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S U M M A R Y

Objectives: To determine the prophylactic efficacy of an Sm-p80-based vaccine formulation against

challenge infection with Schistosoma mansoni in mice using an approach comprising of initial priming

with DNA and boosting with recombinant protein in the presence of resiquimod (R848) as an adjuvant.

Methods: In the first experiment (prime–boost approach), mice were primed with Sm-p80–pcDNA3

(week 0) and boosted at weeks 4 and 8 with recombinant Sm-p80 formulated in resiquimod (R848). Each

mouse in the control group first received only pcDNA3 and was boosted with R848. In the second set of

experiments (recombinant protein approach), mice were immunized (week 0) and boosted (weeks 4 and

8) with rSm-p80 formulated in R848. Animals of the control group in this series of experiments received

only R848 at 0, 4, and 8 weeks. All of the animals from both the ‘prime–boost’ and ‘recombinant protein’

groups were challenged with cercariae of S. mansoni, 4 weeks after the last immunization. The mice were

sacrificed 6 weeks post-challenge and the reductions in worm burden and egg production were

determined. Sm-p80-specific antibody titers were estimated in the mice sera by ELISA. Cytokine mRNA

and protein production by proliferating splenocytes in response to in vitro stimulation with Sm-p80,

were estimated via RT-PCR and ELISA, respectively.

Results: Vaccination with Sm-p80 (prime–boost approach) showed 49% reduction in worm burden; with

the recombinant protein approach the protection was found to be 50%. The protection levels were

correlated with antibody production. Upon antigenic stimulation with recombinant Sm-p80,

splenocytes secreted significant levels of interferon (IFN)-g and interleukin (IL)-2, indicating that the

immune responses were Th1-biased and this was further supported in terms of distribution of antibody

isotypes and mRNA expression of cytokines.

Conclusions: In conclusion the present study clearly demonstrates that Sm-p80 consistently maintained

its protective nature, and resiquimod as an immunopotentiating agent slightly boosted the protective

effects of Sm-p80 in both ‘DNA prime–protein boost’ and ‘recombinant protein’ immunization

approaches in a murine model.

� 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Schistosomiasis affects over 200 million people, with 20 million
seriously suffering from severe anemia, chronic diarrhea, internal
bleeding, and organ damage (e.g., intestine, liver and spleen)
caused by worms, and especially their eggs, and the immune
system reaction that the eggs provoke leading to the formation of
granulomas.1 Despite ongoing control efforts, schistosomiasis
remains a major source of morbidity in 76 countries, with 280
000 deaths per annum attributed to this disease in sub-Saharan
Africa alone.2,3
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Currently schistosomiasis control is mainly based on the
treatment of infected individuals with praziquantel.4 The large
extension of endemic areas and constant reinfection of drug-
treated individuals, combined with the poor sanitary conditions in
tropical and subtropical countries, makes it necessary to look for
other control strategies in addition to drug treatment. To this effect
the advent of a prophylactic vaccine would be of great benefit in
the sustainable control of schistosomiasis. A potent vaccine against
schistosomiasis is expected to enhance protective immune
responses in at-risk populations and thereby lead to reduced
worm burden and decreased egg production.5–7

Due to its significant protective and antifecundity effects in
both rodent and nonhuman primate models, Sm-p80 is now
considered a leading putative vaccine candidate antigen for the
development of a schistosomiasis vaccine.4 In the present study, in
ses. Published by Elsevier Ltd. All rights reserved.
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order to investigate the feasibility of further improving the
immunoprotective efficacy of the Sm-p80 vaccine candidate, we
used Sm-p80 in combination with resiquimod (R848), a low
molecular weight imidazoquinolinamine compound with immune
response modifier properties, in ‘DNA prime–protein boost’ and
‘recombinant protein–resiquimod’ approaches.

2. Methods

2.1. Animals

Laboratory inbred female C57BL/6 mice were purchased from
Charles River Laboratories International Inc. (Wilmington, MA,
USA). At the outset of the immunization study the mice were 3–4
weeks old and weighed 10–12 g.

2.2. Parasites

Schistosoma mansoni (Puerto Rican strain)-infected Biompha-

laria glabrata snails were obtained from the National Institute of
Allergy and Infectious Diseases Schistosomiasis Resource Center
(Biomedical Research Center, Rockville, MD, USA). The cercariae
were collected from these snails. The viability of the larvae was
determined under an optical microscope.

2.3. Vaccination schedules and challenge infection

For the entire immunization study, a total of 60 mice were
divided into the four major groups, each consisting of 15 animals.
Each major group of mice was subdivided into two subgroups
comprising seven and eight mice and each of the subgroups
processed as independent experiments to obtain two repeats.
Animals in experimental group I (prime–boost experimental group)
were inoculated intramuscularly with 100 mg Sm-p80–pcDNA3 and
boosted with 25 mg recombinant Sm-p80 protein containing 10 mg
resiquimod (R848) at week 4 and week 8. The animals in the control
group for this experiment (control group I or prime–boost control
group) were immunized with 100 mg naked pcDNA3 and boosted
with 10 mg R848 at the same time intervals as described above.
Animals in experimental group II (recombinant protein experimen-
tal group) were immunized with 25 mg rSm-p80 protein containing
10 mg R848 and boosted at week 4 and week 8 with the same vaccine
formulation. The animals for the control group (control group II or
recombinant protein control group) of this experiment received
10 mg R848 at 0, 4, and 8 weeks. Blood samples were collected prior
to the immunization and biweekly thereafter. Four weeks after the
second boost, all of the animals were challenged with 150 S. mansoni

cercariae via tail exposure method.

2.4. Necropsy and estimation of worm and egg burdens in

the animal tissue

Forty-six days after the challenge infection, all of the animals
were sacrificed. The worms were recovered from the portal system
by perfusion and also manually removed from the mesenteric
veins. The worm burden reduction rate was calculated as described
previously.8 The liver and intestine from individual animals in all
the four major groups (eight subgroups) were removed at necropsy
and digested overnight at 37 8C in 4% KOH; the numbers of eggs
were counted by two independent individuals before calculating
the egg burdens.

2.5. Estimation of antibody responses

An enzyme-linked immunosorbent assay (ELISA) was used to
determine the levels of IgG (and its isotypes), IgA, and IgM
antibodies. Details of the ELISA protocols have been described
previously.8–10 The antibody responses in the pooled sera were
determined in all four groups (eight subgroups) of animals
involved in the present study. The results are expressed as mean
end-point titers � standard error (SE).

2.6. Estimation of key Th1- and Th2-type cytokines by ELISA

For the estimation of various cytokines in the culture super-
natants, the single cell suspensions of pooled splenocytes from
each group of animals were prepared and cultured/stimulated in
vitro with Sm-p80 for 48 h, as described previously.11 The
concentrations of interleukin (IL)-2, IL-4, IL-10, and interferon
(IFN)-g were measured by ELISA using the eBioscience ELISA
Ready-Set-Go Kit (eBioscience, San Diego, CA, USA) according to
the manufacturer’s instructions.

2.7. Estimation of expression of cytokine mRNA by RT-PCR in

vaccinated and control groups

Splenocytes of C57BL/6 mice were cultured in the presence or
absence of rSm-p80 protein for 48 h. The details of culture media
and the cell culture method have been described previously.11

Total RNA was extracted by TRIzol reagent as per the manufac-
turer’s instructions (Invitrogen Corp., Carlsbad, CA, USA). Details of
the reverse transcription reactions for the first strand cDNA
synthesis are described elsewhere.12 Expression levels of the
following cytokines: IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-
8 (= MIP-2), IL-9, IL-10, IL-11, IL-12a, IL-12b, IL-13, IL-14, IL-15, IL-
16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, tumor necrosis
factor (TNF)-a, IFN-g, transforming growth factor (TGF)-b1, and
TGF-b2 and the expression level of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) were determined by RT-PCR. The
protocol details have been described previously.13–18

2.8. Statistical analysis

The computer program SPSS (SPSS Inc., Chicago, IL, USA) was
used for the statistical analyses. One-way analysis of variance
(ANOVA) was used to calculate the significance between the two
groups. The paired t-test was employed to determine in-group
significance. In order to avoid reaching a false conclusion,
Bonferroni adjustments were included and the results were
considered statistically significant if the p-value was <0.05.

3. Results

3.1. Appraisal of the protective efficacy of vaccination

As shown in Table 1, both ‘DNA prime–protein boost’ and
‘recombinant protein’ immunization approaches in combination
with the immunomodulatory agent resiquimod (R848) signifi-
cantly reduced the worm burden in the vaccinated animals as
compared with the respective control groups, which received
either plasmid DNA with R848 or R848 alone. Resiquimod boosted
the protective nature of candidate vaccine Sm-p80 to 49% in
‘prime–boost’ experiments and to 50% in ‘recombinant protein’
experiments.

3.2. Reduction in eggs entrapped in the tissues of the vaccinated

animals

Since the vaccine effect on egg output is one of the parameters
for an effective anti-morbidity vaccine, we measured the response
of the two vaccine regimens on egg production by determining the
entrapped eggs in liver and intestine of the vaccinated animals. In



Table 1
Anti-worm effects in C57BL/6 mice following immunization either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or only with the recombinant protein

(rSm-p80–R848)

Immunization group Mean� SE worm burden/mouse (n) Total for two

experiments (n)

% reduction in

worm burden
Experiment 1 Experiment 2

Control prime–boost (pcDNA3–R848) 28.42�4.95 (7) 31.28�5.34 (7) 29.85�5.15 (14) -

Experimental prime–boost ((Sm-p80–pcDNA3)–(rSm-p80–R848)) 13.16�3.04 (6) 17.00�4.15 (7) 15.08�3.59 (13) 49.49

Control protein vaccine (R848) 25.28�4.29 (7) 28.50�3.45 (8) 26.89�3.87 (15) -

Experimental protein vaccine (rSm-p80–R848) 15.33�2.88 (6) 11.28�2.04 (7) 13.30�2.46 (13) 50.53

Table 2
Anti-egg effects in C57BL/6 mice following immunization either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or only with the recombinant protein

(rSm-p80–R848)

Immunization group Mean� SE egg burden/mouse (n) Total for two

experiments (n)

% reduction in

egg burden
Experiment 1 Experiment 2

Control prime–boost (pcDNA3–R848) 256.78�268.41 (7) 839.81�442.99(7) 683.30�155.70 (14) -

Experimental prime–boost ((Sm-p80–pcDNA3)–(rSm-p80–R848)) 229.21�229.21 (6) 719.49�566.54(7) 474.30�397.87 (13) 30.57

Control protein vaccine (R848) 536.86�291.89 (7) 645.13�270.73 (8) 590.99�281.31 (15) -

Experimental protein vaccine (rSm-p80–R848) 452.72�270.66 (6) 538.65�316.95(7) 495.68�293.80 (13) 16.12
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the case of the DNA immunization and protein boost, an
approximate 30% reduction in egg count was recorded in the
tissues of vaccinated animals. In animals vaccinated via ‘recombi-
nant protein’ approach, the reduction in egg production was found
to be 16% (Table 2).

3.3. Titers of anti-Sm-p80 antibody responses

Sera from the control and vaccinated C57BL/6 mice were
examined in order to determine the titers of total IgG, IgG1, IgG2a,
IgG2b, IgG3, IgM, and IgA using ELISA. The end-point titers for all
these antibodies are shown in Tables 3–9. Briefly, as shown in
Table 3, in the case of the DNA prime–protein–R848 boost group of
animals, the total IgG titer started rising 6 weeks after initial
immunization, and at 12 weeks post-vaccination the antibody titer
in this group was 1:204800. In the case of protein–R848 vaccinated
animals, the titer of IgG rose quickly just 2 weeks after initial
Table 3
End-point titers of anti-Sm-p80 total IgG in the sera of C57BL/6 mice following immun

only with the recombinant protein (rSm-p80–R848)

Week Control prime–boost

(pcDNA–R848)

Experimental prime–boost

((Sm-p80–pcDNA3)–(rSm-p8

0 100�13.18 100�4.35

2 100�10.49 100�5.04

4 100�12.06 100�14.18

6 100�14.00 12 800�5443.68

8 100�2.56 204 800�2872.60

10 100� 0.93 204 800�1230.58

12 100�1.91 204 800�2844.44

Table 4
End-point titers of anti-Sm-p80 IgG1 in the sera of C57BL/6 mice following immunizatio

with the recombinant protein (rSm-p80–R848)

Week Control prime–boost

(pcDNA–R848)

Experimental prime–boost

((Sm-p80–pcDNA3)–(rSm-p8

0 100�4.05 100�1.43

2 100�4.00 100�2.70

4 100� 0.00 100�7.69

6 100�4.21 400�6.30

8 100�1.64 800�0.00

10 100�3.28 6400�93.66

12 100�2.94 6400�43.54
immunization and remained high at 12 weeks post-vaccination
(end-point titer = 1:204 800). In contrast, sera from the control
animals immunized either with pcDNA or immunomodulatory
agent R848 did not react with rSm-p80 (Table 3).

IgG1 antibody levels were similar in both the vaccine regimens,
with 1:6400 titers at 12 weeks post-immunization (Table 4). Both
IgG2a and IgG2b started rising early in the case of the recombinant
Sm-p80 protein–R848 vaccinated group at 2 weeks post-immuni-
zation, but the end-point titers for both the ‘DNA prime–protein
boost’ and ‘recombinant protein’ vaccinated animals were the
same at the 1:25 600 level (Tables 5 and 6).

A very high titer of IgG3 antibody was observed in both vaccine
regimen groups of mice, as can be seen in Table 7. The IgG3
antibody titer for both vaccination formulations was 1:51 200 at 12
weeks post-immunization, although the initial rise in the IgG3
level was slow for the ‘DNA prime–protein boost’ vaccine
group (Table 7). As expected, the IgM titer initially rose for both
ization either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or

0–R848))

Control protein

vaccine (R848)

Experimental protein

vaccine (rSm-p80–R848)

100�3.23 100�12.69

100�7.32 800�44.29

100�9.45 6400�1459.65

100�9.76 6400�829.63

100�4.12 204 800�5639.20

100�2.56 204 800�2377.43

100�14.53 204 800�4850.26

n either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or only

0–R848))

Control protein

vaccine (R848)

Experimental protein

vaccine (rSm-p80–R848)

100�2.82 100�9.33

100�4.11 100�2.63

100� 0.00 100�1.54

100�2.63 1600�112.56

100�1.64 1600�73.85

100�4.76 6400�124.68

100� 0.00 6400�562.64



Table 5
End-point titers of anti-Sm-p80 IgG2a in the sera of C57BL/6 mice following immunization either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or only

with the recombinant protein (rSm-p80–R848)

Week Control prime–boost

(pcDNA–R848)

Experimental prime–boost

((Sm-p80–pcDNA3)–(rSm-p80–R848))

Control protein vaccine

(R848)

Experimental protein vaccine

(rSm-p80–R848)

0 100�10.71 100�1.89 100�2.86 100�6.60

2 100�3.81 100�1.04 100�1.00 200�4.76

4 100�13.64 100� 0.00 100�2.97 800�11.85

6 100�6.56 1600�21.77 100�5.65 6400�693.98

8 100�10.68 6400�35.96 100�1.02 12 800�874.53

10 100�5.00 25 600�3020.22 100�8.77 25 600�1855.07

12 100�7.22 25 600�1404.88 100�23.33 25 600�1338.56

Table 6
End-point titers of anti-Sm-p80 IgG2b in the sera of C57BL/6 mice following immunization either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or only

with the recombinant protein (rSm-p80–R848)

Week Control prime–boost

(pcDNA–R848)

Experimental prime–boost

((Sm-p80–pcDNA3)–(rSm-p80–R848))

Control protein

vaccine (R848)

Experimental protein

vaccine (rSm-p80–R848)

0 100�5.09 100�7.18 100�0.43 100�9.50

2 100�0.92 400�13.12 100�4.55 800�48.39

4 100�4.37 800�26.23 100�0.44 3200�359.69

6 100�3.83 6400�176.38 100�6.07 12 800�294.25

8 100�7.80 25 600�1808.18 100�5.69 25 600�1786.05

10 100�5.29 25 600�1983.76 100�5.88 25 600�973.38

12 100�7.59 25 600�2822.81 100�4.67 25 600�1835.13

Table 7
End-point titers of anti-Sm-p80 IgG3 in the sera of C57BL/6 mice following immunization either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or only

with the recombinant protein (rSm-p80–R848)

Week Control prime–boost

(pcDNA–R848)

Experimental prime–boost

((Sm-p80–pcDNA3)–(rSm-p80–R848))

Control protein

vaccine (R848)

Experimental protein

vaccine (rSm-p80–R848)

0 100�12.69 100�1.52 100�2.80 100�8.20

2 100�7.62 100�0.91 100�0.87 400�9.76

4 100�0.00 100�2.31 100�9.79 3200�246.15

6 100�4.80 3200�285.71 100�0.76 12 800�696.23

8 100�1.48 25 600�3131.92 100�1.56 25 600�1629.09

10 100�3.60 51 200�4536.71 100�2.78 51 200�3324.68

12 100�5.07 51 200�2426.54 100�8.11 51 200�4633.48

Table 8
End-point titers of anti-Sm-p80 IgM in the sera of C57BL/6 mice following immunization either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or only

with the recombinant protein (rSm-p80–R848)

Week Control prime–boost

(pcDNA–R848)

Experimental prime–boost

((Sm-p80–pcDNA3)–(rSm-p80–R848))

Control protein

vaccine (R848)

Experimental protein

vaccine (rSm-p80–R848)

0 100�0.69 100�4.07 100�2.86 100�0.67

2 100�8.09 100�0.77 100�9.63 200�4.30

4 100�7.38 100�1.65 100�2.59 400�17.61

6 100�8.39 1600�8.70 100�2.21 6400�479

8 100�6.00 3200�82.47 100�1.28 6400�172

10 100�6.67 12 800�163 100�12.26 12 800�136

12 100�9.74 6400�795.27 100�16.18 6400�533

Table 9
End-point titers of anti-Sm-p80 IgA in the sera of C57BL/6 mice following immunization either with prime–boost regimen ((Sm-p80–pcDNA3)–(rSm-p80–R848)) or only with

the recombinant protein (rSm-p80–R848)

Week Control prime–boost

(pcDNA–R848)

Experimental prime–boost

((Sm-p80–pcDNA3)–(rSm-p80–R848))

Control protein

vaccine (R848)

Experimental protein

vaccine (rSm-p80–R848)

0 100�11.45 100�6.21 100�5.15 100�18.84

2 100�4.72 100�2.10 100�5.11 800�9.70

4 100�3.23 100�14.29 100�9.24 3200�120.43

6 100�5.69 6400�34.97 100�0.91 12 800�940.11

8 100�4.05 12 800�104.92 100�17.05 25 600�8290.91

10 100�20.21 25 600�5493.12 100�12.40 25 600�1055.67

12 100�4.05 25 600�2203.28 100�17.05 25 600�5222.4
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Table 10
Levels of cytokine production by splenocytes after 48 h stimulation with recombinant Sm-p80 in vitroa

Immunization group IL-2 (pg/ml) IL-4 (pg/ml) IL-10 (pg/ml) IFN-g (pg/ml)

Control prime–boost (pcDNA–R848) 32.32�0.48 39.23�0.00 165.82�13.72 46.32�8.03

Experimental prime–boost ((Sm-p80–pcDNA3)–(rSm-p80–R848)) 164.00�4.85b 41.41�9.96 88.47�4.16 144.64�21.47b

Control protein vaccine (R848) 32.10�2.55 40.88�10.64 123.68�4.23 48.09�8.61

Experimental protein vaccine (rSm-p80–R848) 1691.89�42.01b 39.74�7.95 204.45�105.32 408.74�35.61b

IL, interleukin; IFN, interferon.
a The values in the table represent mean� SD.
b p � 0.05 vs. corresponding control group stimulated by recombinant Sm-p80 using the independent sample t-test.

G. Ahmad et al. / International Journal of Infectious Diseases 14 (2010) e781–e787 e785
‘DNA prime–protein boost’ and ‘recombinant protein–R848’
vaccinated group of animals, reaching a peak of 1:12 800 at 10
weeks post-immunization, gradually declining thereafter
(Table 8). The titer of IgA antibody was also monitored in the
present study and a high level of IgA antibody could be detected in
both of the vaccination regimens (Table 9). The end-point titer for
IgA antibody stood at 1:25 600 at 12 weeks post-immunization.
[(Figure_1)TD$FIG]

Figure 1. Relative cytokine mRNA expression levels by splenocytes after 48 h

stimulation with recombinant Sm-p80 in vitro. The relative cytokine mRNA

expression was calculated by comparing the differences in the message levels of the

control group with the respective experimental group after standardization using

glyceraldehyde 3-phosphate dehydrogenase (GAPDH); (A) ‘DNA prime–protein

boost’ group; (B) ‘recombinant protein–R848’ group..
3.4. Cytokine production

High levels of IL-2 and IFN-g were detected in the supernatant
of cultured splenocytes 48 h after culture, as detected by ELISA in
both the ‘DNA prime–protein boost’ and ‘recombinant protein–
R848’ vaccinated group as compared with their respective control
groups (Table 10). However no significant increase in the level of
IL-4 or IL-10 was observed for either vaccination regimen group.

3.5. mRNA expression profiles of cytokines as detected by RT-PCR

Using RT-PCR, the mRNA expression profiles of a number of
cytokines (IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (= MIP-
2), IL-9, IL-10, IL-11, IL-12a, IL-12b, IL-13, IL-14, IL-15, IL-16, IL-17,
IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, TNF-a, IFN-g, TGF-b1, TGF-
b2) and GAPDH were determined and the results thus obtained are
shown in Figure 1. Relative gene expression was calibrated to the
expression of the GAPDH gene and reported as fold relative
difference levels in the normalization of normal control samples. In
the ‘DNA prime–protein boost’ group (Figure 1A), higher levels of
IL-2, IL-3, IL-12a, IL-15 and IFN-g genes were expressed, while in
the case of the ‘recombinant protein–R848’ group, besides high
level expression of IL-2 and IFN-g genes, several additional
cytokines genes, for example, IL-6 and IL-16, were also up-
regulated (Figure 1B).

4. Discussion

In immunization approaches with the aim of stimulating
protective immune responses with the potential to facilitate the
host in rejecting the initial establishment and subsequent sexual
maturation of the parasite, the choice of immune-enhancer is of
significant importance. Although Sm-p80 has been shown to be
exposed at the host–parasite interface of larval and adult parasites
and is naturally immunogenic, this natural immunogenicity of the
molecule does not stimulate the immune responses that could
protect the host from infection.19–23 We have previously demon-
strated that Sm-p80 can protect murine as well as nonhuman
primate animals significantly against experimental schistosomia-
sis if presented in such a way that it induces a Th1-skewed
protective immune response.3,8–11,24–26 For example, recently11

using oligodeoxynucleotide (ODN) 10104 (Coley Pharmaceutical
Group, Wellesley, MA, USA) as an adjuvant we could enhance the
immunoprotective efficacy of Sm-p80 leading to a reduction in
worm burden of 70%, a protection level previously reported only
with irradiated cercarial vaccine.27–29

In our continual efforts to improve the efficacy of Sm-p80 by
enhancing the Th1-type protective immune response, we studied
the adjuvant effect of a TLR 7/8 agonist imidazoquinolinamine
compound – resiquimod. Resiquimod has demonstrated potency
as an inducer of the Th1 response enhancer cytokines both in vitro
and in vivo30 and also stimulates dendritic cells to secrete
cytokines, up-regulate co-stimulatory molecule expression, and
enhance antigen presentation to T cells. Additionally, R848 has
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demonstrated vaccine adjuvant properties in a number of animal
models.31

In the present study we designed two experiments, expecting
Sm-p80 delivered in combinations with R848 either in a ‘DNA
prime–protein boost’ approach or ‘recombinant Sm-p80 protein–
R848’ approach to augment its protective efficacy. As expected,
resiquimod did indeed enhance the antigen-specific total IgG
responses (1:204 800 titer) and also shifted the response towards
the Th1-type, as determined by higher levels of production of
IgG2a following immunization with the ‘DNA prime–protein boost’
vaccination strategy. However the elevation of IgG2a did not lead
to higher protection levels in terms of worm reduction and
reduction in egg production, as previously was observed using
ODN 10104 as an adjuvant.11 Besides this, the proliferating
splenocytes secreted significantly higher levels of IL-2 and IFN-g in
the culture supernatants. Traditionally it has been reported that
IFN-g plays a significant role in vaccine-mediated protection
against schistosome challenge infection in animal model stud-
ies.8,9,11,24,26,32–35 The up-regulation in expression of IL-12 may be
the reason for a very high titer of IgG2a antibodies. Previously it has
been reported that IL-12 induces a switch in immunoglobulin
isotypes by acting on B cells both directly and indirectly via T-cell-
derived IFN-g, resulting in enhanced production of IgG2a
antibodies and inhibition of IgE synthesis.36 Additionally, in the
present vaccination regimen in mice, as well as the known Th1
response enhancing cytokines, for example IL-2, IFN-g and IL-12a,
up-regulation of IL-3, IL-6, IL-15 and IL-16 was also observed. IL-5
which has structural similarity to IL-2 is involved in the induction
and proliferation of natural killer cells and its regulation has
previously been implicated in enhancing resistance to microbes.37

Up-regulation of IL-16 in the present study is very interesting,
since IL-16 is a multi-functional cytokine that uses CD4 as a
receptor to signal diverse biological activities by target cells,
including T-lymphocytes, monocytes, and eosinophils.38

In conclusion the present study clearly demonstrates that Sm-
p80 consistently maintained its protective nature and that
resiquimod as an immunopotentiating agent slightly boosted
the protective effect of Sm-p80 both in ‘DNA prime–protein boost’
and ‘recombinant protein’ immunization approaches in a murine
animal model.

Conflict of interest

No conflict of interest to declare.

Ethical approval

All of the studies were performed after approval was obtained
from the Institutional Animal Care and Use Committee of the Texas
Tech University Health Sciences Center.

Acknowledgements

This work was supported in part by grants from the Thrasher
Research Fund (Award No. 02824-5) and the National Institute of
Allergy and Infectious Diseases (R01AI71223) to Afzal A. Siddiqui.

References

1. King CH, Dickman K, Tisch DJ. Reassessment of the cost of chronic helmintic
infection: a meta-analysis of disability-related outcomes in endemic schisto-
somiasis. Lancet 2005;365:1561–9.

2. Van der Werf MJ, de Vlas SJ, Brooker S, Looman CW, Nagelkerke NJ, Habbema JD,
et al. Quantification of clinical morbidity associated with schistosome infection
in sub-Saharan Africa. Acta Trop 2003;86:125–39.

3. Siddiqui AA, Ahmad G, Damian RT, Kennedy RC. Experimental vaccines in
animal models of schistosomiasis. Parasitol Res 2008;102:825–33.
4. McManus DP, Loukas A. Current status for schistosomiasis. Clin Microbiol Rev
2008;21:225–42.

5. Capron A, Riveau G, Capron M, Trottein F. Schistosomes: the road from host–
parasitic interactions to vaccines in clinical trials. Trends Parasitol 2005;21:143–
9.

6. Berquist NR, Leonardo LR, Mitchell GF. Vaccine linked chemotherapy: can
schistosomiasis control benefit from an integrated approach? Trends Parasitol
2005;21:112–7.

7. Berquist NR, Utzinger J, McManus DP. Trick or treat: the role of vaccines in
integrated schistosomiasis control. PLoS Negl Trop Dis 2008;2:e244.

8. Ahmad G, Torben W, Zang W, Matt W, Siddiqui AA. Sm-p80 based DNA vaccine
formulation induces potent protective immunity against Schistosoma mansoni.
Parasite Immunol 2009;31:156–61.

9. Siddiqui AA, Phillips T, Charest H, Podesta RB, Quinlin ML, Pinkston JR, et al.
Enhancement of Sm-p80 (largesubunit of calpain) induced protective immunity
against Schistosomamansoni through co-delivery of interleukin-2 and interleu-
kin-12 in a DNAvaccine formulation. Vaccine 2003;21:2882–9.

10. Siddiqui AA, Phillips T, Charest H, Podesta RB, Quinlin ML, Pinkston JR, et al.
Induction of protective immunityagainst Schistosoma mansoni via DNA priming
with the large subunit ofcalpain (Sm-p80): Adjuvant effects of granulocyte
macrophage colony stimulating factor and interleukin-4. Infect Immun
2003;71:3844–51.

11. Ahmad G, Zhang W, Torben W, Haskins C, Diggs S, Noor Z, et al. Prime–boost
and recombinant protein vaccination strategies using Sm-p80 protects
against Schistosoma mansoni infection in the mouse model to levels previously
attainable only by irradiated cercarial vaccine. Parasitol Res 2009;105:
1767–77.

12. Smith JK, Siddiqui AA, Modica L, Dykes R, Simmons C, Schmidt J, et al. Interferon
alpha upregulates gene expression of aquaporin-5 in cultured human parotid
glands. J Interferon Cytokine Res 1999;19:929–35.

13. Brandt K, Bulfone-Paus S, Foster DC, Ruckert R. Interleukin-21 inhibits dendritic
cell activation and maturation. Blood 2003;102:4090–8.

14. Godinez I, Haneda T, Raffatellu M, Paixão TA, Rolán HG, Santos RL, et al. T cells
help to amplify inflammatoryresponses induced by Salmonella enterica
serotype Typhimurium in the intestinalmucosa. Infect Immun 2008;76:
2008–17.

15. Lauwerys BR, Garot N, Renauld JC, Houssiau FA. Cytokine production and killer
activity of NK/T-NK cells derived with IL-2, IL-15, or a combination of IL-12 and
IL-18. J Immunol 2000;165:1847–53.

16. Montgomery RA, Dallman MJ. Analysis of cytokine gene expression during fetal
thymic ontogeny using the polymerase chain reaction. J Immunol 1991;147:
554–60.

17. Ren F, Xhan X, Martens G, Lee J, Center D, Hanson SK, et al. Pro-IL-16
regulation in activated murine CD4+ lymphocytes. J Immunol 2005;174:
2738–45.

18. Shen L, Zhang C, Wang T, Brooks S, Ford RJ, Lin-Lee YC, et al. Development
of autoimmunity in IL-14 alphatransgenic mice. J Immunol 2006;177:
5676–86.

19. Siddiqui AA, Zhou Y, Podesta RB, Karcz SR, Tognon CE, Strejan GH, et al.
Characterization of Ca(2+)-dependent neutral protease (calpain) from human
blood flukes, Schistosoma mansoni. Biochim Biophys Acta 1993;1181:37–44.

20. Silva EE, Clarke MW, Podesta RB. Characterization of a C3 receptor on the
envelope of Schistosoma mansoni. J Immunol 1993;151:7057–66.

21. Young BW, Podesta RB. Complement and 5-HT increase phosphatidylcholine
incorporation into the outer bilayers of Schistosoma mansoni. J Parasitol
1986;72:802–3.

22. Van Hellemond JJ, Retra K, Brouwers JF, van Balkom BW, Yazdanbakhsh M,
Shoemaker CB, et al. Functions of the tegument of schistosomes: clues from the
proteome and lipidome. Int J Parasitol 2006;36:691–9.

23. Hota-Mitchell S, Siddiqui AA, Dekaban GA, Smith J, Tognon C, Podesta RB.
Protection against Schistosoma mansoni infection with a recombinant baculo-
virus-expressed subunit of calpain. Vaccine 1997;15:1631–40.

24. Siddiqui AA, Pinkston JR, Quinlin ML, Kavikondala V, Rewers-Felkins KA, Phillips
T, et al. Characterization of protective immunity induced against Schistosoma
mansoni via DNA priming with the large subunit of calpain (Sm-p80) in the
presence of genetic adjuvants. Parasite 2005;12:3–8.

25. Siddiqui AA, Pinkston JR, Quinlin ML, Saeed Q, White GL, Shearer MH, et al.
Characterization of the immune response to DNA vaccination strategies for
schistosomiasis candidate antigen, Sm-p80 in the baboon. Vaccine
2005;23:1451–6.

26. Ahmad G, Zhang W, Torben W, Damian RT, Wolf RF, White GL, et al. Protective
and antifecundity effects of Sm-p80 based DNA vaccine formulation against
Schistosoma mansoni in a nonhuman primate model. Vaccine 2009;27:
2830–7.

27. Minard P, Dean DA, Jacobson RH, Vannier WE, Murrell KD. Immunization of
mice with cobalt-60 irradiated Schistosoma mansoni cercariae. Am J Trop Med
Hyg 1978;27:76–86.

28. Sher A, Hieny S, James SL, Asofsky R. Mechanisms of protective immunity
against Schistosoma mansoni infection in mice vaccinated with irradiated
cercariae. II. Analysis of immunity in hosts deficient in T lymphocytes, B
lymphocytes, or complement. J Immunol 1982;128:1880–4.

29. Ganley-Leal LM, Guarner J, Todd CW, Dara AA, Freeman Jr GL, Boyer AE, et al.
Comparison of Schistosoma mansoni irradiated cercariae and Sm23 DNA vac-
cines. Parasite Immunol 2005;27:341–9.

30. Dockrell DH, Kinghorn GR. Imiquimod and resiquimod as novel immunomo-
dulators. J Antimicrob Chemother 2001;48:751–5.



G. Ahmad et al. / International Journal of Infectious Diseases 14 (2010) e781–e787 e787
31. Tomai MA, Miller RL, Lipson KE, Kieper WC, Zarraga IE, Vasilakos JP. Resiquimod
and other immune response modifiers as vaccine adjuvants. Expert Rev Vaccines
2007;6:835–47.

32. Jankovic D, Wynn TA, Kullberg MC, Hieny S, Caspar P, James S, et al. Optimal
vaccination against Schistosoma mansoni requires the induction of both
B cell- and IFN-gamma-dependent effector mechanisms. J Immunol 1999;
162:345–51.

33. Hewitson JP, Hamblin PA, Mountford AP. Immunity induced by the radiation-
attenuated schistosome vaccine. Parasite Immunol 2005;27:271–80.

34. Da’dara AA, Harn DA. DNA vaccines against tropical parasitic diseases. Expert
Rev Vaccines 2005;4:575–89.
35. Da’dara AA, Lautsch N, Dudek T, Novitsky V, Lee TH, Essex M, Harn DA. Helminth
infection suppresses T-cell immune response to HIV-DNA-based vaccine in
mice. Vaccine 2006;24:5211–9.

36. Metzger DW, McNutt RM, Collins JT, Buchanan JM, Van Cleave VH, Dunnick WA.
Interleukin-12 acts as an adjuvant for humoral immunity through interferon
gamma-dependent and independent mechanisms. Eur J Immunol 1997;
27:1958–65.

37. Ward PA. The curiosity of IL-15. Nat Med 2007;8:903-4.
38. Skundric DS, Cai J, Cruikshank WW, Gveric D. Production of IL-16 correlates

with CD4+ Th1 inflammation and phosphorylation of axonal cytoskeleton in
multiple sclerosis lesions. J Neuroinflamm 2006;26:13.


	Protective effects of Sm-p80 in the presence of resiquimod as an adjuvant against challenge infection with Schistosoma mansoni in mice
	Introduction
	Methods
	Animals
	Parasites
	Vaccination schedules and challenge infection
	Necropsy and estimation of worm and egg burdens in the animal tissue
	Estimation of antibody responses
	Estimation of key Th1- and Th2-type cytokines by ELISA
	Estimation of expression of cytokine mRNA by RT-PCR in vaccinated and control groups
	Statistical analysis

	Results
	Appraisal of the protective efficacy of vaccination
	Reduction in eggs entrapped in the tissues of the vaccinated animals
	Titers of anti-Sm-p80 antibody responses
	Cytokine production
	mRNA expression profiles of cytokines as detected by RT-PCR

	Discussion
	Conflict of interest
	Ethical approval
	Acknowledgements
	References


