[
� · d ′′

1
2 + d ′′

2
2 | d1/d2 = O(1/�)

]
�� · (d1 − O((�/�)/n)

)2 + d2
2

= � · (b �/� − O((�/�)/n)
)2 + d2

2

�� · ((b �/�)2 − 2b(�/�) · O((�/�)/n)
)+ d2

2

= � · d1
2 − O(�2/(� n)) + d2

2

= �2 − O(�2/(� n))

= f − O(f/(� n)).

This upper bound on the expected f-gain of a step holds for d1/d2 = O(1/�) only, yet for any length of an isotropic
mutation, which is converse to the lower bound. However, altogether we have proved the following lemma on the spatial
gain of a step when the search (point) is located in the region consisting of all search points for which d1/d2 = O(1/�).
(Recall the initial guess that the search stabilizes in this region.)
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Lemma 5. If the current search point is such that d1/d2 = O(1/�), then P{f ′ �f } is �(1) as well as 1
2 − �(1) if and

only if s, the scaling factor of the Gaussian mutation, is �((
√

f /n)/�).
If d1/d2 = O(1/�) and s = �((

√
f /n)/�), then E[f − f ′′] = �((f/n)/�), and furthermore, f −f ′′ = �((f/n)/�)

with probability �(1).

4.2. Multi-step behavior

The preceding lemma on the single-step behavior enables us to obtain theorems on the runtime of the (1+1) ES for
the “unbounded” scenario considered here in the same way as we did in Section 3 for PDQFs with bounded bandwidth.
Namely, if d1/d2 = O(1/�) during a phase of n steps (an observation phase of the 1

5 -rule) and s = �((
√

f /n)/�), i.e.
P{f ′ �f } is �(1) as well as 1

2 −�(1), at the beginning of this phase, then we expect �(n) steps each of which reduces
the f-value by �(f/(� n)). By Chernoff bounds, there are �(n) such steps w. o. p., and thus, the f-value, and with it the
approximation error, is reduced w. o. p. by an �(1/�)-fraction in this phase. Then w. o. p. after �(�) consecutive phases
the approximation error is halved—if during all these phases d1/d2 = O(1/�). Since, up to now, the arguments follow
the ones in Section 3, in particular the reasoning on the 1

5 -rule can be adopted, and we obtain the following result:

Theorem 6. If d1/d2 = O(1/�) in the complete optimization process and the initialization is such that
s = �((

√
f (c)/n)/�), then w. o. p. the number of steps/f-evaluations to reduce the initial f-value/approximation

error to a 2−b-fraction, 1�b = poly(n), is �(b · � · n).

Obviously, the assumption “d1/d2 = O(1/�) in the complete optimization process” lacks any justification and is,
therefore, objectionable. It must be replaced by a much weaker assumption on the starting conditions only. Thus, the
crucial point in the analysis is the question why should the ratio d1/d2 remain O(1/�) (once this is the case). This
crucial question will be tackled by a rigorous analysis in the remainder of this article.

Let �1 := d1 − d ′
1 and �2 := d2 − d ′

2 denote the spatial gain of the mutant towards the origin in S1 resp. S2. Then
d ′

1/d
′
2 for the mutant is smaller than d1/d2 for its parent iff �1/d1 > �2/d2. Unfortunately, �1 and �2 correlate because

m1 and m2 are adapted using the same scaling factor s. Moreover, we must take selection into account since only certain
combinations of �1 and �2 will be accepted. To see which combinations are actually accepted, note that

f ′ = � (d1 − �1)
2 + (d2 − �2)

2 = �d2
1 − �2d1�1 + ��2

1 + d2
2 − 2d2�2 + �2

2,

and hence,

f ′ �f ⇐⇒ f ′ − f �0 ⇐⇒ −�2d1�1 + ��2
1 − 2d2�2 + �2

2 �0.

Let � be defined by �/� = d1/d2. Then the latter inequality is equivalent to

−2�d2�1 + ��2
1 − 2d2�2 + �2

2 � 0

⇐⇒ −��1 + ��2
1

2d2
� �2 − �2

2

2d2

⇐⇒ −��1

(
1 − �1

2d1

)
� �2

(
1 − �2

2d2

)
(using d2 = � · d1/�).

Thus, when using elitist selection, the mutant is accepted iff the last inequality holds. Whenever a mutation satisfying
−��1 > �2 is accepted, then necessarily

1 − �1

2d1
< 1 − �2

2d2
⇔ �1

d1
>

�2

d2
⇔ �1 >

d1

d2
�2 ⇔ �1 >

�

�
�2,

implying that �1 > 0 > �2. Consequently, such a step surely results in d ′′
1 /d ′′

2 < d1/d2, i.e. �′′ < �, and hence, in the
following we may concentrate on the accepted mutations for which −��1 ��2.
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So, let us assume for a moment that the mutant replaces/becomes the current individual iff −��1 ��2. As �3−i ,
i ∈ {1, 2}, is random, E[�i · 1{−��1 ��2}] is a random variable. For instance, the RV E[�1 · 1{−��1 ��2}] takes the value

E[�1 · 1{−��1 �x}] whenever the RV �2 happens to take the value x. We are interested in E[E[�i · 1{−��1 ��2}]]
= E[di − di

′′], the expected reduction of the distance from the optimum in Si in a step. In particular, E[d1
′′]/E[d2

′′]�
d1
/
d2 (for d1, d2 > 0) iff the expected relative gain in S1 is at least as large as the one in S2, i.e., iff

E
[
E
[
�1 · 1{−��1 ��2}

]]
/d1 �E

[
E
[
�2 · 1{−��1 ��2}

]]
/d2

⇐⇒ E
[
E
[
�1 · 1{−��1 ��2}

]] · � �E
[
E
[
�2 · 1{−��1 ��2}

]] · �.

In order to prove that this inequality holds for ���∗ for some constant �∗, we aim at a lower bound on
E[E[�1 · 1{−��1 ��2}]] and at an upper bound on E[E[�2 · 1{−��1 ��2}]] in the following. Note that

E
[
E
[
�i · 1{−��1 ��2}

]] = E
[
E
[
�i · 1{−��1 ��2} · 1{�i<0}

] · 1{�3−i<0}
]

+ E
[
E
[
�i · 1{−��1 ��2} · 1{�i<0}

] · 1{�3−i �0}
]

+ E
[
E
[
�i · 1{−��1 ��2} · 1{�i �0}

] · 1{�3−i<0}
]

+ E
[
E
[
�i · 1{−��1 ��2} · 1{�i �0}

] · 1{�3−i �0}
]

and that E[E[�i · 1{−��1 ��2} · 1{�i<0}] · 1{�3−i<0}] = 0 since the three indicator inequalities describe the empty set.
Since �1, �2 �0 ⇒ −��1 ��2,

E
[
E
[
�i · 1{−��1 ��2} · 1{�i �0}

] · 1{�3−i �0}
] = E

[
E
[
�i · 1{�i �0}

] · 1{�3−i �0}
] = E

[
�i · 1{�i �0}

] · P{�3−i �0}.
Thus, for the expected gain of a step in Si

E
[
E
[
�i · 1{−��1 ��2}

]] = E
[
�i · 1{�i �0}

] · P{�3−i �0}
+ E

[
E
[
�i · 1{−��1 ��2} · 1{�i �0}

] · 1{�3−i<0}
]

+ E
[
E
[
�i · 1{−��1 ��2} · 1{�i<0}

] · 1{�3−i �0}
]
.

Since we aim at a lower bound on E[E[�1 · 1{−��1 ��2}]], we may ignore E[E[�1 · 1{−��1 ��2} · 1{�1 �0}] · 1{�2<0}]
(since it is non-negative anyway), and moreover, we may pessimistically assume (when � > 0) that �1 = −x/�
whenever �2 happens to equal x�0, implying

E[E[�1 · 1{−��1 ��2} · 1{�1<0}] · 1{�2 �0}]� − E[E[�2 · 1{−��1 ��2} · 1{�2 �0}] · 1{�1<0}]
/
�.

Since furthermore

E
[
E
[
�2 · 1{−��1 ��2} · 1{�2 �0}

] · 1{�1<0}
]
�E

[
E
[
�2 · 1{�2 �0}

] · 1{�1<0}
] = E

[
�2 · 1{�2 �0}

] · P{�1 < 0},
we obtain the following lower bound for the expected gain of a step in S1 (on the �-weighted SPHEREn/2):

E[E[�1 · 1{−��1 ��2}]] � E[�1 · 1{�1 �0}] · P{�2 �0} − E[�2 · 1{�2 �0}] · P{�1 < 0}/�. (1)

For the expected gain of a step in S2 (on the 1-weighted SPHEREn/2), however, we will use the trivial upper bound

E[E[�2 · 1{−��1 ��2}]]�E[�2 · 1{�2 �0}]. (2)

With the help of these two bounds we can now proof that the relative gain of a step in S1 becomes larger than the one
in S2 when d1/d2 exceeds �∗/� for some �∗ that is indeed O(1).

Lemma 7. If P{�1 �0} and P{�2 �0} are �(1), there exists a constant �∗ such that for d1/d2 ��∗/� yet
d1/d2 = o(1)

E[E[�1 · 1{f ′ �f }]]
/
d1 �� · E[E[�2 · 1{f ′ �f }]]

/
d2

for any constant � for n large enough.
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Proof. Recall that f ′ �f ∧ −��1>�2 implies �1>0>�2. Consequently, all (�1, �2)-tuples zeroed out by 1{−��1 ��2}
but kept by 1{f ′ �f } are in R>0 × R<0. Analogously, f ′ > f ∧ −��1 ��2 implies �1 < 0 < �2 so that all (�1, �2)-
tuples kept by 1{−��1 ��2} but zeroed out by 1{f ′ �f } are in R<0 × R>0. Hence,

E[E[�1 · 1{f ′ �f }]]�E[E[�1 · 1{−��1 ��2}]] and

E[E[�2 · 1{f ′ �f }]]�E[E[�2 · 1{−��1 ��2}]].
As d1 · � = d2 · � by definition, we have to show that, if P{�1 �0} and P{�2 �0} are �(1), there exists a constant �∗
such that for ���∗ yet � = o(�) and n large enough

� · E[E[�1 · 1{f ′ �f }]] � � · � · E[E[�2 · 1{f ′ �f }]].
Using the lower/upper bound on the expected gain of a step in S1 resp. S2, namely the inequalities (1) and (2), it is
sufficient to show that

E[�1 · 1{�1 �0}] · P{�2 �0} − E[�2 · 1{�2 �0}]
/
��E[�2 · 1{�2 �0}] · � · �/�

in such situations. Since P{�1 �0} and P{�2 �0} are �(1) (by assumption), E[�1 · 1{�1 �0}] and E[�2 · 1{�2 �0}] are
of the same order, namely �(�̄/

√
n). Thus, we can choose a constant �∗ such that the LHS of the preceding inequality

(and with it E[E[�1 · 1{f ′ �f }]]) is at least E[�1 · 1{�1 �0}] · P{�2 �0}/2 for ���∗ (and n large enough). Thus, for

���∗ the LHS is �(�̄/
√

n), whereas the RHS is o(�̄/
√

n) since � · �/� = o(1) by assumption. This directly implies
that the inequality holds for n large enough. �

Now, the preceding Lemma tells us that when the current search point is located at a point for which ���∗, then the
expected relative gain (of the next step) towards the optimum in S1 (on the �-weighted SPHEREn/2) is, for instance, twice
as large as the one in S2 (for n large enough). Having in mind that the variations of those gains are small, it becomes
apparent that � is more likely to decrease than to increase in such a step. Formally, we obtain that the probability that
� does not decrease in a small number of such steps is exponentially small:

Lemma 8. Let the scaling factor s be fixed. If in the ith step �[i] ��∗ yet �[i] = o(�) and P{�1 �0} as well as P{�2 �0}
are �(1), then (for n large enough) w. o. p. after at most n0.3 steps the search is located at a point for which � < �[i],
and furthermore, w. o. p. ���[i] + O(�[i]/n0.6) in all intermediate steps.

Proof. We begin by proving the second claim. Let us assume that, starting with the ith step, ���[i] for k�n0.3 steps.

Recall that, due to elitist selection, the f-value is non-increasing. Since d2 > d
[i]
2 ∧ f �f [i] implies d1 < d

[i]
1 , which

again implies �/� = d1/d2 < d
[i]
1 /d

[i]
2 = �[i]/�, we have just proved that (surely) d2 �d

[i]
2 during these k steps. Since

(for any choice of the length of an isotropic mutation) in a step w. o. p. �2 = O(d2/n0.9), in all k�n0.3 steps

w. o. p. d2 �d
[i]
2 − k · O(d

[i]
2 /n0.9)�d

[i]
2 − O(d

[i]
2 /n0.6), i.e., d2 = d

[i]
2 (1 − 	) for some 	 = O(n−0.6), respectively.

Concerning an upper bound on d1, we have

f = � d1
2 + d2

2 = � d1
2 +

(
d

[i]
2 − 	d

[i]
2

)2
�f [i] = � d

[i]
1

2 + d
[i]
2

2
,

and hence,

� d1
2 � � d

[i]
1

2 + (2	 − 	2) d
[i]
2

2

⇔ d1
2 � d

[i]
1

2 + (2	 − 	2)
d

[i]
2

2

�

= d
[i]
1

2 + (2	 − 	2)
d

[i]
1

2

�[i]

= d
[i]
1

2
(

1 + 	(2 − 	)

�[i]

)
.
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Since 	(2 − 	)/�[i] is O(	), i.e. O(n−0.6), we finally obtain that in all k steps

�

�
= d1

d2
�

d
[i]
1

d
[i]
2

·
√

1 + O(n−0.6)

1 − O(n−0.6)
= �[i]

�
· (1 + O(n−0.6)).

Now we are ready for the proof of the lemma’s first claim. Therefore, assume that ���[i] ��∗ for n0.3 + 1 steps.
We are going to show that the probability of observing such a sequence of steps is exponentially small. Note that,
since w. o. p. d2 �d

[i]
2 (1 − 	) as we have seen, this assumption implies that also w. o. p. d1 �d

[i]
1 (1 − 	), i.e., w. o. p.

d1 = d
[i]
1 −O(d

[i]
1 /n0.6) in all n0.3 steps. Let X[k]

j , j ∈ {1, 2}, denote the RV �j · 1{f ′ �f } in the (i−1+k)th step (so that

E[Xj ] = E[E[�j · 1{f ′ �f }]]). Then, by choosing � = 2 in Lemma 7, for 1�k�n0.3, E[X[k]
1 ]/d[k]

1 �2 · E[X[k]
2 ]/d[k]

2 ,
i.e.

� · E
[
X

[k]
1

]
�2 · �[k] · E

[
X

[k]
2

]
�2 · �[i] · E

[
X

[k]
2

]
.

Let G
[k]
j := X

[1]
j + · · · + X

[k]
j denote the total gain of the k steps w. r. t. dj . By linearity of expectation, E[G[k]

1 ]/d[i]
1 �

2·E[G[k]
2 ]/d[i]

2 for 1�k�n0.3; however, the goal is to show that P{G[k]
1 /d

[i]
1 �G

[k]
2 /d

[i]
2 for 1�k�n0.3} is exponentially

small.
Therefore, we will assume the worst case (w. r. t. to the analysis, i.e. the best case w. r. t. the chance of observing such

a sequence) that E[X[k]
1 ]/d[i]

1 = 2 · E[X[k]
2 ]/d[i]

2 in each step. To see that this is in fact the worst case, consider a search

point x for which ���[i], i.e. d1/d2 > d
[i]
1 /d

[i]
2 , such that � ·E[X1] > 2 · � ·E[X2]. Now consider a search point x̃ with

f (̃x) = f (x) but �̃ < �, i.e., d̃1 < d1 and d̃2 > d2. Owing to the results for SPHERE, we know that, for an isotropic

mutation of an arbitrary fixed length �j , for any potential fixed gain g ∈ (−�j , �j ), P{�j �g} strictly increases with dj

(for dj > �j ). Consequently, (independently of the distribution of |m|) �̃1 is stochastically dominated by �1, whereas

�̃2 stochastically dominates �2. This implies that X1 dominates X̃1, whereas X2 is dominated by X̃2 (in particular, we

have E[X1] < E[X̃1] and E[X2] > E[X̃2]).
As we have just seen, we may pessimistically assume that in each step the search is located at a point for which

� · E[X1] = 2 · � · E[X2]. Hence, E[G[k]
1 ]/d[i]

1 = 2 · E[G[k]
2 ]/d[i]

2 . Let Gj := G
[n0.3]
j . Since 1.2/0.8 = 1.5 < 2, it is

sufficient to show that w. o. p. G1 �0.8 · E[G1] and w. o. p. G2 �1.2 · E[G2]. The Hoeffding bounds [8]

(cf. Section 2.6.2 of [9]) state that, for X
[k]
j ∈ [aj , bj ] and tj > 0,

P{G1 − E[G1]� − n0.3 · t1} � exp

(−2 · n0.3 · t1
2

(b1 − a1)2

)
and

P{G2 − E[G2]�n0.3 · t2} � exp

(−2 · n0.3 · t2
2

(b2 − a2)2

)
.

For tj = 0.2 · E[Gj ]/n0.3, both exponents equal

−0.08 · n−0.3 · E[Gj ]2/(bj − aj )
2 = − �(n−0.3) ·

(
E[Gj ]
bj − aj

)2

,

respectively. Therefore, our goal is to show that E[Gj ]/(bj − aj ) = �(n0.2).

First we concentrate on E[G1]. Since G1 is the sum of n0.3 RVs X
[k]
1 , it suffices to show that E[X[k]

1 ]/(b1 − a1) =
�(n−0.1) for 1�k�n0.3. In the following, we assume that d1 = d

[i]
1 ± O(d

[i]
1 /n0.6) and d2 ∈

[
d

[i]
2 − O(d

[i]
2 /n0.6), d

[i]
2

]
since we have seen (in the proof of the lemma’s second claim) that this happens w. o. p. Owing to the results for SPHERE,
we know that P{�j �0} = �(1) implies that the scaling factor s is O(dj /n), which results in �̄j = O(dj /

√
n), and that,

under these conditions, w. o. p. |�j | = O(�̄j /n0.4). Recall that E[�1 · 1{f ′ �f }] is at least E[�1 · 1{�1 �0}] ·P{�2 �0}/2.

Since P{�2 �0} = �(1) in ith step and d2 �d
[i]
2 (1 − O(n−0.6)) in all n0.3 steps, in each of these steps P{�2 �0} =

�(1). Hence, E[X1] = �(E[�1 · 1{�1 �0}]) in each of the n0.3 steps. Owing to the results for SPHERE, we know (since
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�̄1 = O(d1/
√

n) as we have seen) that E[�1 · 1{�1 �0}] = �(�̄1/
√

n) so that E[X1] = �(�̄1/
√

n). As a consequence,
E[G1] = n0.3 · �(�̄1/

√
n) = �(�̄1/n0.2) and b1 − a1 = O(�̄1/n0.4), implying E[G1]/(b1 − a1) = �(n0.2).

Concerning a lower bound on E[G2], recall that E[G1]/d[i]
1 = 2 ·E[G2]/d[i]

2 . Thus, E[G2] = E[G1] ·d[i]
2 /(2 ·d[i]

1 ) =
�(�̄1/n0.2) · �(�/�[i]). As �̄1 = �̄2 and (by assumption) �[i] = O(�), we have E[G2] = �(�̄2/n0.2). Since

b2 − a2 = O(�̄2/n0.4) (see above), E[G2]/(b2 − a2) = �(�̄2/n0.2)/O(�̄2/n0.4) is also �(n0.2).

All in all, our initial assumption that ���[i] ��∗ for n0.3 + 1 steps implies that w. o. p. for the first n0.3 steps
G1/G2 > �[i]/�, i.e., that w. o. p. after at most n0.3 steps � drops below �[i]. Thus, the sequence of steps we assumed
to be observed happens only with an exponentially small probability. �

Since the 1
5 -rule keeps the scaling factor unchanged for n steps, we can virtually partition each such observation

phase in n/n0.3 = n0.7 sub-phases to each of which this lemma applies. Since O(�[i]/n0.6)��[i] for n large enough,

the preceding lemma shows: when starting at a point with �[0] = O(1), i.e. d[0]
1 /d

[0]
2 = O(1/�), then � remains smaller

than 2 · max{�[0], �∗} = O(1) w. o. p. for any polynomial number of steps. Incorporating these new insights into the

reasoning for the 1
5 -rule known from the analysis of SPHERE finally enables us to replace the objectionable condition

“d1/d2 = O(1/�) in the complete optimization process” in Theorem 6 in Section 4.2 by “d1/d2 = O(1/�) for the
initial search point”—yielding the main result on the runtime of the (1+1) ES on the quadratic forms considered:

Theorem 9. If the initialization is such that s = �(
√

f (c)/(n · �)) and d1/d2 = O(1/�), then w. o. p. the number of
steps/f-evaluations to reduce the initial approximation error/f-value to a 2−b-fraction, 1�b = poly(n), is �(b · � · n).

Knowing that � does never (w. o. p. for any polynomial number of steps) exceed 2 · max{�[0], �∗} is sufficient to obtain
this theorem. If in the first step �[0] is considerably larger than �∗, however, we would like to know that there is a drift
towards smaller �, namely towards �∗. And in fact, a closer look at the arguments in the proof of Lemma 8 reveals that
the same arguments show that the drift towards smaller � is that strong when ��2 ·�∗ that w. o. p. � drops by a constant
fraction within at most n steps:

Lemma 10. Let the scaling factor s be fixed. If P{�1 �0}, 1
2 − P{�1 �0}, P{�2 �0} are �(1), respectively, then for

n large enough: if in the ith step �[i] �2 · �∗ yet �[i] = o(�), then w. o. p. after at most n steps the search is located at a
point with ���[i] − �(�[i]).

Proof. Choosing � = 3 in Lemma 7, we obtain � · E[E[�1 · 1{f ′ �f }]]�3 · � · E[E[�2 · 1{f ′ �f }]] for n large enough.
Assume that �[i] �2�∗ and ���∗ for n steps (if � drops below �∗ within these n steps, there is nothing to show since �
has been at least halved). Following the same arguments used in the proof of Lemma 8 in Section 4.2 (except for Gj

now being the sum of n instead of n0.3 RVs), we obtain that w. o. p. G1/G2 > 2 · �[i]/�, and hence, after these n steps
w. o. p.

d1

d2
= d

[i]
1 − G1

d
[i]
2 − G2

<
d

[i]
1 − G1

d
[i]
2 − G1 · �/(2 · �[i])

= d
[i]
1 − G1

d
[i]
1 · �/�[i] − G1 · �/(2 · �[i])

= d
[i]
1 − G1

d
[i]
1 − G1/2

· �[i]

�

=
(

1 − G1/2

d
[i]
1 − G1/2

)
· d

[i]
1

d
[i]
2

.

Thus, we must finally show that G1 = �(d
[i]
1 ). Therefore, recall that G1 is the sum of n RVs X

[k]
1 (namely �1 · 1{f ′ �f }

in the (i−1+k)th step, respectively). In the following we consider a single step.



J. Jägersküpper / Theoretical Computer Science 361 (2006) 38 –56 55

As shown in the proof of Lemma 8, E[�1 · 1{f ′ �f }] = �(E[�1 · 1{�1 �0}]) under the given assumptions, and since
P{�1 �0} is �(1) as well as 1

2 − �(1) by assumption, we know (cf. Section 2) that E[�1 · 1{�1 �0}] = �(d1/n). All
in all, the Lemma’s assumptions ensure that E[�1 · 1{f ′ �f }] = �(d1/n) in a step.

Hence, E[G1] = n · �(d1/n) = �(d1), and by applying Hoeffding’s bound just like in the proof of Lemma 8, we
finally obtain that G1 is �(E[G1]), i.e. �(d

[i]
1 ), w. o. p. �

This lemma shows that � drops very quickly—if the lemma’s conditions are met. Utilizing the results for SPHERE

just as in Section 3, it is simple to check that the condition “P{�1 �0} and 1
2 −P{�1 �0} are �(1)” is in fact ensured by

the 1
5 -rule for d1/d2 ��∗/� (recall that the case d1/d2 = O(1/�) is covered by the arguments and proofs of Section 3;

cf. the beginning of this section). The two conditions “� = o(�)” and “P{�2 �0} = �(1)”, however, originate from
Lemma 7 where they enable a short and simple proof.

Naturally, for � > �∗ the drift towards smaller � increases when � increases, and the statement of the preceding
lemma is true without these two conditions. So why does the proof rely on them? In the very beginning of the reasoning
we decided to focus on small �, namely on � that are O(1). As a consequence, we decided to disregard “�2 < 0”: it
appears neither in the lower bound on the expected gain in S1 (namely inequality (1) in Section 4.2) nor in the upper
bound on the expected gain in S2 (namely inequality (2) in Section 4.2); neither in an indicator variable, nor in a
probability. Yet in fact, for a fixed positive f-value and a fixed positive scaling factor, P{�2 < 0} → 1 as � → ∞, since

the mutation of a search point with d2 = 0 results in d ′
2 = |m2| a.s.

> 0. Formally, we would show that E[�2 · 1{−��1 ��2}]
becomes negative when � exceeds a certain �∗∗, and for the lower bound on a step’s expected gain in S1, we would show
that the term E[E[�1 · 1{−��1 ��2} · 1{�1 �0}] · 1{�2<0}], which we decided to ignore, is actually �(E[�1 · 1{�1 �0}])
for large �. However, since it is rather evident that the drift towards smaller � becomes larger and larger as � grows, we
refrain from a full formal treatment.

5. Conclusion

Based on the results on how the (1+1) ES minimizes the well-known SPHERE-function, we have extended these re-
sults to a broader class of functions. Namely, on the one hand, all positive definite quadratic forms with bounded band-
width/condition number are covered, and on the other hand, we tackled the algorithmic analysis of the (1+1) ES using
Gaussian mutations adapted by a 1

5 -rule for a certain subclass of positive definite quadratic forms with unbounded
bandwidth, which are also sometimes called “ill-conditioned.”

The main insight of these results is that Gaussian mutations adapted by the 1
5 -rule make the optimization process

stabilize such that the trajectory of the evolving search point takes course very close to the gentlest descent of the
ellipsoidal fitness landscape, i.e., in the region of (almost) maximum curvature, which leads to a poor performance.
However, more insight into how EAs for continuous optimization work is gained, contributing to building an algorithmic
EA-theory for continuous search spaces.

Naturally, the results carry over to functions that are translations (w. r. t. the search space) of a considered quadratic
function f, namely to functions g(x) = f (x − x∗) for a fixed translation vector x∗ ∈ Rn. Rather than considering the
distance from the origin (e.g. “|c|”), we merely must consider the distance from the optimum point x∗ (e.g. “|c − x∗|”)
in all arguments/conditions. The implications for functions that are translations w. r. t. the objective space, namely
g(x) = f (x) + � for some constant � ∈ R, are also straight forward. Since the minimum value equals � in that case,
however, we can no longer use the current function value as the measure of the approximation error. Either we use
g(x) − �, or we restrict ourselves to the approximation error w. r. t. the search space, i.e., to the distance from the
optimum search point.
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