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a b s t r a c t

The purpose of this paper is to give several symmetric identities on the generalized
Apostol–Bernoulli polynomials by applying the generating functions. These results extend
some known identities.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

For a real or complex parameter α, the generalized Bernoulli polynomials B(α)n (x), are defined by means of the following
exponential generating function (see [1–4]):(

t
et − 1

)α
ext =

∞∑
n=0

B(α)n (x)
tn

n!
(|t| < 2π). (1)

The classical Bernoulli polynomials Bn(x) and the Bernoulli numbers Bn are

Bn(x) = B(1)n (x), Bn = Bn(0),

respectively.
As a natural generalization of the Bernoulli polynomials and numbers, the Apostol–Bernoulli polynomials and numbers

were first defined by Apostol [5] when he studied the Lipschitz–Lerch zeta functions. Luo and Srivastava introduced the
generalized Apostol–Bernoulli polynomials which are defined as follows (see [6–9]).

Definition 1.1. For arbitrary real or complex parameters α and λ, the generalized Apostol–Bernoulli polynomialsB(α)
n (x; λ)

are defined by the following generating functions:(
t

λet − 1

)α
ext =

∞∑
n=0

B(α)
n (x, λ)

tn

n!
(|t + log λ| < 2π). (2)
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The Apostol–Bernoulli polynomialsBn(x; λ) and the Apostol–Bernoulli numbersBn(λ) are given by

Bn(x; λ) = B(1)
n (x; λ), Bn(λ) = Bn(0; λ) (n ∈ N0), (3)

respectively.
The Bernoulli polynomials and numbers have numerous important applications in combinatorics, number theory and

numerical analysis. As imitations of important properties of the Bernoulli polynomials and numbers, Luo and Srivastava
studied systematically these polynomials [6–9]. Recently, Wang, Jia and Wang [10] also established two relationships
between the generalized Apostol–Bernoulli and Apostol–Euler polynomials.
For each integer k ≥ 0, Sk(n) =

∑n
i=0 i

k is called sumof integer powers, or simply power sum. The exponential generating
function for Sk(n) is

∞∑
k=0

Sk(n)
tk

k!
= 1+ et + e2t + · · · + ent =

e(n+1)t − 1
et − 1

. (4)

Now, we define the generalized sum of integer powers as follows:

Definition 1.2. For an arbitrary real or complex parameter λ, the generalized sum of integer powersSk(n; λ) is defined by
the following generating functions:

∞∑
k=0

Sk(n; λ)
tk

k!
=
λe(n+1)t − 1
λet − 1

. (5)

It is easy to see that

Sk(n; 1) = Sk(n).

Similarly, for each integer k ≥ 0, Mk(n) =
∑n
i=0(−1)

iik is called sum of alternative integer powers. The exponential
generating function forMk(n) is

∞∑
k=0

Mk(n)
tk

k!
= 1− et + e2t + · · · + (−1)nent =

1− (−et)(n+1)

et + 1
, (6)

and we can define the generalized sum of alternative integer powers as follows:

Definition 1.3. For an arbitrary real or complex parameter λ, the generalized sum of alternative integer powersSk(n; λ) is
defined by the following generating functions:

∞∑
k=0

Mk(n; λ)
tk

k!
=
1− λ(−et)(n+1)

λet + 1
. (7)

It is easy to see that

Mk(n; 1) = Mk(n).

2. Some symmetric identities on the Apostol–Bernoulli polynomials

In 2006, Garg, Jain and Srivastava [11] derived an explicit representation of these generalized Apostol–Bernoulli
polynomials and proceeded to establishing a functional relationship between the generalized Apostol–Bernoulli
polynomials and the Hurwitz zeta function. Following closely, Lin, Srivastava and Wang [12] presented a systematic
investigation of expansion and transformation formulas for several general families of the Hurwitz–Lerch zeta functions.
The purpose of this paper is to give several symmetric identities on the generalized Apostol–Bernoulli polynomials by

applying the generating functions. These results extend some known identities in [13–16].

Theorem 2.1. For all integers a > 0, b > 0, and n ≥ 0,m ≥ 1, λ ∈ C, we have the following identity:
n∑
k=0

(n
k

)
an−kbk+1B(m)

n−k(bx; λ)
k∑
i=0

(
k
i

)
Si(a− 1; λ)B

(m−1)
k−i (ay; λ)

=

n∑
k=0

(n
k

)
bn−kak+1B(m)

n−k(ax; λ)
k∑
i=0

(
k
i

)
Si(b− 1; λ)B

(m−1)
k−i (by; λ). (8)
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Proof. Let g(t) = t2m−1eabxt(λeabt − 1)eabyt/(λeat − 1)m(λebt − 1)m. Note that this expression for g(t) is symmetric in a
and b. In order to prove the theorem we expanded g(t) into series in two ways.

g(t) =
t2m−1eabxt(λeabt − 1)eabyt

(λeat − 1)m(λebt − 1)m

=
1

ambm−1

(
at

λeat − 1

)m
eabxt

(
λeabt − 1
λebt − 1

)(
bt

λebt − 1

)m−1
eabyt

=
1

ambm−1

(
∞∑
n=0

B(m)
n (bx; λ)

(at)n

n!

)(
∞∑
n=0

Sn(a− 1; λ)
(bt)n

n!

)(
∞∑
n=0

B(m−1)
n (ay; λ)

(bt)n

n!

)

=
1
ambm

∞∑
n=0

(
n∑
k=0

(n
k

)
an−kbk+1B(m)

n−k(bx; λ)
k∑
i=0

(
k
i

)
Si(a− 1; λ)B

(m−1)
k−i (ay; λ)

)
tn

n!
.

Using a similar plan, we have

g(t) =
1
ambm

∞∑
n=0

(
n∑
k=0

(n
k

)
bn−kak+1B(m)

n−k(ax; λ)
k∑
i=0

(
k
i

)
Si(b− 1; λ)B

(m−1)
k−i (by; λ)

)
tn

n!
.

Equating coefficients of (tn/n!) on the right-hand sides of the last two equations gives us (8). �

By setting λ = 1 in Theorem 2.1, we have a common special case of the identity which is one of the main results of Yang
[16, Eqs. (9)]:

Corollary 2.2. For all integers a > 0, b > 0, and n ≥ 0,m ≥ 1,
n∑
k=0

(n
k

)
an−kbk+1B(m)n−k(bx)

k∑
i=0

(
k
i

)
Si(a− 1)B

(m−1)
k−i (ay)

=

n∑
k=0

(n
k

)
bn−kak+1B(m)n−k(ax)

k∑
i=0

(
k
i

)
Si(b− 1)B

(m−1)
k−i (by). (9)

Setting y = 0 andm = 1 in Theorem 2.1, we obtain the relation:

Corollary 2.3. For all integers a > 0, b > 0, and n ≥ 0, λ ∈ C,
n∑
i=0

(n
i

)
ai−1bn−iBi(bx; λ)Sn−i(a− 1; λ) =

n∑
i=0

(n
i

)
bi−1an−iBi(ax; λ)Sn−i(b− 1; λ). (10)

Setting x = 0 in (10), we have the relation:

Corollary 2.4. For all integers a > 0, b > 0, and n ≥ 0, λ ∈ C, we have the following relation:
n∑
k=0

(n
k

)
Bk(λ)ak−1bn−kSn−k(a− 1; λ) =

n∑
k=0

(n
k

)
Bk(λ)bk−1an−kSn−k(b− 1; λ). (11)

When λ = 1 in (11), we get the relation of symmetry between the power sumpolynomials and the Bernoulli polynomials
in Tuenter [14]. It is given by

n∑
k=0

(n
k

)
ak−1Bkbn−kSn−k(a− 1) =

n∑
k=0

(n
k

)
bk−1Bkan−kSn−k(b− 1). (12)

Setting b = 1 in (10), we have:

Bn(ax; λ) =
n∑
i=0

ai−1
(n
i

)
Bi(x; λ)Sn−i(a− 1; λ). (13)

On the one hand, by setting λ = 1 in (13), a common special case of the identity is

Bn(ax) =
n∑
i=0

ai−1
(n
i

)
Bi(x)Sn−i(a− 1) , (14)

which can be found in Yang [16, Eqs.(11)].
On the other hand, by setting x = 0 in (13), we have a recurrence on the Apostol–Bernoulli polynomials:
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Corollary 2.5. For λ ∈ C and n ∈ N0, the Apostol–Bernoulli numbersBn(λ) satisfy

Bn(λ) =

n∑
i=0

(n
i

)
ai−1Bi(λ)Sn−i(a− 1; λ). (15)

Corollary 2.6. For any positive integer n and any positive integer a > 1, λ ∈ C,

Bn(λ) =
1

a
(
1− an−1

a−1∑
k=0
λk
) n−1∑
i=0

(n
i

)
aiBi(λ)Sn−i(a− 1; λ). (16)

Proof. SinceS0(a− 1; λ) =
∑a−1
k=0 λ

k, by simple computing in (15), we have the recurrence relation. �

Setting λ = 1 in Corollary 2.6, we have

Bn =
1

a(1− an)

n−1∑
i=0

ai
(n
i

)
BiSn−i(a− 1). (17)

Recurrence relation (17) for the Bernoulli numbers have been proved in Deeba and Rodriguez [13] and Gessel [17].

Theorem 2.7. For each pair of positive integers a and b, and all integers n ≥ 0, λ ∈ C andm ≥ 1, we have the following identity:
n∑
k=0

(n
k

) a−1∑
i=0

b−1∑
j=0

λi+jakbn−kB(m)
k

(
bx+

b
a
i; λ
)

B
(m)
n−k

(
ay+

a
b
j; λ
)

=

n∑
k=0

(n
k

) b−1∑
i=0

a−1∑
j=0

λi+jbkan−kB(m)
k

(
ax+

a
b
i; λ
)

B
(m)
n−k

(
by+

b
a
j; λ
)
. (18)

Proof. Let h(t) = t2meabxt(λaeabt−1)(λbeabt−1)eabyt/(λeat−1)m+1(λebt−1)m+1, then, the expression for h(t) is symmetric
in a and b, and we can expand h(t) into series in two ways to prove the theorem.

h(t) =
t2meabxt(λaeabt − 1)(λbeabt − 1)eabyt

(λeat − 1)m+1(λebt − 1)m+1

=
1
ambm

(
at

λeat − 1

)m
eabxt

(
λaeabt − 1
λebt − 1

)(
bt

λebt − 1

)m
eabyt

(
λbeabt − 1
λeat − 1

)
=

1
ambm

(
at

λeat − 1

)m
eabxt

a−1∑
i=0

λiebti
(

bt
λebt − 1

)m
eabyt

b−1∑
j=0

λjeatj

=
1
ambm

a−1∑
i=0

λi
(

at
λeat − 1

)m
e
(
bx+ ba i

)
at
b−1∑
j=0

λj
(

bt
λebt − 1

)m
e(ay+

a
b j)bt

=
1
ambm

(
a−1∑
i=0

λi
∞∑
n=0

B(m)
n

(
bx+

b
a
i; λ
)
(at)n

n!

)(
b−1∑
j=0

λj
∞∑
n=0

B(m)
n

(
ay+

a
b
j; λ
) (bt)n
n!

)

=
1
ambm

∞∑
n=0

(
n∑
k=0

(n
k

) a−1∑
i=0

b−1∑
j=0

λi+jakbn−kB(m)
k

(
bx+

b
a
i; λ
)

B
(m)
n−k

(
ay+

a
b
j; λ
)) tn
n!
.

Separately,

h(t) =
t2meabxt(λaeabt − 1)(λbeabt − 1)eabyt

(λeat − 1)m+1(λebt − 1)m+1

=
1
ambm

∞∑
n=0

(
n∑
k=0

(n
k

) b−1∑
i=0

a−1∑
j=0

λi+jbkan−kB(m)
k

(
ax+

a
b
i; λ
)

B
(m)
n−k

(
by+

b
a
j; λ
))
tn

n!
.

By comparing the coefficients of tn/n! on the right-hand sides of the last two equations we arrive at the desired
results (18). �

By setting λ = 1 in Theorem 2.7, we have a common special case of the identity:
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Corollary 2.8. For all integers a > 0, b > 0, and n ≥ 0,m ≥ 1,
n∑
k=0

(n
k

) a−1∑
i=0

b−1∑
j=0

akbn−kB(m)k

(
bx+

b
a
i
)
B(m)n−k

(
ay+

a
b
i
)

=

n∑
k=0

(n
k

) b−1∑
i=0

a−1∑
j=0

bkan−kB(m)k
(
ax+

a
b
i
)
B(m)n−k

(
by+

b
a
j
)
. (19)

Setting y = 0,m = 1 in Theorem 2.7, we have:

Corollary 2.9. For all integers a > 0, b > 0, and n ≥ 0, λ ∈ C,

n∑
k=0

(n
k

) a−1∑
i=0

b−1∑
j=0

λi+jakbn−kBk

(
bx+

b
a
i; λ
)

Bn−k

(a
b
j; λ
)

=

n∑
k=0

(n
k

) b−1∑
i=0

a−1∑
j=0

λi+jbkan−kBk
(
ax+

a
b
i; λ
)

Bn−k

(
b
a
j; λ
)
. (20)

When b = 1 in (20), we have the relationship:

n∑
k=0

(n
k

) a−1∑
i=0

λiakBk

(
x+

i
a
; λ

)
Bn−k(λ) =

n∑
k=0

(n
k

) a−1∑
j=0

λjan−kBk (ax; λ)Bn−k(
j
a
; λ). (21)

Substituting λ = 1 in (21), we have the relationship:

n∑
k=0

(n
k

) a−1∑
i=0

akBk

(
x+

i
a

)
Bn−k =

n∑
k=0

(n
k

) a−1∑
j=0

an−kBk (ax) Bn−k

(
j
a

)
. (22)

Theorem 2.10. For each pair of positive integers a and b, and all integers n ≥ 0, λ ∈ C and m ≥ 1, we have the following
identity:

n∑
k=0

(n
k

) a−1∑
i=0

b−1∑
j=0

λi+jakbn−kB(m)
k

(
bx+

b
a
i+ j; λ

)
B
(m)
n−k(ay; λ)

=

n∑
k=0

(n
k

) b−1∑
i=0

a−1∑
j=0

λi+jbkan−kB(m)
k

(
ax+

a
b
i+ j; λ

)
B
(m)
n−k(by; λ). (23)

Proof. The proof is analogous to Theorem 2.7, but we need to change the order of the summation of series. On the one hand,

h(t) =
t2meabxt(λaeabt − 1)(λbeabt − 1)eabyt

(λeat − 1)m+1(λebt − 1)m+1

=
1
ambm

(
at

λeat − 1

)m
eabxt

(
λaeabt − 1
λebt − 1

)(
bt

λebt − 1

)m
eabyt

(
λbeabt − 1
λeat − 1

)
=

1
ambm

(
at

λeat − 1

)m
eabxt

a−1∑
i=0

λiebti
(

bt
λebt − 1

)m
eabyt

b−1∑
j=0

λjeatj

=
1
ambm

a−1∑
i=0

b−1∑
j=0

λi+j
(

at
λeat − 1

)m
e
(
bx+ ba i+j

)
at
(

bt
λebt − 1

)m
e(abyt)

=
1
ambm

(
a−1∑
i=0

b−1∑
j=0

λi+j
∞∑
n=0

B(m)
n

(
bx+

b
a
i+ j; λ

)
(at)n

n!

)(
∞∑
n=0

B(m)
n (ay; λ)

(bt)n

n!

)

=
1
ambm

∞∑
n=0

(
n∑
k=0

(n
k

) a−1∑
i=0

b−1∑
j=0

λi+jakbn−kB(m)
k

(
bx+

b
a
i+ j; λ

)
B
(m)
n−k (ay; λ)

)
tn

n!
.
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On the other hand,

h(t) =
t2meabxt(λaeabt − 1)(λbeabt − 1)eabyt

(λeat − 1)m+1(λebt − 1)m+1

=
1
ambm

∞∑
n=0

(
n∑
k=0

(n
k

) b−1∑
i=0

a−1∑
j=0

λi+jbkan−kB(m)
k

(
ax+

a
b
i+ j; λ

)
B
(m)
n−k (by; λ)

)
tn

n!
.

Equating coefficients of (tn/n!) on the right-hand sides of the last two equations gives us (23). �

By setting λ = 1 in Theorem 2.10, we have a common special case of the identity:

Corollary 2.11. For all integers a > 0, b > 0, and n ≥ 0,m ≥ 1,

n∑
k=0

(n
k

) a−1∑
i=0

b−1∑
j=0

akbn−kB(m)k

(
bx+

b
a
i+ j

)
B(m)n−k (ay) =

n∑
k=0

(n
k

) b−1∑
i=0

a−1∑
j=0

bkan−kB(m)k
(
ax+

a
b
i+ j

)
B(m)n−k (by) . (24)

Setting y = 0,m = 1 in Theorem 2.10, we have:

Corollary 2.12. For all integers a > 0, b > 0, and n ≥ 0, λ ∈ C,
n∑
k=0

(n
k

) a−1∑
i=0

b−1∑
j=0

λi+jakbn−kBk

(
bx+

b
a
i+ j; λ

)
Bn−k(λ)

=

n∑
k=0

(n
k

) b−1∑
i=0

a−1∑
j=0

λi+jbkan−kBk
(
ax+

a
b
i+ j; λ

)
Bn−k(λ). (25)

When b = 1 in (25), we have the relationship:

n∑
k=0

(n
k

) a−1∑
i=0

λiakBk

(
x+

i
a
; λ

)
Bn−k(λ) =

n∑
k=0

(n
k

) a−1∑
j=0

λjan−kBk (ax+ j; λ)Bn−k(λ). (26)

Substituting λ = 1 in (26), we have the relationship:

n∑
k=0

(n
k

) a−1∑
i=0

akBk

(
x+

i
a

)
Bn−k =

n∑
k=0

(n
k

) a−1∑
j=0

akBn−k (ax+ j) Bk. (27)

3. A remark

For arbitrary real or complex parameters α and λ, the generalized Apostol–Euler polynomials E
(α)
n (x; λ) are defined

by the following generating functions:
(

2
λet+1

)α
ext =

∑
∞

n=0 E
(α)
n (x, λ) t

n

n! (see [7,8,10]). We can also establish the similar
symmetric identities for the generalized Apostol–Euler polynomials. However, the condition is that the integers a and b are
both even integers or odd integers. For example, for each pair of positive even integers a and b, or each pair of positive odd
integers a and b, and all integers n ≥ 0, λ ∈ C and m ≥ 1, completely analogous to the proof of Theorem 2.1, we can
establish the following relation between the generalized Apostol–Euler polynomials and Definition 1.3:

n∑
k=0

(n
k

)
an−kbk+1E (m)n−k(bx; λ)

k∑
i=0

(
k
i

)
Mi(a− 1; λ)E

(m−1)
k−i (ay; λ)

=

n∑
k=0

(n
k

)
bn−kak+1E (m)n−k(ax; λ)

k∑
i=0

(
k
i

)
Mi(b− 1; λ)E

(m−1)
k−i (by; λ).
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