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a b s t r a c t

Data-based decision theory under imprecise probability has to deal with optimization
problems where direct solutions are often computationally intractable. Using the C-mini-
max optimality criterion, the computational effort may significantly be reduced in the
presence of a least favorable model. Buja [A. Buja, Simultaneously least favorable experi-
ments. I. Upper standard functionals and sufficiency, Zeitschrift für Wahrscheinlichkeits-
theorie und Verwandte Gebiete 65 (1984) 367–384] derived a necessary and sufficient
condition for the existence of a least favorable model in a special case. The present article
proves that essentially the same result is valid in case of general coherent upper previsions.
This is done mainly by topological arguments in combination with some of Le Cam’s deci-
sion theoretic concepts. It is shown how least favorable models could be used to deal with
situations where the distribution of the data as well as the prior is allowed to be imprecise.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

Decision theory provides a formal framework for determining optimal actions under uncertainty on the states of nature. It
has a wide range of potential areas of application which includes also statistical problems. However, a serious problem in
practical applications of decision theory is that the uncertainty often is too complex to be adequately described by a precise
probability distribution. Ambiguity, i.e. the extent of deviation from ideal stochasticity, plays an important role in decision
making that cannot be neglected. To take ambiguity into account properly, generalizations of the concept of probability have
been developed, among others, by Walley [1] (imprecise probability) and Weichselberger [2] (interval probability, cf. also
[3]). Here, the probability of an event is no longer a number p 2 ½0;1� but an interval ½p; p� � ½0;1�. These concepts are applied
in a number of recent articles in decision theory, e.g. [4–6].

Generalizations of probabilities as in [1,2] have a strong relationship with some concepts of robust statistics – a fact
which is frequently disregarded. Actually, Buja [7] develops a concept of robust statistics (named ‘‘upper expectations”)
which lies between the concepts of [1,2]. Buja [7] considers decision making which is explicitly data-based. This can be
understood as a matter of its own as has been pointed out by Augustin [4]. In the spirit of the celebrated article by Huber
and Strassen [8], Buja [7] characterizes the existence of precise models which are simultaneously least favorable for a class
of loss functions (or for a class of prior distributions).

Huber and Strassen [8] deals with hypothesis testing where a (rather special) upper prevision is tested against another
one. This is equivalent to testing between certain sets of (precise) probabilities M0 and M1. Huber and Strassen [8] shows
. All rights reserved.
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that there is a pair ðp0; p1Þ 2M0 �M1 which is least favorable: Testing between p0 and p1 is as hard as testing between M0

and M1 and, as a consequence, there is an optimal test between p0 and p1 which is also an optimal test between M0 and M1.
That way, testing between M0 and M1 can be done by testing only between p0 and p1. This reduces the computational effort
substantially. In fact, it is one of the most important drawbacks of data-based decision theory (including hypothesis testing)
that the computational effort of direct solutions is frequently not manageable. Therefore, least favorability has attracted
enormous attention after the publication of [8]. For a review of [8] and the work following [8], confer [9]. In quite general
data-based decision theory, where there are n states of nature (instead of two), an analogous question of that one solved
by Huber and Strassen [8] is: Does there exist a model ðq1; q2; . . . ; qnÞ 2M1 �M2 � � � � �Mn which is simultaneously least
favorable for a class of loss functions? This is not always the case but [7] proves a necessary and sufficient condition for
the existence of such simultaneously least favorable models.

Unfortunately, Buja [7] contains an error which reduces its applicability significantly. The validity of the conclusions in [7]
can only be guaranteed by adding a restrictive assumption on the involved upper previsions; cf. Section 8.1.

The present article follows the lines of [7] – but within the concept of [1] which dispenses with r-additivity. It is shown
that the same result as in [7] is possible without any additional assumption on the involved (coherent) upper previsions.
Surprisingly, most of the proofs are similar to those given in [7]. This demonstrates that, in [7], insistence on r-additivity
of probabilities happens to be an unnecessary burden (cf. also Remark 2.2).

By ignoring r-additivity, we are in line with Le Cam’s decision theoretic framework (cf. [10,11]), which provides us with
some effective methods. Within this framework some terms (e.g. randomization) are slightly generalized.

Sections 2 and 3 develop the decision theoretic framework. Section 4 contains a generalization of the Le Cam–Blackwell–
Sherman–Stein–Theorem. This theorem plays an important role in Section 5 where the analogue to [7, Theorem 8.2] is pro-
ven which characterizes the existence of least favorable models. This is the main theorem of the present article. Section 6
explains how least favorability could be used to deal with situations where the distribution of the data as well as the prior
is assumed to be imprecise.

Since the content of this article might be obscured by the mathematical details, the following subsection presents a rather
detailed, but informal outline.

1.2. Outline

In order to explain the decision theoretic setup we are concerned with, the classical decision theoretic setup is recalled at
first.

There is a set H where each element h 2 H represents a possible state of nature. We know that one state of nature will
occur but we do not know which one it will be. Furthermore, there is a set D where each element t 2 D is a decision we can
choose. Depending on what state of nature h occurs, every decision t leads to a loss WhðtÞ. The goal is to choose a ‘‘good”
decision so that the loss is as small as possible.

Sometimes, we might know a precise expectation p for the states of nature h 2 H. Then, we can choose the decision that
minimizes the expected loss
1 For
Z
H

WhðtÞ pðdhÞ
In addition, we often can choose our decision on the base of an observation y 2 Y. For example, the observation y may be the
outcome of an experiment. The distribution of the observation y might be a precise expectation qh which depends on the
state of nature h. That is ðqhÞh2H is a model which describes the distribution of the observation y.

Such ‘‘data-based decision making” can be formalized by choosing a decision function d : Y! D; x#dðyÞ which
minimizes
Z

H

Z
Y

WhðdðyÞÞqhðdyÞpðdhÞ
Decision theory commonly also deals with randomized decisions. Randomized decision procedures (randomizations) are de-
fined in Section 2.1. Confer [12] for an introduction to these basic concepts of decision theory.

In the following, we are concerned with a more general decision theoretic setup because we also want to deal with impre-
cise probabilities.

Since the prior knowledge about the states of nature will frequently not be precise, we allow for a whole set P of possible
precise expectations p. Also the knowledge about the distribution of the observation may only be imprecise so that there are
sets Mh of possible precise expectations qh. While minimizing the expected loss in case of precise expectations is widely ac-
cepted, there are several reasonable optimality criteria in case of imprecise expectations; confer [5] for a discussion of the
most important ones. In the present article the so-called C-minimax criterion is used which represents a worst-case consid-
eration.1 That is, we choose a decision function d (or rather a randomization later on) which minimizes the twofold upper
expectation
the use of the C-minimax criterion in Bayesian analysis, cf. [13] and the literature cited therein.
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sup
p2P

Z
H

sup
qh2Mh

Z
Y

WhðdðyÞÞqhðdyÞpðdhÞ
Unfortunately, a direct solution of this problem is quite often computationally intractable. In Section 6, it is shown how the
situation might become manageable: In the presence of a model ð~qhÞh2H 2 ðMhÞh2H which is simultaneously least favorable
for P (or for a corresponding set of loss functions) the above minimization problem may be solved by minimizing
sup
p2P

Z
H

Z
Y

WhðdðyÞÞ~qhðdyÞpðdhÞ
However, such a least favorable model ð~qhÞh2H need not exist. In Section 5, a necessary and sufficient condition for existence
is proven (Theorem 5.4). This condition is formulated in terms of standard models.

Indeed, standard models are our main tool. They are introduced in Section 2.3. An important fact is that every model (con-
sisting of precise expectations) is equivalent to a standard model. In Section 2.2, we define an equivalence relation on the set
of all (precise) models ðqhÞh2H according to which two (precise) models ðphÞh2H and ðqhÞh2H are equivalent if the following is
true: Observations of model ðphÞh2H can artificially be generated (by a randomization) from observations of model ðqhÞh2H and
vice versa. Here and also as decision procedures, randomizations become important. For topological reasons, we have to rely
on Le Cam’s slight generalization of the term ‘‘randomization” (cf. [10]). All these tools from decision theory (namely ran-
domizations, equivalence of models, standard models) are presented in Section 2.

In Section 3, minimal Bayes risks are defined for precise models and for imprecise models as well. It is shown that min-
imal Bayes risks can be expressed in terms of standard models. This is the reason why standard models are used.

Section 4 contains a generalization of the Le Cam–Blackwell–Sherman–Stein–Theorem. This theorem is important in the
proof of the main theorem, Theorem 5.4, which characterizes the existence of simultaneously least favorable models.

1.3. Some notation

This subsection lists some notation which is used throughout the article.
Let ðY;BÞ be a measurable space and L1ðY;BÞ be the Banach space of all bounded Borel-measurable real functions

g : Y! R where kgk ¼ supy2YgðyÞ. For a subset B of Y, IB denotes the characteristic function of B on Y.
The set of all bounded, finitely additive, signed measures baðY;BÞ can be identified with the dual space of L1ðY;BÞ, i.e.

the Banach space of all linear continuous real functionals on L1ðY;BÞ where klk ¼ sup jl½g�k g 2L1ðY;BÞ; kgk 6 1f g for
l 2 baðY;BÞ; cf. [14, Theorem IV.5.1]. l 2 baðY;BÞ is called positive if l½g�P 0 for every g P 0. This is denoted by l P 0.

Let H be an index set. Throughout the article, ðQ hÞh2H is a family of coherent upper previsions Q h : L1ðY;BÞ ! R (cf. [1]).
The corresponding sets of majorized linear previsions are denoted by Mh :¼ fqh 2 baðY;BÞjqh½g� 6 Q h½g� 8g 2L1ðY;BÞg.
Analogously to [2], Mh is called structure. ðQ hÞh2H is called imprecise model on ðY;BÞ. A family ðqhÞh2H of linear previsions
qh : L1ðY;BÞ ! R is called precise model on ðY;BÞ. These terms are adapted from the notion ‘‘statistical model”. Buja [7]
and Le Cam [10] use the term ‘‘experiment” instead of ‘‘model”.

Let ðX;AÞ be another measurable space. F ¼ ðqhÞh2H always denotes a precise model on ðY;BÞ, E ¼ ðphÞh2H always de-
notes a precise model on ðX;AÞ. If qh 2Mh for every h 2 H, we may also write ðqhÞh2H 2 ðMhÞh2H or F 2 ðMhÞh2H. Expressions
of the form ðahÞh2H are often abbreviated by ðahÞh.

For some fixed n 2 N, put U :¼ fu 2 Rnju ¼ ðuh1 ; . . . ;uhn Þ0; uh P 0 8h 2 H; uh1 þ � � � þ uhn ¼ 1g and C :¼ B�n \U where B�n

is the Borel-r-algebra of Rn. For h 2 H, put ih : U! ½0;1�; u#uh where uh is the h-component of u.

2. Some tools from decision theory

2.1. Randomizations

2.1.1. Introduction
Let X be a set of possible outcomes of an experiment and D be a set of possible decisions t. Then, a decision function may

be a map d : X! D where dðxÞ ¼ t means: If x appears, choose action t. In addition, decision theory commonly deals with
randomized decisions d : X! baðD;DÞ; x#sx. Here, it is supposed that each sx is a linear prevision and that
s�½h� : x#sx½h� lies in L1ðX;AÞ for every h 2L1ðD;DÞ. Then, dðxÞ ¼ sx means: After observing x, start an auxiliary random
experiment according to the distribution sx and choose that action d which is the outcome of the auxiliary random
experiment.

For our purposes, we will need a slight generalization. Note that every randomized decision function x#sx defines a
map
r : baðX;AÞ ! baðD;DÞ; l#rðlÞ ð1Þ
via rðlÞ : h# rðlÞ½h� ¼ l½s�½h�� ¼
R

sx½h� lðdxÞ:

It is easy to see that r is linear, positive (rðlÞP 0 for every l P 0) and normalized (krðlÞk ¼ klk for every l P 0).
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2.1.2. Definition
Let ðX;AÞ and ðY;BÞ be measurable spaces. According to [10], a randomization from X to Y is a linear, positive and nor-

malized map
T : baðX;AÞ ! baðY;BÞ
where ‘‘positive” means TðlÞP 0 for every l P 0 and ‘‘normalized” means kTðlÞk ¼ klk for every l P 0. Let TðX;YÞ denote
the set of all randomizations from X to Y.

We also mark a class of randomizations of a very simple form: To this end, let j be a map
j : L1ðY;BÞ !L1ðX;AÞ; g#jðgÞ
so that there is some finite set S � Y and
jðgÞ ¼
X
y2S

gðyÞay 8 g 2L1ðY;BÞ
where ay 2L1ðX;AÞ 8 y 2 S, ay P 0 8 y 2 S and
P

y2Say � 1. Then,
j� : baðX;AÞ ! baðY;BÞ; l#j�ðlÞ
where j�ðlÞ½g� ¼ l½jðgÞ� 8 g 2L1ðY;BÞ, is called restricted randomization. It is easy to see that every restricted randomiza-
tion is generated by a (very simple) randomized decision function as in (1). Every restricted randomization is in fact a ran-
domization, i.e. TrðX;YÞ �TðX;YÞ where TrðX;YÞ denotes the set of all restricted randomizations.

2.1.3. Topological issues
Models which consist of imprecise probabilities are so extensive that sequential limit arguments are no longer adequate.

So, we have to resort to topological arguments. In addition to the norm-topology, baðY;BÞ can also be provided with the
rðba;L1Þ-topology. This is the smallest topology so that
baðY;BÞ ! R; l#l½g�
is continuous for every g 2L1ðY;BÞ.
Let Q : L1ðY;BÞ ! R be a coherent upper prevision with structure M :¼ fq 2 baðY;BÞjq½g� 6 Q ½g� 8g 2L1ðY;BÞg.

Theorem 2.1. M is rðba;L1Þ-compact (cf. [1, Section 3.6.1]).

Remark 2.2. According to Theorem 2.1, compactness of M comes for free. If we restricted M to r-additive measures, we
would have to impose additional assumptions to ensure compactness in reasonable topologies (cf. Section 8.1). So, insistence
on r-additivity appears to be a burden.

TðX;YÞ can be provided with the topology of pointwise convergence. This is the smallest topology so that
TðX;YÞ ! R; T#TðlÞ½g�
is continuous for every l 2 baðX;AÞ and every g 2L1ðY;BÞ. The following theorem is the reason why we use the gener-
alization of randomized procedures:

Theorem 2.3. TðX;YÞ is a compact Hausdorff space (cf. [11, Theorem 1.4.2]).

The following theorem indicates that the term ‘‘randomization” has only been slightly generalized:

Theorem 2.4. TrðX;YÞ is dense in TðX;YÞ.

Proof. This is a consequence of [10, Theorem 1]. h

Especially, Theorem 2.4 implies that the randomized procedures defined as in (1) are dense in TðX;YÞ.

2.2. Sufficiency and equivalence of models

Let E ¼ ðphÞh2H be a precise model on ðX;AÞ and F ¼ ðqhÞh2H a precise model on ðY;BÞ. Analogously to [7], ðphÞh2H is
called sufficient for ðqhÞh2H if there is a randomization T 2TðX;YÞ so that TðphÞ ¼ qh8h 2 H.

This definition of ‘‘sufficiency” essentially goes back to [15]. It does not strictly coincide with the more common definition
in terms of conditional expectations but, under suitable assumptions of regularity, the definitions do coincide (cf. [16]). At
least, if the randomization T is generated by a randomized function x#sx as in (1), the above definition has a very descriptive
interpretation.

Let x be an observation distributed according to ph. After observing x, start an auxiliary random experiment according to
sx. Then, the outcome y of the auxiliary random experiment is distributed according to qh. That is, if we have observations of
the model ðphÞh, we can artificially generate observations of the model ðqhÞh ‘‘by coin tossing”.



646 R. Hable / International Journal of Approximate Reasoning 50 (2009) 642–654
ðphÞh2H and ðqhÞh2H are called equivalent if they are mutually sufficient, i.e. there are some T1 2TðX;YÞ, T2 2TðY;XÞ so
that T1ðphÞ ¼ qh8h 2 H and T2ðqhÞ ¼ ph8h 2 H. This definition of equivalence is in accordance with Le Cam’s definition (cf.
Lemma 8.1). The descriptive interpretation of sufficiency already indicates that equivalent models essentially coincide from
a decision theoretic point of view.

Let ðQ hÞh2H be an imprecise model with corresponding structures Mh, h 2 H. Analogously to [7], ðphÞh2H is called worst-
case-sufficient for ðQ hÞh2H if ðphÞh2H is sufficient for some ðqhÞh2H 2 ðMhÞh2H. So, ðphÞh2H is worst-case-sufficient for ðQ hÞh2H if
and only if there is some T 2TðX;YÞ so that 8h 2 H
2 As s
decision
problem
TðphÞ½g� 6 Q h½g�; 8g 2L1ðY;BÞ
2.3. Standard models

Let the index set H be finite with cardinality n. In Section 2.2, we have defined an equivalence relation on the precise
models with a fixed index set H. Each equivalence class contains a uniquely defined representative (called standard model
later on) which has some nice properties.2 This is the content of the following theorem.

Theorem 2.5. Every precise model F ¼ ðqhÞh2H on ðY;BÞ admits a uniquely defined (r-additive) probability measure sF on
ðU;CÞ so that dsFh ¼ nih dsF defines a precise model ðsFh Þh2H on ðU;CÞ which is equivalent to F (cf. [17, Theorem 6.5]).

Sketch of proof. For F ¼ ðqhÞh2H, there is a uniquely defined localization ~gF on ðU;CÞ (cf. [11, p. 33f]). Let ih be defined as in
Section 1.3. Then, dsFh ¼ ih d~gF uniquely defines a probability measure sFh . Put sF ¼ 1

n

P
hsFh .

Since ðsFh Þh2H and F have the same conical measure, they are equivalent in the sense of [11, p. 19] according to [11, p. 28
and p. 32f]; cf. also [18, Remark 4]. A twofold application of Lemma 8.1 implies that ðsFh Þh2H and F are also equivalent in the
sense of Section 2.2 of the present article.

A detailed proof is contained in [17,19]. h

Analogously to [7], sF is called standard measure and ðsFh Þh2H is called standard (precise) model of F.
Standard models share two important properties: Firstly, they are defined on the very nice measurable space ðU;CÞ (cf.

Section 1.3). Secondly, they consist of linear previsions sh which are r-additive probability measures.
For the imprecise model ðQ hÞh2H with corresponding structures Mh, we can uniquely define
S½h� ¼ supfsF½h�jF 2 ðMhÞh2Hg 8h 2L1ðU;CÞ
Sh½h� ¼ sup sFh ½h�jF 2 ðMhÞh2H

� �
8h 2L1ðU;CÞ
S is called standard upper prevision, ðShÞh2H is called standard imprecise model of ðQ hÞh2H. Note that S is a coherent upper pre-
vision on L1ðU;CÞ and ðShÞh2H is an imprecise model on ðU;CÞ.

3. Minimal Bayes risks

Let the index set H ¼ fh1; . . . ; hng be finite with cardinality n and let p be a prior distribution on ðH;2HÞ, i.e. p is a linear
prevision on L1ðH;2HÞ. Put ph :¼ p½Ifhg�.

A decision space is a measurable space ðD;DÞ where D is the set of possible decisions. A loss function is a family
ðWhÞh2H �L1ðD;DÞ.

The measurable space ðY;BÞ may represent the results of an experiment. According to [10], a decision procedure is a
randomization
r : baðY;BÞ ! baðD;DÞ; r 2TðY;DÞ
Now, Bayes risks can be defined for precise models (Section 3.1) and for imprecise models (Section 3.2). The main goal of the
present section is to express minimal Bayes risks in terms of standard measures (Theorem 3.2) and standard upper previ-
sions (Theorem 3.4).

3.1. Precise models

Let ðqhÞh2H be a precise model on ðY;BÞ. For a decision procedure r 2TðY;DÞ and a loss function ðWhÞh2H �L1ðD;DÞ,
the risk function of ðqhÞh2H is
rðqÞ½W �� : h#rðqhÞ½Wh�
The Bayes risk is
tated in Section 2.2, equivalent models coincide from a decision theoretic point of view. Therefore, every decision problem coincides with a ‘‘standard
problem” where a standard model is involved; properties of the original decision problem can be deduced from the corresponding ‘‘standard decision
”.



R. Hable / International Journal of Approximate Reasoning 50 (2009) 642–654 647
RððqhÞh2H; r; ðWhÞh2HÞ ¼ p½rðqÞ½W ��� ¼
X
h2H

phrðqhÞ½Wh�
Note that this definition coincides with the usual one if r is defined by a randomized decision function as in (1).
The minimal Bayes risk is the same if we let r vary among the randomizations or the restricted randomizations:

Proposition 3.1
inf
r2TðY;DÞ

RððqhÞh2H; r; ðWhÞh2HÞ ¼ inf
r2TrðY;DÞ

RððqhÞh2H; r; ðWhÞh2HÞ
Proof. The definition of the topology of pointwise convergence implies continuity of the map
r#ðrðqh1
Þ½Wh1 �; . . . ; rðqhn

Þ½Whn �Þ
and, therefore, continuity of r#RððqhÞh2H; r; ðWhÞh2HÞ.
Since TrðY;DÞ is dense in TðY;DÞ (Theorem 2.4), the statement follows. h

For ðWhÞh2H �L1ðD;DÞ, put
KððWhÞhÞ : u# inf
s2D

X
h2H

nphWhðsÞihðuÞ ð2Þ
on Rn where ihðuÞ ¼ uh is the h-component of u 2 RH ffi Rn. Note that KððWhÞhÞ is concave and, therefore, continuous on Rn.
Hence, the restriction of KððWhÞhÞ on U is Borel-measurable and sðqhÞh ½KððWhÞhÞ� is well defined where sðqhÞh is the standard
measure of ðqhÞh2H.

Theorem 3.2
inf
r2TðY;DÞ

RððqhÞh; r; ðWhÞhÞ ¼ sðqhÞh KððWhÞhÞ
� �
Proof. According to Theorem 2.5, the standard model ðsFh Þh2H is equivalent to F :¼ ðqhÞh2H. That is ðsFh Þh2H and F are mutual
sufficient. So, a twofold application of Lemma 8.3 yields
inf
r2TðY;DÞ

RðF; r; ðWhÞhÞ ¼ inf
q2TðU;DÞ

RððsFh Þh; q; ðWhÞhÞ
and an application of Lemma 8.2 closes the proof. h
3.2. Imprecise models

Let ðQ hÞh2H be an imprecise model on ðY;BÞwith corresponding structures Mh, h 2 H, and standard upper prevision S. For
a decision procedure r 2TðY;DÞ and a loss function ðWhÞh2H �L1ðD;DÞ, the risk function of ðQ hÞh2H is
h# sup
qh2Mh

rðqhÞ½Wh�
and the Bayes risk is
RððQ hÞh; r; ðWhÞhÞ ¼
X
h2H

ph sup
qh2Mh

rðqhÞ½Wh�
Hence,
RððQ hÞh; r; ðWhÞhÞ ¼ sup
ðqhÞh2ðMhÞh

RððqhÞh; r; ðWhÞhÞ
These definitions assume that we have chosen the C-minimax optimality criterion which represents a worst-case consider-
ation (cf. Section 1.2) – as done in [8,7].

Now, we can derive the analogues of Proposition 3.1 and Theorem 3.2 in case of imprecise models:

Proposition 3.3
inf
r2TðY;DÞ

RððQ hÞh2H; r; ðWhÞh2HÞ ¼ inf
r2Tr ðY;DÞ

RððQ hÞh2H; r; ðWhÞh2HÞ
Proof. This is a direct consequence of Lemma 8.4 (a), Proposition 3.1 and Lemma 8.4 (b). h

Theorem 3.4
inf
r2TðY;DÞ

RððQ hÞh; r; ðWhÞhÞ ¼ S½KððWhÞhÞ�
Proof. This is a direct consequence of Lemma 8.4, Theorem 3.2 and the definition of the standard upper prevision. h
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4. The general Le Cam–Blackwell–Sherman–Stein–theorem

This section contains a generalization of the Le Cam–Blackwell–Sherman–Stein–Theorem. It is needed in the proof of the
main theorem, Theorem 5.4.

Let H be a finite index set. Let p be a prior distribution on ðH;2HÞ so that ph :¼ p½Ifhg� > 0 8h 2 H. Let ðphÞh2H be a precise
model on ðX;AÞ and ðQ hÞh2H an imprecise model on ðY;BÞ where ðMhÞh2H is the corresponding family of structures. Let sðphÞh

be the standard measure of ðphÞh2H and S the standard upper prevision of ðQ hÞh2H on ðU;CÞ.
Let W be the set of all functions k 2L1ðU;CÞ such that there is some decision space ðD;DÞ and a loss function

ðWhÞh2H �L1ðD;DÞ where kðuÞ ¼ infs2D
P

h2HnphWhðsÞihðuÞ 8u 2 U.

Theorem 4.1 is the analogue to [7, Theorem 7.1], the proof is similar.

Theorem 4.1. The following statements are equivalent:

(a) ðphÞh2H is worst-case-sufficient for ðQ hÞh2H.
(b) sðphÞh ½k� 6 S½k� 8k 2 W
(c) For every finite decision space ðD;DÞ and every loss function ðWhÞh2H �L1ðD;DÞ,
inf
q2TðX;DÞ

RððphÞh; q; ðWhÞhÞ 6 inf
r2TrðY;DÞ

RððQ hÞh; r; ðWhÞhÞ
(d) For every decision space ðD;DÞ and every loss function ðWhÞh2H �L1ðD;DÞ,
inf
q2TðX;DÞ

RððphÞh; q; ðWhÞhÞ 6 inf
r2TðY;DÞ

RððQ hÞh; r; ðWhÞhÞ
Proof. The proof has the following structure: (a)() (d), (d)() (c), (d)() (b)

ðaÞ ) ðdÞ: This is a direct consequence of Lemma 8.3.
ðaÞ ( ðdÞ: Put D ¼ Y and r0ðlÞ ¼ l 8l 2 baðY;BÞ. Then (d) implies that for all ðghÞh2H �L1ðY;BÞ,
inf
T2TðX;YÞ

RððphÞh; T; ðghÞhÞ 6 RððQ hÞh; r0; ðghÞhÞ
which may be rewritten as infT2TðX;YÞ
P

h2HphðTðphÞ½gh� 
 Q h½gh�Þ 6 0.
Put CðT; ðghÞhÞ :¼

P
h2HphðTðphÞ½gh� 
 Qh½gh�Þ. Then,
supðghÞh�L1ðY;BÞ inf
T2TðX;YÞ

CðT; ðghÞhÞ 6 0 ð3Þ
TðX;YÞ is compact, T#CðT; ðghÞhÞ is continuous and convex, ðghÞh#CðT; ðghÞhÞ is concave. So, the minimax theorem [20, The-
orem 2] and (3) yield
inf
T2TðX;YÞ

sup
ðghÞh�L1ðY;BÞ

CðT; ðghÞhÞ 6 0
Compactness of TðX;YÞ and lower semicontinuity of
T# sup
ðghÞh�L1ðY;BÞ

CðT; ðghÞhÞ
imply the existence of some T0 2TðX;YÞ so that
sup
ðghÞh�L1ðY;BÞ

CðT0; ðghÞhÞ 6 0 ð4Þ
(cf. [21, Theorem 3.7]). Since ph > 0 8h 2 H, it follows from (4) that
T0ðphÞ½gh� 6 Q ½gh� 8gh 2L1ðY;BÞ 8h 2 H
ðdÞ ) ðcÞ: This is obvious.
ðdÞ ( ðcÞ: Let r : l#j�ðlÞ be a restricted randomization from Y to D where
X" #

j�ðlÞ½g� ¼ l

t2D

gðtÞat
and D is a finite subset of D. ðD;2DÞ may be regarded as a finite decision space and r may be regarded as an element of
TðY;DÞ. Then, (c) implies
inf
q̂2TðX;DÞ

RððphÞh; q̂; ðWhÞhÞ 6 RððQ hÞh; r; ðWhÞhÞ ð5Þ
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Since every element of TrðX;DÞ may be regarded as an element of TrðX;DÞ, Proposition 3.1 implies
inf
q2TðX;DÞ

RððphÞh; q; ðWhÞhÞ 6 inf
q̂2TðX;DÞ

RððphÞh; q̂; ðWhÞhÞ ð6Þ
Hence, (according to Proposition 3.3)
inf
q2TðX;DÞ

RððphÞh; q; ðWhÞhÞ 6
ð6;5Þ

inf
r2TrðY;DÞ

RððQ hÞh; r; ðWhÞhÞ ¼ inf
r2TðY;DÞ

RððQ hÞh; r; ðWhÞhÞ
ðdÞ () ðbÞ: This is a direct consequence of Theorems 3.2 and 3.4. h
5. Least favorable models

Let again the index set H be finite with cardinality n. Let p be a prior distribution on ðH;2HÞ so that ph :¼ p½Ifhg� > 0 8h 2 H.
Let ðQ hÞh2H be an imprecise model on ðY;BÞ where ðMhÞh2H is the corresponding family of structures. Let ðD;DÞ be a fixed
decision space and let W be a set of loss functions ðWhÞh2H �L1ðD;DÞ.

Definition 5.1. ðqhÞh2H 2 ðMhÞh2H is called least favorable (precise) model of ðMhÞh2H for W if
inf
r2TðY;DÞ

RððqhÞh; r; ðWhÞhÞ ¼ inf
r2TðY;DÞ

RððQ hÞh; r; ðWhÞhÞ 8ðWhÞh 2W
That is the minimal Bayes risk of the imprecise model is attained in the least favorable model which represents the worst-
case. (This justifies the term ‘‘least favorable”.) Remember that our definition of the Bayes risk corresponds to a worst-case
consideration.

We are not primarily interested in a set of loss functions but in a set of prior distributions. However, a set of prior dis-
tributions can always be transformed into a set of loss functions (cf. Section 6).

For F 2 ðMhÞh2H, put
UF :¼ fh 2L1ðU;CÞjsF½h� ¼ S½h�g
where sF is the standard measure of F and S is the standard upper prevision of ðQ hÞh2H on ðU;CÞ.

Lemma 5.2. UF is a norm-closed convex cone in L1ðU;CÞ.

Proof. For h 2 UF and c 2 ½0;1Þ, S½ch� ¼ cS½h� ¼ csF½h� ¼ sF½ch�.
For h1; h2 2 UF,
S½h1 þ h2� 6 S½h1� þ S½h2� ¼ sF½h1� þ sF½h2� ¼ sF½h1 þ h2� 6 S½h1 þ h2�
For ðhmÞm2N � UF, limmkhm 
 hk ¼ 0 and h 2L1ðU;CÞ,
S½h� 6 lim sup
m
ðS½hm� þ S½h
 hm�Þ ¼ lim sup

m
sF½hm� ¼ sF½h�
i.e. sF½h� ¼ S½h�. h

For every ðWhÞh2H �L1ðD;DÞ, define KððWhÞhÞ as in (2).
WW :¼ fKððWhÞhÞjðWhÞh 2Wg �L1ðU;CÞ
eWW denotes the smallest norm-closed convex cone in L1ðU;CÞ which contains WW. Lemma 5.3 is a direct consequence of
Theorems 3.2 and 3.4.

Lemma 5.3. F 2 ðMhÞh2H is least favorable for W if and only if
sF½k� ¼ S½k� 8 k 2 WW
Theorem 5.4 is the analogue to [7, Theorem 8.2]. It characterizes the existence of least favorable models in full generality.

Theorem 5.4. The following statements are equivalent:

(a) There is some F :¼ ðqhÞh2H 2 ðMhÞh2H which is least favorable for W.
(b) S½k1 þ k2� ¼ S½k1� þ S½k2� 8 k1; k2 2 eWW
Proof

ðaÞ ) ðbÞ: Statement (a) and Lemma 5.3 imply WW � UF. According to Lemma 5.2, eWW � UF and k1 þ k2 2 UF 8 k1;

k2 2 eWW. Hence, for every k1; k2 2 eWW
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S½k1 þ k2� ¼ sF½k1 þ k2� ¼ sF½k1� þ sF½k2� ¼ S½k1� þ S½k2�

ðaÞ ( ðbÞ: Put s½k� :¼ S½k� 8 k 2 eWW and

s½k1 
 k2� :¼ s½k1� 
 s½k2� ¼ S½k1� 
 S½k2�

for all k1; k2 2 eWW. Statement (b) implies that this is defined well. Hence, s is a linear functional on the vector space
linð eWWÞ ¼ eWW 
 eWW. For every k ¼ k1 
 k2 2 eWW 
 eWW ¼ linð eWWÞ,
s½k� ¼ S½k2 þ k1 
 k2� 
 S½k2� 6 S½k2� þ S½k1 
 k2� 
 S½k2� ¼ S½k�
According to the Hahn–Banach-Theorem [14, Theorem II.3.10], s can be extended to a linear functional on L1ðU;CÞ (again
denoted by s) so that
s½h� 6 S½h� 8 h 2L1ðU;CÞ ð7Þ
(7) implies, that s½IU� ¼ 1 and s½ih� ¼ 1
n 8 h 2 H (cf. Theorem 2.5). Then, sh : h#s½nihh� defines a precise model ðshÞh2H on ðU;CÞ.

For every decision space ð bD; bDÞ and every ðcW hÞh �L1ð bD; bDÞ,

inf

q2TðU;bDÞRððshÞh; q; ðcW hÞhÞ ¼ s½KððcW hÞhÞ� ð8Þ
according to Lemma 8.2 and
inf
q2TðU;bDÞRððshÞh; q; ðcW hÞhÞ ¼

ð8Þ
s½KððcW hÞhÞ�6

ð7Þ
S½KððcW hÞhÞ� ¼ inf

r2TðY;bDÞRððQ hÞh; r; ðcW hÞhÞ
according to Theorem 3.4. Hence, Theorem 4.1 implies that ðshÞh2H is worst-case-sufficient for ðQ hÞh2H, i.e. there is some
T 2TðU;YÞ so that qh :¼ TðshÞ 2Mh8h 2 H. Finally for all ðWhÞh2H 2W,
inf
r2TðY;DÞ

RððQ hÞh; r; ðWhÞhÞ ¼ S½KððWhÞhÞ� ¼ s½KððWhÞhÞ� ¼
ð8Þ

inf
q2TðU;DÞ

RððshÞh; q; ðWhÞhÞ 6 inf
r2TðY;DÞ

RððqhÞh; r; ðWhÞhÞ
where the last inequality follows from Lemma 8.3. h
6. Application of least favorable models

Situations where we are faced with one precise prior distribution and a set of loss functions seem to be of secondary inter-
est. More frequently, we are interested in situations where we are faced with an imprecise prior and one fixed loss function.
However, the second issue can be treated as a special case of the first one.

Let H be a finite index set with cardinality n and ðWhÞh2H �L1ðD;DÞ be a loss function. Let ðQ hÞh2H be an imprecise model
on ðY;BÞ where ðMhÞh2H is the corresponding family of structures. Let P be a coherent upper prevision on L1ðH;2HÞ i.e. P
corresponds to a set of prior distributions P :¼ fp 2 baðH;2HÞj p½a� 6 P½a� 8a 2L1ðH;2HÞg.

For some p 2 P, put ph :¼ p½Ifhg� 8h 2 H. Let r be a randomization. For the prior p, the Bayes risk is
RpððQ hÞh; r; ðWhÞhÞ ¼
X
h2H

phrðQ hÞ½Wh� ¼
1
n

X
h2H

rðQ hÞ½nphWh� ¼ R0ððQ hÞh; r; ðnphWhÞhÞ
where R0ððQ hÞh; r; ðnphWhÞhÞ denotes the Bayes risk for the uniform prior p0 defined by p0½Ih� ¼ 1
n.

That is every prior can be absorbed in the loss function. So, we can transform the set P of priors p into a set W of loss
functions ðnphWhÞh2H. Next, Theorem 5.4 yields a necessary and sufficient condition for the existence of a precise model
which is simultaneously least favorable for the set of loss functions W. We may also say that such a precise model is simul-
taneously least favorable for the set of priors P.

The next theorem shows how least favorable models can be used to deal with situations where the distribution of the data
as well as the prior is assumed to be imprecise. A decision procedure is optimal if it minimizes the upper Bayes risk
RPððQ hÞh; r; ðWhÞhÞ ¼ sup
p2P

RpððQ hÞh; r; ðWhÞhÞ
Theorem 6.1. If ð~qhÞh2H is a simultaneously least favorable model of ðMhÞh2H for P, there is a decision procedure ~r 2TðY;DÞ
which minimizes
RPððQ hÞh; r; ðWhÞhÞ and also RPðð~qhÞh; r; ðWhÞhÞ
over TðY;DÞ.

Proof. For every r 2TðY;DÞ and p 2 P, put
C1ðr; pÞ ¼ RpððQ hÞh; r; ðWhÞhÞ and C2ðr; pÞ ¼ Rpðð~qhÞh; r; ðWhÞhÞ
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It is easy to see that r#Cjðr; pÞ is convex and lower semicontinuous for every p 2 P and j 2 f1;2g. Then, [20, Theorem 2] and
simultaneous least favorability implies
3 In c
inf
r2TðY;DÞ

RPððQ hÞh; r; ðWhÞhÞ ¼ inf
r2TðY;DÞ

sup
p2P

C1ðr; pÞ ¼ sup
p2P

inf
r2TðY;DÞ

C1ðr; pÞ ¼ sup
p2P

inf
r2TðY;DÞ

C2ðr; pÞ

¼ inf
r2TðY;DÞ

sup
p2P

C2ðr; pÞ ¼ inf
r2TðY;DÞ

RPðð~qhÞh; r; ðWhÞhÞ ð9Þ
Lower semicontinuity of
r#RPððQ hÞh; r; ðWhÞhÞ
and compactness of TðY;DÞ ensure existence of some ~r which minimizes RPððQ hÞh; r; ðWhÞhÞ (cf. [21, Theorem 3.7]).
Additionally,
RPðð~qhÞh; ~r; ðWhÞhÞ 6 RPððQ hÞh; ~r; ðWhÞhÞ ¼ inf
r2TðY;DÞ

RPððQ hÞh; r; ðWhÞhÞ ¼
ð9Þ

inf
r2TðY;DÞ

RPðð~qhÞh; r; ðWhÞhÞ �
Remark 6.2. It can easily be read off from the above proof that a decision procedure ~r which minimizes RPððQ hÞh; r; ðWhÞhÞ
minimizes RPðð~qhÞh; r; ðWhÞhÞ, too. However, the reverse statement will not always be true.3 So, it does not suffice to find a
decision procedure r̂ which minimizes RPðð~qhÞh;r; ðWhÞhÞ. It still has to be checked that r̂ really minimizes RPððQ hÞh; r; ðWhÞhÞ.
Theorem 6.1 only states that there is a decision procedure which solves both minimization problems.
7. Concluding remarks

In decision theory, straightforward updating may lead to decisions with a too high risk if the data is distributed according
to imprecise probabilities (cf. [4]). Therefore, data-based decision theory can be seen as a matter of its own. One of the major
problems in data-based decision theory is that direct solutions of the involved optimization problems are quite often com-
putationally intractable. Theorem 6.1 offers an opportunity to reduce the computational effort significantly if the imprecise
model admits a least favorable (precise) model. Therefore, it is important to know for a given decision problem if such a least
favorable model exists or not.

This question has been addressed by Buja [7]. The concept of imprecise probability developed in [7] is very close to that
one developed in [1]. From a mathematical point of view, the only difference is that [7] assumes that precise probabilities
(i.e. linear previsions) have to be r-additive. Surprisingly, this turns out to be a burden which significantly reduces the appli-
cability of [7]; cf. Remark 2.2 and Section 8.1. The present article shows that the same result as in [7] is possible without any
assumption on the involved (coherent) upper previsions if we dispense with r-additivity.

This offers a general tool which makes it possible to reduce the computational effort in data-based decision theory under
imprecision. However, further research has to be done for using it in concrete problems: As in [8], Theorem 5.4 is only con-
cerned with the existence of a least favorable model but an algorithm for calculating least favorable models has not yet been
developed.

After [8], a lot of work was done to construct least favorable pairs in hypothesis testing for special cases (e.g. [23–25,22]).
In the much more general case of the present article, this is a matter of further research.

The present article might not only be interesting because of its results but also because of the applied tools: Getting
around r-additivity in the proofs of the present paper was possible by the use of notions and methods of [11]. This article
is probably the first one which explicitly uses concepts of [11] in the theory of imprecise probability. Since these concepts
were especially developed for large models, it is most likely that they can profitably be used in the theory of imprecise prob-
ability further on. Additionally, a theory of ‘‘sufficiency” is used which is not formulated in terms of conditional probabilities.
In this way, a sufficiency theory for imprecise probabilities may be possible which is not affected by the problems which
arise for conditional imprecise probabilities.

8. Appendix

8.1. About an incorrect statement in [7]

This subsection deals with classical probability theory. Here, Y is a Polish space, B is the Borel-r-algebra of Y and
caþ1 ðY;BÞ denotes the set of all probability measures on ðY;BÞ. Hence, the elements of caþ1 ðY;BÞ are r-additive. For classical
probability theory, confer e.g. [26].

Let CbðYÞ be the set of all continuous, bounded functions g : Y ! R. As usual in this context, caþ1 ðY;BÞ is endowed with
the weak topology of probability measures, i.e. the topology of pointwise convergence on CbðYÞ.

Proposition 2.1 in [7] contains the following statement:

Let Q be a tight subset of caþ1 ðY;BÞ and define
ase of hypothesis testing, for example, this follows from [22, p. 162ff].
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Q ½g� ¼ supfq½g�jq 2 Qg 8g 2L1ðY;BÞ

Then, ðgnÞn2N � CbðYÞ; g 2L1ðY;BÞ; gn & gðpointwiseÞ implies

Q ½gn� & Q ½g� ð10Þ
In general, this statement is not correct. As a counterexample, take Y ¼ R, Q ¼ fq 2 caþ1 ðY;BÞjq½I½0;1Þ� ¼ 1g and
gn : x#xnI½0;1�ðxÞ þ Ið1;1ÞðxÞ.

In general, (10) follows if g 2 CbðYÞ; cf. [27, Theorem II.25].
As a consequence, tightness of Q does not generally imply compactness (in the weak topology of probability measures) of
M ¼ fq 2 caþ1 ðY;BÞjq½g� 6 Q ½g� 8 g 2L1ðY;BÞg
So, compactness of M is an additional assumption in [7] which is restrictive because it implies that
M ¼ fq 2 caþ1 ðY;BÞj q½g� 6 Q ½g� 8 g 2 CbðYÞg
(The last assertion is a consequence of the Separation Theorem [14, Corollary V.2.13].)

8.2. Some lemmas

Lemma 8.1. For i 2 f1; 2g, let ðXi;AiÞ be a measurable space, Ei ¼ ðpi;hÞh2H a precise model on ðXi;AiÞ and LðEiÞ the smallest
band in the L-space baðXi;AiÞ. Analogously to TðX1;X2Þ, let TðE1;E2Þ be the set of all linear, positive, normalized mapsbT : LðE1Þ ! LðE2Þ. Then: There is some T 2TðX1;X2Þ such that Tðp1;hÞ ¼ p2;h 8 h 2 H if and only if
infbT2TðE1 ;E2Þ
sup
h2H
kbT ðp1;hÞ 
 p2;hk ¼ 0 ð11Þ
Proof. According to [11, Theorem 2.3.2], the existence of some bT 2TðE1;E2Þ so that bT ðp1;hÞ ¼ p2;h 8h 2 H is equivalent to
(11).

Let bT be such an element of TðE1;E2Þ. For any fixed x2 2 X2, SðlÞ½g� :¼ gðx2Þl½IX1 � defines an element of TðX1;X2Þ. Let
PLðE1Þ be the projection of baðX1;A1Þ on the band LðE1Þ. Some simple calculations show that
TðlÞ ¼ ðbT �PLðEÞÞðlÞ þ ðS
 S �PLðEÞÞðlÞ
defines an extension of bT to an element of TðX1;X2Þ.
The converse statement follows from [10, Proposition 7]. h

Lemma 8.2. Assume that s is a linear prevision on L1ðU;CÞ so that s½ih� ¼ 1
n 8 h 2 H. Then, sh : h#s½nihh� defines a precise model

ðshÞh2H on ðU;CÞ and
inf
q2TðU;DÞ

RððshÞh; q; ðWhÞhÞ ¼ s½KððWhÞhÞ� ð12Þ
for every decision space ðD;DÞ and every ðWhÞh �L1ðD;DÞ. KððWhÞhÞ is defined as in (2).

Proof. Obviously, ðshÞh2H is a precise model on ðU;CÞ. Statement (12) is proven by two steps:
1. Let ðcW hÞh2H �L1ðD;DÞ be a family of simple functions. Since H is finite, there is a finite subset bS :¼ ft1; . . . ; tmg � D so

that
fðcW hðtÞÞh2Hjt 2 bSg ¼ fðcW hðtÞÞh2Hjt 2 Dg
Let the elements of the set A be the families ðatÞt2S �L1ðU;CÞ where S is a finite subset of D, at P 0 8 t 2 S and
P

t2Sat � 1.

PutCtðuÞ ¼
P

h2Hnph
cW hðtÞihðuÞ, thus infs2DCs ¼ KððcW hÞhÞ.

For j 2 f1; . . . ;mg, let Vj be the set of elements u 2 U so that Ctj ðuÞ ¼ infs2DCsðuÞ,
Uj :¼ Vj n ð[j
1
l¼1VlÞ and âtj

¼ IUj
; j ¼ 1; . . . ;m
Note that Uj 2 C. The definition of ft1; . . . ; tmg ensures that ðUjÞj¼1;...;m is a partition of U. Hence,
P

t2bS ât � 1 and ðâtÞ
t2bS 2 A.

Furthermore,
X
t2bS âtðuÞCtðuÞ ¼ inf

s2D
CsðuÞ ð13Þ
Let q̂ be the restricted randomization which corresponds to ðâtÞ
t2bS 2 A. Then,
X

h2H
phq̂ðshÞ½cW h� ¼

ð13Þ
Z

inf
s2D

CsðuÞsðduÞ ¼ s½KððWhÞhÞ� ð14Þ
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So, (12) follows from (14) and
inf
q2TðU;DÞ

X
h2H

phqðshÞ½cW h� ¼Proposition 3:1 inf
ðat Þt2S2A

X
h2H

phsh

X
t2S

cW hðtÞat

" #
¼ inf
ðatÞt2S2A

Z X
t2S

atðuÞCtðuÞ sðduÞ

P inf
ðat Þt2S2A

Z
inf
s2D

CsðuÞ
X

t2S
atðuÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼1

sðduÞ ¼
Z

inf
s2D

CsðuÞ sðduÞ
2. Fix any e > 0. Then, for every h 2 H, there is a simple function cW h 2L1ðD;DÞ so that cW h 
 e 6Wh 6
cW h þ e 8h 2 H (cf.

[26, p. 86]). Hence,
inf
q2TðU;DÞ

X
h2H

phqðshÞ½Wh� 6 inf
q2TðU;DÞ

X
h2H

phqðshÞ cW h

h i !
þ e¼1: s cW hÞhÞ

h i
þ e ¼ s inf

s2D

X
h2H

nph
cW hðsÞih

" #

þ e 6 s inf
s2D

X
h2H

nphWhðsÞih

" #
þ 2e ¼ s½KððWhÞhÞ� þ 2e
and, analogously, infq2TðU;DÞ
P

h2HphqðshÞ½Wh�P s½KððWhÞhÞ� 
 2e.

Since e > 0 was arbitrarily chosen, (12) follows. h

Lemma 8.3. If a precise model ðphÞh2H on ðX;AÞ is sufficient for the precise model ðqhÞh2H on ðY;BÞ, then
inf
q2TðX;DÞ

RððphÞh; q; ðWhÞhÞ 6 inf
r2TðY;DÞ

RððqhÞh; r; ðWhÞhÞ
for every decision space ðD;DÞ and every ðWhÞh �L1ðD;DÞ.

Proof. There is some T 2TðX;YÞ so that TðphÞ ¼ qh 8 h 2 H. Therefore,
inf
r2TðY;DÞ

X
h2H

phrðqhÞ½Wh� ¼ inf
r2TðY;DÞ

X
h2H

phrðTðphÞÞ½Wh� ¼ inf
r2TðY;DÞ

X
h2H

phðr � TÞðphÞ½Wh�P inf
q2TðX;DÞ

X
h2H

phqðphÞ½Wh�
because r � T 2TðX;DÞ8r 2TðX;DÞ. h

Lemma 8.4.
ðaÞ inf
r2Tr ðY;DÞ

RððQ hÞh; r; ðWhÞhÞ ¼ sup
ðqhÞh2ðMhÞh

inf
r2Tr ðY;DÞ

RððqhÞh; r; ðWhÞhÞ

ðbÞ inf
r2TðY;DÞ

RððQ hÞh; r; ðWhÞhÞ ¼ sup
ðqhÞh2ðMhÞh

inf
r2TðY;DÞ

RððqhÞh; r; ðWhÞhÞ
Proof. (a) Theorem 2.1 and [14, Lemma V.3.3, Lemma I.8.2 and Theorem I.8.5] imply that
Q

h2HMh is a compact Hausdorff
space. For every r 2TrðY;DÞ there is some j : L1ðY;BÞ !L1ðX;AÞ so that rðlÞ½g� ¼ l½jðgÞ� for every
g 2L1ðY;BÞ; l 2 baðY;BÞ. Hence,
Mh ! R; qh#rðqhÞ½Wh�
is continuous for every h 2 H and this implies continuity of the map
ðqhÞh#

X
h2H

phrðqhÞ½Wh� ¼: CððqhÞh; rÞ
on
Q

h2HMh for every r 2TrðY;DÞ. ðqhÞh#CððqhÞh; rÞ is convex on
Q

h2HMh for every r 2TrðY;DÞ and r#CððqhÞh; rÞ is con-
cave on TrðY;DÞ for every ðqhÞh 2

Q
h2HMh. Then, the minimax theorem [20, Theorem 2] yields
inf
r2TrðY;DÞ

RððQ hÞh; r; ðWhÞhÞ ¼ 
 sup
r2TrðY;DÞ

inf
ðqhÞh2ðMhÞh

CððqhÞh; rÞ ¼ 
 inf
ðqhÞh2ðMhÞh

sup
r2Tr ðY;DÞ

CððqhÞh; rÞ

¼ sup
ðqhÞh2ðMhÞh

inf
r2TrðY;DÞ

RððqhÞh; r; ðWhÞhÞ
(b) Proposition 3.1 and part (a) of the present lemma yield
inf
r2TðY;DÞ

RððQ hÞh; r; ðWhÞhÞP sup
ðqhÞh2ðMhÞh

inf
r2TðY;DÞ

RððqhÞh; r; ðWhÞhÞ

¼ sup
ðqhÞh2ðMhÞh

inf
r2Tr ðY;DÞ

RððqhÞh; r; ðWhÞhÞ ¼
ðaÞ

inf
r2TrðY;DÞ

RððQ hÞh; r; ðWhÞhÞ

P inf
r2TðY;DÞ

RððQ hÞh; r; ðWhÞhÞ �
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