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presence of a least favorable model. Buja [A. Buja, Simultaneously least favorable experi-
ments. [. Upper standard functionals and sufficiency, Zeitschrift fiir Wahrscheinlichkeits-
theorie und Verwandte Gebiete 65 (1984) 367-384] derived a necessary and sufficient
condition for the existence of a least favorable model in a special case. The present article
proves that essentially the same result is valid in case of general coherent upper previsions.
This is done mainly by topological arguments in combination with some of Le Cam’s deci-
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Huber-Strassen theory situations where the distribution of the data as well as the prior is allowed to be imprecise.
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1. Introduction
1.1. Motivation

Decision theory provides a formal framework for determining optimal actions under uncertainty on the states of nature. It
has a wide range of potential areas of application which includes also statistical problems. However, a serious problem in
practical applications of decision theory is that the uncertainty often is too complex to be adequately described by a precise
probability distribution. Ambiguity, i.e. the extent of deviation from ideal stochasticity, plays an important role in decision
making that cannot be neglected. To take ambiguity into account properly, generalizations of the concept of probability have
been developed, among others, by Walley [1] (imprecise probability) and Weichselberger [2] (interval probability, cf. also
[3]). Here, the probability of an event is no longer a number p € [0, 1] but an interval [p,p] C [0, 1]. These concepts are applied
in a number of recent articles in decision theory, e.g. [4-6]. a

Generalizations of probabilities as in [1,2] have a strong relationship with some concepts of robust statistics - a fact
which is frequently disregarded. Actually, Buja [7] develops a concept of robust statistics (named “upper expectations”)
which lies between the concepts of [1,2]. Buja [7] considers decision making which is explicitly data-based. This can be
understood as a matter of its own as has been pointed out by Augustin [4]. In the spirit of the celebrated article by Huber
and Strassen [8], Buja [7] characterizes the existence of precise models which are simultaneously least favorable for a class
of loss functions (or for a class of prior distributions).

Huber and Strassen [8] deals with hypothesis testing where a (rather special) upper prevision is tested against another
one. This is equivalent to testing between certain sets of (precise) probabilities .#, and .#;. Huber and Strassen [8] shows
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that there is a pair (py,p;) € #o x .#1 which is least favorable: Testing between p, and p; is as hard as testing between .#,
and .#4 and, as a consequence, there is an optimal test between p, and p, which is also an optimal test between .#, and .#1.
That way, testing between .#, and .#, can be done by testing only between p, and p,. This reduces the computational effort
substantially. In fact, it is one of the most important drawbacks of data-based decision theory (including hypothesis testing)
that the computational effort of direct solutions is frequently not manageable. Therefore, least favorability has attracted
enormous attention after the publication of [8]. For a review of [8] and the work following [8], confer [9]. In quite general
data-based decision theory, where there are n states of nature (instead of two), an analogous question of that one solved
by Huber and Strassen [8] is: Does there exist a model (q,,q,,...,q,) € #1 X 4> x --- x .4y which is simultaneously least
favorable for a class of loss functions? This is not always the case but [7] proves a necessary and sufficient condition for
the existence of such simultaneously least favorable models.

Unfortunately, Buja [7] contains an error which reduces its applicability significantly. The validity of the conclusions in [7]
can only be guaranteed by adding a restrictive assumption on the involved upper previsions; cf. Section 8.1.

The present article follows the lines of [7] - but within the concept of [1] which dispenses with s-additivity. It is shown
that the same result as in [7] is possible without any additional assumption on the involved (coherent) upper previsions.
Surprisingly, most of the proofs are similar to those given in [7]. This demonstrates that, in [7], insistence on s-additivity
of probabilities happens to be an unnecessary burden (cf. also Remark 2.2).

By ignoring s-additivity, we are in line with Le Cam’s decision theoretic framework (cf. [10,11]), which provides us with
some effective methods. Within this framework some terms (e.g. randomization) are slightly generalized.

Sections 2 and 3 develop the decision theoretic framework. Section 4 contains a generalization of the Le Cam-Blackwell-
Sherman-Stein-Theorem. This theorem plays an important role in Section 5 where the analogue to [7, Theorem 8.2] is pro-
ven which characterizes the existence of least favorable models. This is the main theorem of the present article. Section 6
explains how least favorability could be used to deal with situations where the distribution of the data as well as the prior
is assumed to be imprecise.

Since the content of this article might be obscured by the mathematical details, the following subsection presents a rather
detailed, but informal outline.

1.2. Outline

In order to explain the decision theoretic setup we are concerned with, the classical decision theoretic setup is recalled at
first.

There is a set @ where each element 0 € © represents a possible state of nature. We know that one state of nature will
occur but we do not know which one it will be. Furthermore, there is a set D where each element t € D is a decision we can
choose. Depending on what state of nature 0 occurs, every decision t leads to a loss W(t). The goal is to choose a “good”
decision so that the loss is as small as possible.

Sometimes, we might know a precise expectation = for the states of nature 0 € . Then, we can choose the decision that
minimizes the expected loss

/@; W, () =(do)

In addition, we often can choose our decision on the base of an observation y € #. For example, the observation y may be the
outcome of an experiment. The distribution of the observation y might be a precise expectation g, which depends on the
state of nature 6. That is (q,),., is @ model which describes the distribution of the observation y.

Such “data-based decision making” can be formalized by choosing a decision function ¢:% — D,x—d(y) which
minimizes

/o /, W, (8(y))q,(dy)m(d0)

Decision theory commonly also deals with randomized decisions. Randomized decision procedures (randomizations) are de-
fined in Section 2.1. Confer [12] for an introduction to these basic concepts of decision theory.

In the following, we are concerned with a more general decision theoretic setup because we also want to deal with impre-
cise probabilities.

Since the prior knowledge about the states of nature will frequently not be precise, we allow for a whole set 2 of possible
precise expectations r. Also the knowledge about the distribution of the observation may only be imprecise so that there are
sets ./, of possible precise expectations q,. While minimizing the expected loss in case of precise expectations is widely ac-
cepted, there are several reasonable optimality criteria in case of imprecise expectations; confer [5] for a discussion of the
most important ones. In the present article the so-called I'-minimax criterion is used which represents a worst-case consid-
eration.! That is, we choose a decision function & (or rather a randomization later on) which minimizes the twofold upper
expectation

1 For the use of the I'-minimax criterion in Bayesian analysis, cf. [13] and the literature cited therein.
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sup [ sup [ Wy(3(¥))qy(dy)n(d0)

ne? JO qoedly JY

Unfortunately, a direct solution of this problem is quite often computationally intractable. In Section 6, it is shown how the
situation might become manageable: In the presence of a model (qy),.o € (-#0)yce Which is simultaneously least favorable
for 2 (or for a corresponding set of loss functions) the above minimization problem may be solved by minimizing

sup / W, (5(9)) 0 (dy)n(do)

neP 2

However, such a least favorable model (g),., need not exist. In Section 5, a necessary and sufficient condition for existence
is proven (Theorem 5.4). This condition is formulated in terms of standard models.

Indeed, standard models are our main tool. They are introduced in Section 2.3. An important fact is that every model (con-
sisting of precise expectations) is equivalent to a standard model. In Section 2.2, we define an equivalence relation on the set
of all (precise) models (q,),., according to which two (precise) models (p,),., and (q,),., are equivalent if the following is
true: Observations of model (p,),., can artificially be generated (by a randomization) from observations of model (q,),., and
vice versa. Here and also as decision procedures, randomizations become important. For topological reasons, we have to rely
on Le Cam’s slight generalization of the term “randomization” (cf. [10]). All these tools from decision theory (namely ran-
domizations, equivalence of models, standard models) are presented in Section 2.

In Section 3, minimal Bayes risks are defined for precise models and for imprecise models as well. It is shown that min-
imal Bayes risks can be expressed in terms of standard models. This is the reason why standard models are used.

Section 4 contains a generalization of the Le Cam-Blackwell-Sherman-Stein-Theorem. This theorem is important in the
proof of the main theorem, Theorem 5.4, which characterizes the existence of simultaneously least favorable models.

1.3. Some notation

This subsection lists some notation which is used throughout the article.

Let (#,%) be a measurable space and .. (%, %) be the Banach space of all bounded Borel-measurable real functions
g: % — R where ||g|| = sup,.,g(y). For a subset B of %, I denotes the characteristic function of B on %.

The set of all bounded, finitely additive, signed measures ba(#, %) can be identified with the dual space of Z..(#, %), i.e.
the Banach space of all linear continuous real functionals on % (%, #) where ||u|| = sup {|ulg]|| & € L~ (¥, %), |gl| < 1} for
w € ba(#,5); cf. [14, Theorem IV.5.1]. 1 € ba(#, %) is called positive if p[g] > O for every g > 0. This is denoted by x > 0.

Let © be an index set. Throughout the article, (Qy),., is a family of coherent upper previsions Q, : 2., (%, %) — R (cf. [1]).
The corresponding sets of majorized linear previsions are denoted by .#, := {q, € ba(%, %)|q,[g] < Qu[g] Vg € L(¥,A)}.
Analogously to [2], ., is called structure. (Qy),., is called imprecise model on (#,%). A family (g,),., Of linear previsions
Qy: L~ (%,%) — R is called precise model on (%, %). These terms are adapted from the notion “statistical model”. Buja [7]
and Le Cam [10] use the term “experiment” instead of “model”.

Let (%, /) be another measurable space. # = (q,),., always denotes a precise model on (%, %), & = (py) .o always de-
notes a precise model on (%, 7). If q, € .#, for every 0 € ©, we may also write (q,),co € (#o)gco OF F € (My),eq- EXpressions
of the form (ay),., are often abbreviated by (ay),.

For some fixed n € N, put # := {u € R"|u = (uy,,...,Up,), Up = 0V0€ O, Uy, +---+ Uy, = 1} and ¥ := B*" n % where B*"
is the Borel-g-algebra of R". For 6 € O, put 1, : % — [0,1], u—u, where u, is the f-component of u.

2. Some tools from decision theory
2.1. Randomizations

2.1.1. Introduction

Let 2 be a set of possible outcomes of an experiment and D be a set of possible decisions t. Then, a decision function may
be a map é : # — D where §(x) = t means: If x appears, choose action t. In addition, decision theory commonly deals with
randomized decisions 6: 2 — ba(D, %), x—t, Here, it is supposed that each t, is a linear prevision and that
©.[h] : x—>1[h] lies in £ (%, /) for every h € .. (D, 2). Then, §(x) = 1, means: After observing x, start an auxiliary random
experiment according to the distribution ¢, and choose that action d which is the outcome of the auxiliary random
experiment.

For our purposes, we will need a slight generalization. Note that every randomized decision function x—r, defines a
map

a: ba(Z,</) — ba(D,2), u—a(p) (1)
via o) - hs () ] = ule ] = [ lh] u(dx).

It is easy to see that ¢ is linear, positive (¢(u) > 0 for every p > 0) and normalized (||o(u)|| = ||| for every p > 0).
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2.1.2. Definition
Let (2, «/) and (%, #) be measurable spaces. According to [10], a randomization from 2 to % is a linear, positive and nor-
malized map

T: ba(Z,«)— ba(#, %)

where “positive” means T(x) > 0 for every x > 0 and “normalized” means || T(u)|| = ||¢|| for every p > 0. Let 7 (2, %) denote
the set of all randomizations from 2" to #.
We also mark a class of randomizations of a very simple form: To this end, let x be a map

K: LW, B) - Lo(X, L), g—K(g)
so that there is some finite set S ¢ # and

Kg) =) 8V VgEL(Y.RB)
yes
where oy € L (¥, /)Yy €S, o0y = 0VyeSand }, o = 1. Then,
k" : ba(Z, /) — ba(¥, %), u—K* ()
where «*(u)[g] = ulx(g)| V 8 € L (¥, #), is called restricted randomization. It is easy to see that every restricted randomiza-

tion is generated by a (very simple) randomized decision function as in (1). Every restricted randomization is in fact a ran-
domization, i.e. 7.(Z,%) C 7 (%,%) where 7 .(Z,%) denotes the set of all restricted randomizations.

2.1.3. Topological issues

Models which consist of imprecise probabilities are so extensive that sequential limit arguments are no longer adequate.
So, we have to resort to topological arguments. In addition to the norm-topology, ba(#, #) can also be provided with the
a(ba, £, )-topology. This is the smallest topology so that

ba(#,%) — R, u—ug]

is continuous for every g € £ (¥, %). _
Let Q : #..(#,%) — R be a coherent upper prevision with structure .# := {q € ba(#, %)|q(g] < Q[g] Vg € L.(¥,%)}.

Theorem 2.1. ./ is o(ba, £,)-compact (cf. [1, Section 3.6.1]).

Remark 2.2. According to Theorem 2.1, compactness of .# comes for free. If we restricted .# to s-additive measures, we
would have to impose additional assumptions to ensure compactness in reasonable topologies (cf. Section 8.1). So, insistence
on ¢-additivity appears to be a burden.

7 (Z,%) can be provided with the topology of pointwise convergence. This is the smallest topology so that
T@Y) R, TT(u)g]

is continuous for every u € ba(2', .«/) and every g € Z.. (%, 4). The following theorem is the reason why we use the gener-
alization of randomized procedures:

Theorem 2.3. 7 (%',%) is a compact Hausdorff space (cf. [11, Theorem 1.4.2]).
The following theorem indicates that the term “randomization” has only been slightly generalized:

Theorem 2.4. 7 .(2,%) is dense in 7 (X', %).

Proof. This is a consequence of [10, Theorem 1]. O

Especially, Theorem 2.4 implies that the randomized procedures defined as in (1) are dense in 7 (2, %).
2.2. Sufficiency and equivalence of models

Let & = (py),o be a precise model on (2, /) and & = (q,),.e a precise model on (%, #). Analogously to [7], (Py)yce 1S
called sufficient for (q,),., if there is a randomization T € 7 (%', %) so that T(p,) = q,v0 € 6.

This definition of “sufficiency” essentially goes back to [15]. It does not strictly coincide with the more common definition
in terms of conditional expectations but, under suitable assumptions of regularity, the definitions do coincide (cf. [16]). At
least, if the randomization T is generated by a randomized function x—1, as in (1), the above definition has a very descriptive
interpretation.

Let x be an observation distributed according to p,. After observing x, start an auxiliary random experiment according to
4. Then, the outcome y of the auxiliary random experiment is distributed according to gq,. That is, if we have observations of
the model (p,),, we can artificially generate observations of the model (gq,), “by coin tossing”.
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(Po)oeo and (qy),co are called equivalent if they are mutually sufficient, i.e. there are some Ty € 7 (2, %), T, € 7 (%, %) SO
that T, (py) = q,¥0 € © and T»(q,) = p,v0 € ©. This definition of equivalence is in accordance with Le Cam’s definition (cf.
Lemma 8.1). The descriptive interpretation of sufficiency already indicates that equivalent models essentially coincide from
a decision theoretic point of view.

Let (Qy),., be an imprecise model with corresponding structures .#,, 0 € ©. Analogously to [7], (p,)s.e is called worst-
case-sufficient for (Qy),ce if (Dg)yee is sufficient for some (qy),co € (#0)peo- SO, (Po)pee is Worst-case-sufficient for (Qy),., if
and only if there is some T € 7 (Z,%) so that V0 € ©

2.3. Standard models

Let the index set @ be finite with cardinality n. In Section 2.2, we have defined an equivalence relation on the precise
models with a fixed index set @. Each equivalence class contains a uniquely defined representative (called standard model
later on) which has some nice properties.? This is the content of the following theorem.

Theorem 2.5. Every precise model # = (q;)y.o On (#,%) admits a uniquely defined (s-additive) probability measure s” on
(%,%) so that ds] = niyds” defines a precise model (5] ),.o ON (%, %) which is equivalent to 7 (cf. [17, Theorem 6.5]).

Sketch of proof. For # = (q,),.,. there is a uniquely defined localization 7+ on (%, %) (cf. [11, p. 33f]). Let 1, be defined as in
Section 1.3. Then, ds;” = 1,d7j» uniquely defines a probability measure s7. Put s* =13 s7.

Since (s7 )y and # have the same conical measure, they are equivalent in the sense of [11, p. 19] according to [11, p. 28
and p. 32f]; cf. also [18, Remark 4]. A twofold application of Lemma 8.1 implies that (s7 ),., and # are also equivalent in the
sense of Section 2.2 of the present article.

A detailed proof is contained in [17,19]. O

Analogously to [7], s” is called standard measure and (s7 ),_, is called standard (precise) model of #.

Standard models share two important properties: Firstly, they are defined on the very nice measurable space (%, %) (cf.
Section 1.3). Secondly, they consist of linear previsions s, which are s-additive probability measures.

For the imprecise model (Q,),., with corresponding structures .#,, we can uniquely define

Sih] = sup{s” [N|# € (Moo} Vh e Lo(2,%)
Sulh] = sup {s7 | # € (M0),c0} Vh € Lo(2.%)

S is called standard upper prevision, (Sy),., is called standard imprecise model of (Q,),.,- Note that S is a coherent upper pre-
vision on . (%,%) and (Sy),., is an imprecise model on (%, %).

3. Minimal Bayes risks

Let the index set ©® = {0;,...,0,} be finite with cardinality n and let = be a prior distribution on (@,2°), i.e. z is a linear
prevision on Z,,(0,2°). Put n, := nllyy).

A decision space is a measurable space (D,2) where D is the set of possible decisions. A loss function is a family
Wi)peo € (D, 2).

The measurable space (%, %) may represent the results of an experiment. According to [10], a decision procedure is a
randomization

o:ba(¥, B) —»ba(D,7), T (U D)

Now, Bayes risks can be defined for precise models (Section 3.1) and for imprecise models (Section 3.2). The main goal of the
present section is to express minimal Bayes risks in terms of standard measures (Theorem 3.2) and standard upper previ-
sions (Theorem 3.4).

3.1. Precise models

Let (gy)y.o be a precise model on (%, #). For a decision procedure ¢ € 7 (%, D) and a loss function (Wy),., C (D, 2),
the risk function of (q,),c is

a(q)[W.] : O—0(qy) W]
The Bayes risk is

2 As stated in Section 2.2, equivalent models coincide from a decision theoretic point of view. Therefore, every decision problem coincides with a “standard
decision problem” where a standard model is involved; properties of the original decision problem can be deduced from the corresponding “standard decision
problem”.
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R((d9)pco: 7, Wo)geo) = nla(@[W ]] = Z”/)O'(Q(l)[wﬁ]
0co

Note that this definition coincides with the usual one if ¢ is defined by a randomized decision function as in (1).
The minimal Bayes risk is the same if we let ¢ vary among the randomizations or the restricted randomizations:

Proposition 3.1
inf )R((Q())[)e(-)v“’ Wo)gpeo) = _inf  R((49)peos 7 (Wo)geo)

oe7 (%,D oeT (%, D)

Proof. The definition of the topology of pointwise convergence implies continuity of the map
o—(a(qy,)[Wa,], .., 0(qy,) [Wa])

and, therefore, continuity of 6—R((q)yco, 7, (Wo)pco)-
Since 7 (%, D) is dense in 7 (%, D) (Theorem 2.4), the statement follows. O

For (Wy)yco C Z~(D,2), put
K((Wy),) : u—inf OEZ@ nrgWo(t)1p(u) (2)
on R" where 14(u) = u, is the 6-component of u € R® =~ R". Note that K((W,),) is concave and, therefore, continuous on R".

Hence, the restriction of K((W,),) on % is Borel-measurable and s [K((W,),)] is well defined where s is the standard
measure of (q,)

00"
Theorem 3.2
AnfR((@0). 0 (Wo),) = 590 [K((Wo),)]

Proof. According to Theorem 2.5, the standard model (s7),., is equivalent to & := (q,),.,- That is (57 ),., and # are mutual
sufficient. So, a twofold application of Lemma 8.3 yields

inf R(#,0,(Wy),) = inf R((S’Z)U,p,(W(;){,)

ce 7 (%,D) pET (U,D)

and an application of Lemma 8.2 closes the proof. O

3.2. Imprecise models

Let (Qy)y.o be an imprecise model on (%, %) with corresponding structures .#,, 0 € 6, and standard upper prevision S. For
a decision procedure o € 7 (%, D) and a loss function (Wy),., C Z(D, %), the risk function of (Qy),.e is

0— sup a(qy)[Wy)

qpetly

and the Bayes risk is

R((Qo)g: 0, (Wa)y) = sup a(q,)[Wa

0e® qoeMy
Hence,
R(@)yeo.(W)y) = Sup  R((y)y. 0 (Wy),)

(@o)o€(-#0)y

These definitions assume that we have chosen the I'-minimax optimality criterion which represents a worst-case consider-
ation (cf. Section 1.2) - as done in [8,7].
Now, we can derive the analogues of Proposition 3.1 and Theorem 3.2 in case of imprecise models:

Proposition 3.3

infR(@)seor 0 Widieo) = _Inf  R(@)icor 7. (Wo)yeo)
Proof. This is a direct consequence of Lemma 8.4 (a), Proposition 3.1 and Lemma 8.4 (b). O
Theorem 3.4
inf R((Qo)y, 0, (Wa),) = SIK((W,),)]

¢e7 (%,D)

Proof. This is a direct consequence of Lemma 8.4, Theorem 3.2 and the definition of the standard upper prevision. [
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4. The general Le Cam-Blackwell-Sherman-Stein-theorem

This section contains a generalization of the Le Cam-Blackwell-Sherman-Stein-Theorem. It is needed in the proof of the
main theorem, Theorem 5.4.

Let @ be a finite index set. Let = be a prior distribution on (©,2¢) so that =, := =[l;5;] > 0 V0 € 6. Let (p,),., be a precise
model on (2, +7) and (Qy),., an imprecise model on (%, ) where (/%9)(,&0 is the corresponding family of structures. Let s
be the standard measure of (p,),., and S the standard upper prevision of (Qy),., On (%,%).

Let ¥ be the set of all functions k € ¥, (%,%) such that there is some decision space (D,Z) and a loss function
(Wo)geo C Z~(D,2) where k(u) =inf.cpd "y onmoWo(1)1o(u) Yu € %.

Theorem 4.1 is the analogue to [7, Theorem 7.1], the proof is similar.

Theorem 4.1. The following statements are equivalent:

(a) (Po)peo is worst-case-sufficient for Q1) peor
(b) sPle[k] < S[k]  Vke¥
(c) For every finite decision space (D, Z) and every loss function (Wy),.o C Z~(D,2),

lnf R((P(;)m s (Wo),) < mf R((Qw)o s (Wa),)

pET (4 0ET (2
(d) For every decision space (D, %) and every loss function (Wy),.o C Z~(D,2),
inf R((py)g, p,(Wo),) < _inf R((Qo)y, 0,(Wp),)

peT (Z,D) o7 (%,D)

Proof. The proof has the following structure: (a) += (d), (d) <= (c), (d) < (b)

(a) = (d): This is a direct consequence of Lemma 8.3.
(a) < (d): Put D = % and oo(u) = 1 Vi € ba(%, %). Then (d) implies that for all (g)),.o C L~ (¥, %),

lnf R((pz))m ,(80)s) < R((Qo)y, 00, (80)y)

TeT (2,

which may be rewritten as infre, (s> com0(T(Py)[80] — Qulgy) < 0
Put I'(T, (g9)y) := > peomo(T(Py) (8] — Qolgo))- Then,
Sup(gn)//cyx(*’/«%) Te IJ;lf F( (gl)) ) X <0 (3)
7 (%,%) is compact, T—I'(T, (g,),) is continuous and convex, (g,),—I'(T, (g,),) is concave. So, the minimax theorem [20, The-
orem 2] and (3) yield

inf sup I'(T,(g),) <O

TET (1Y) (gy)yc Lo (9.9)
Compactness of 7 (Z,%) and lower semicontinuity of

T— sup I'(T,(8),)

(80)0C Lo (¥, 5)
imply the existence of some Ty € 7 (2,%) so that
sup I'(To, (8p)y) < O "

(80)0CL (¥, %)
(cf. [21, Theorem 3.7]). Since =, > 0 V0 € O, it follows from (4) that

To(po)lgs] < Qlgy) Vg € Lo, B) Vo€ O

(d) = (c): This is obvious.
(d) <= (c): Let ¢ : w—r*(u) be a restricted randomization from # to D where

(lg) = {ngat]
teD

and D is a finite subset of D. (D,2") may be regarded as a finite decision space and ¢ may be regarded as an element of
7 (#,D). Then, (c) implies

mf R((p(,)(,,p,(Wo)()) < R((Qﬂ)(;uav(wﬂ)(}) (5)

peT (X
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Since every element of .7 (2, D) may be regarded as an element of 7 (%, D), Proposition 3.1 implies
inf | R((Po)y: p:(Wo)o) < _Inf " R((po)y: £, (Wo)y) (6)

peT (X,D peT (4,D)
Hence, (according to Proposition 3.3)

. (6.5)
inf  R((Py)y:p: (Wa),) <

peT (XD

inf R((a())ev”-, (Wo)y) = inf R((Qﬂ)owav (Wo)y)

6e7 +(%,D) 6e7 (D)

(d) < (b): This is a direct consequence of Theorems 3.2 and 3.4. O

5. Least favorable models

Let again the index set @ be finite with cardinality n. Let = be a prior distribution on (8,2°) so that n, := =[l;] > 0 V0 € 6.
Let (Qy),., be an imprecise model on (%, %) where (.#,),., is the corresponding family of structures. Let (D, Z) be a fixed
decision space and let 7~ be a set of loss functions (W),., C (D, 2).

Definition 5.1. (qy),.o € (#0),co is called least favorable (precise) model of (. ¢),.e for #" if

inf R((qy)p, 0, (Wh)y) = imj D)R((Go)o»”v (Wo)p)  VY(We), €W

€7 (%,D) e (Y,

That is the minimal Bayes risk of the imprecise model is attained in the least favorable model which represents the worst-
case. (This justifies the term “least favorable”.) Remember that our definition of the Bayes risk corresponds to a worst-case
consideration.

We are not primarily interested in a set of loss functions but in a set of prior distributions. However, a set of prior dis-
tributions can always be transformed into a set of loss functions (cf. Section 6).
For 7 € (My))ce» DUt

®; = {he L (% %)s” [h] =S[h]}
where s7 is the standard measure of # and S is the standard upper prevision of (Qy),., on (%, %).
Lemma 5.2. @5 is a norm-closed convex cone in £ (%, %).
Proof. For h € ®; and c € [0, c0), Sch] = cS[h] = cs” [h] = s7[ch].

For hy,hy; € @,

Sthi + hy] < S[h] +Slha]) = s7[hy] +s7[ha] = s7[hy 4+ ha] < S[hy + hy]
For (hm)men C @, limy||hm —h|| =0and h € L (%, %),

Sih] < limmsup(§[hm] +S[h — hp]) = limmsups’" [hm] = s”[h]

ie.s”[h=Sh. O
For every (Wy) .o C Z~(D,2), define K(W,),) as in (2).
Wy 1= {K(W0),)(Wo), € #'} C Lo, 6)

¥, denotes the smallest norm-closed convex cone in %+ (%,%) which contains ¥,-. Lemma 5.3 is a direct consequence of
Theorems 3.2 and 3.4.

Lemma 5.3. 7 < (.#y),e is least favorable for #" if and only if
s”[kj=Sk] Vkew,

Theorem 5.4 is the analogue to [7, Theorem 8.2]. It characterizes the existence of least favorable models in full generality.
Theorem 5.4. The following statements are equivalent:

(a) There is some F := (qy)co € (-#0)gee Which is least favorable for .
(b) S[k] + kz] = S[kl} S[kz] v k],kz cV¥Y,

Proof

(a) = (b): Statement (a) and Lemma 5.3 imply ¥, C ®;. According to Lemma 5.2, Y, C Oz and ki +ky € 5 V ky,
k, € ¥ . Hence, for every ki,k, € ¥,
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Slk1 + kz]) = s7[ky + ka] = s” [kq] + s7 [ka] = S[k1] + S[ka]
(a) «< (b): Put s[k] :=S[k] vV k € ¥, and
slky — ka] := s[kq] — s[kz] = S[k1] — S[k2]
for all ki, ky € {P& Statement (b) implies that this is deﬁnec~1 well. Hence, s is a linear functional on the vector space
lin(\Wy) =¥, — ¥y Forevery k =Kk —k, € ¥, — ¥, =lin(¥,),
s[k] = S[ka + k1 — ko] — S[ka] < S[ka] + S[k1 — ka] — S[ka] = S[k]

According to the Hahn-Banach-Theorem [14, Theorem I1.3.10], s can be extended to a linear functional on % (%, %) (again
denoted by s) so that

slh) < Slh)  VYhe L. (%,%) (7)

(7) implies, that s[l,] = 1 and s[i] = 1V e o (cf Theorem 2.5). Then, s : h—>s[niph] defines a precise model (sy) ., 0N (%, 6).
For every decision space (D, 2) and every (W(})() C Z.(D,2),

inf_ R((50)g» p: (Wa),) = sIK(Wo),)] (8)

peT (U, D)

according to Lemma 8.2 and

. — — D . — —
inf_ R((0), o, (Wa)) ZsIK((W0),)] < SK(Wo),)] = inf_ R(@Qo)y, 0, (W),)
peT (U,D) ceT (W,D)
according to Theorem 3.4. Hence, Theorem 4.1 implies that (s),., is worst-case-sufficient for (Qy),., i.e. there is some
Te 7 (u,%) so that q, := T(sy) € .#,¥0 € O. Finally for all (W,),., € 7,

inf _ R((Q)g> 0, (Wa),) = SIK(W0))] = SIK(W),)] 2 inf _ R((0)gsp, (Wo)y) < _inf ~ R((dg)y» 7, (Wa),)

oe7 (%,D) peT (U.,D) oe7 (%,D)

where the last inequality follows from Lemma 8.3. O

6. Application of least favorable models

Situations where we are faced with one precise prior distribution and a set of loss functions seem to be of secondary inter-
est. More frequently, we are interested in situations where we are faced with an imprecise prior and one fixed loss function.
However, the second issue can be treated as a special case of the first one.

Let O be a finite index set with cardinality n and (W),., C Z(D,2) be a loss function. Let (Qy),., be an imprecise model
on (%, %) where (./#y),, is the corresponding family of structures. Let TI be a coherent upper prevision on %..(0,2°) i.e. TI
corresponds to a set of prior distributions 2 := {n € ba(@,2%)| n[a] < Ta] Va € £..(0,2°)}.

For some = € 2, put n, := n[l{y] V0 € O. Let ¢ be a randomization. For the prior =, the Bayes risk is

Rn((é(’)(h (Wo),) Zﬂoa Qo W] = 111 ZU(@?)[nﬂowo] = RO((QO)()vav (nmeWo),)
06 (=)

where Ry((Qy),, o, (nmyW,),) denotes the Bayes risk for the uniform prior 7, defined by mo[ly] = 1

That is every prior can be absorbed in the loss function. So, we can transform the set £ of priors = into a set ¥~ of loss
functions (nmyWy), . Next, Theorem 5.4 yields a necessary and sufficient condition for the existence of a precise model
which is simultaneously least favorable for the set of loss functions #". We may also say that such a precise model is simul-
taneously least favorable for the set of priors 2.

The next theorem shows how least favorable models can be used to deal with situations where the distribution of the data
as well as the prior is assumed to be imprecise. A decision procedure is optimal if it minimizes the upper Bayes risk

Rﬁ((aﬁ)m a,(Wy),) = SHSB R.((Qo)y, 0, (Wo)y)

Theorem 6.1. If (4y),. is a simultaneously least favorable model of (.#y),., for 2, there is a decision procedure ¢ € 7 (%, D)
which minimizes

Rﬁ((al))m g, (WU)(;) and also Rﬁ((q(’)m 0, (W(’)())
over 7 (%, D).

Proof. For every ¢ € 7 (#,D) and = € 2, put

I'i(o,7) = Ra((Q)g,0,(Wo)y)  and  Ta(o,m) = Re((Qo)y. 7, (Wo),)
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It is easy to see that ¢—1Ij(o, n) is convex and lower semicontinuous for every = € # and j € {1, 2}. Then, [20, Theorem 2] and
simultaneous least favorability implies

inf )Rﬁ((@,)(,,a,(w(,)“): inf suprli(e,n)=sup inf TI'y(o,n)=sup inf TI(o,n)

oe7 (%,D €T (WD) pep nep o€ (WD) nep 0€7 (YD)
= inf supl;(o,n)= inf R=((qy),, 0, (W 9
inf supla(o,m) = inf (@), (Wo),) 9

Lower semicontinuity of

UHRﬁ((aﬁ)ov a,(Wp),)

and compactness of 7 (%,D) ensure existence of some ¢ which minimizes R;((Qy)y, 0, (Wy),) (cf. [21, Theorem 3.7]).
Additionally,

Ra((@0)g: . (Wa)y) < Ri((Qo)y,, (Wo),) e

infD)Rﬁ((@)mm(Wo)o): inf | R((@0)o, 7, (Wo)) O

ceT (Y, T (U,D

Remark 6.2. It can easily be read off from the above proof that a decision procedure & which minimizes R;((Qo),, o, (Wy),)
minimizes Ry;((Go) o, (Wo),), too. However, the reverse statement will not always be true.? So, it does not suffice to find a

decision procedure & which minimizes R((qs)y, o, (Wo),). It still has to be checked that ¢ really minimizes R5((Qo),, 7, (Wa),).
Theorem 6.1 only states that there is a decision procedure which solves both minimization problems.

7. Concluding remarks

In decision theory, straightforward updating may lead to decisions with a too high risk if the data is distributed according
to imprecise probabilities (cf. [4]). Therefore, data-based decision theory can be seen as a matter of its own. One of the major
problems in data-based decision theory is that direct solutions of the involved optimization problems are quite often com-
putationally intractable. Theorem 6.1 offers an opportunity to reduce the computational effort significantly if the imprecise
model admits a least favorable (precise) model. Therefore, it is important to know for a given decision problem if such a least
favorable model exists or not.

This question has been addressed by Buja [7]. The concept of imprecise probability developed in [7] is very close to that
one developed in [1]. From a mathematical point of view, the only difference is that [7] assumes that precise probabilities
(i.e. linear previsions) have to be s-additive. Surprisingly, this turns out to be a burden which significantly reduces the appli-
cability of [7]; cf. Remark 2.2 and Section 8.1. The present article shows that the same result as in [7] is possible without any
assumption on the involved (coherent) upper previsions if we dispense with s-additivity.

This offers a general tool which makes it possible to reduce the computational effort in data-based decision theory under
imprecision. However, further research has to be done for using it in concrete problems: As in [8], Theorem 5.4 is only con-
cerned with the existence of a least favorable model but an algorithm for calculating least favorable models has not yet been
developed.

After [8], a lot of work was done to construct least favorable pairs in hypothesis testing for special cases (e.g. [23-25,22]).
In the much more general case of the present article, this is a matter of further research.

The present article might not only be interesting because of its results but also because of the applied tools: Getting
around s-additivity in the proofs of the present paper was possible by the use of notions and methods of [11]. This article
is probably the first one which explicitly uses concepts of [11] in the theory of imprecise probability. Since these concepts
were especially developed for large models, it is most likely that they can profitably be used in the theory of imprecise prob-
ability further on. Additionally, a theory of “sufficiency” is used which is not formulated in terms of conditional probabilities.
In this way, a sufficiency theory for imprecise probabilities may be possible which is not affected by the problems which
arise for conditional imprecise probabilities.

8. Appendix
8.1. About an incorrect statement in [7]

This subsection deals with classical probability theory. Here, # is a Polish space, # is the Borel-g-algebra of # and
caj (%, #) denotes the set of all probability measures on (%, #). Hence, the elements of caj (%, %) are g-additive. For classical
probability theory, confer e.g. [26].

Let ¢°(#) be the set of all continuous, bounded functions g : Y — R. As usual in this context, ca: (%, %) is endowed with
the weak topology of probability measures, i.e. the topology of pointwise convergence on %°(%).

Proposition 2.1 in [7] contains the following statement:

Let 2 be a tight subset of caj (%, #) and define

3 In case of hypothesis testing, for example, this follows from [22, p. 162ff].
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Qlgl =sup{qlgllge 2} Vg€ Lu(¥, %)
Then, (8,),cy C 6°(#), g € L (¥, 2), g, \, g(pointwise) implies
Qlg,] \. Qlg] (10)

In general, this statement is not correct. As a counterexample, take % =R, 2={q e caj(%,%)|qllp) =1} and
8 XHX”I[():]] (X) —+ I(l,oc) (X)

In general, (10) follows if g € ¥°(#); cf. [27, Theorem 11.25].

As a consequence, tightness of 2 does not generally imply compactness (in the weak topology of probability measures) of

M={qgecal (¥ RB)qgl <QgI Vg€ L(¥,RB)}
So, compactness of .# is an additional assumption in [7] which is restrictive because it implies that
M ={qecaj(¥,5) qg) <Qlg] Vg € 4" (%)}

(The last assertion is a consequence of the Separation Theorem [14, Corollary V.2.13].)
8.2. Some lemmas

Lemma 8.1. For i € {1;2}, let (%;, /i) be a measurable space, &; = (p;y)yco @ Precise model on (%;, </;) and L(&;) the smallest
band in the L-space ba(Z, «/;). Analogously to 7 (21,%>), let 7(61,8>) be the set of all linear, positive, normalized maps
T : L(&61) — L(&2). Then: There is some T € 7 (X1, %) such that T(p, 5) = p2, ¥V 0 € O if and only if

_inf  sup||T(py,) — Payll = 0 (11)

Te7(61.6,) 0€@

Proof. According to [11, Theorem 2.3.2], the existence of some T € 7 (&1, &,) so that T(p, o) = D2y V0 € O is equivalent to
(11).

Let T be such an element of 7 (&1, &>). For any fixed x, € 25, S(u)[g] == g(x2)ullz,] defines an element of .7 (%1, Z2). Let
Iy s,y be the projection of ba(2'1,.<1) on the band L(&1). Some simple calculations show that

T(u) = (T o Hye)) () + (S — S o Mys)) ()

defines an extension of T to an element of T (X1, %2)-
The converse statement follows from [10, Proposition 7]. O

Lemma 8.2. Assume that s is a linear prevision on (%, %) so that s[1)) =1 v 0 € ©. Then, s, : h—s[ni,h] defines a precise model
(S0)pee ON (%,%) and

inf | R((s0)o, p. (Wa)y) = SIK(Wo)y)] (12)

peT (U,D
for every decision space (D, 2) and every (W), C %« (D, ). K(W,),) is defined as in (2).
Proof. Obviously, (sy),.e is a precise model on (%,%). Statement (12) is proven by two steps:

1. Let (Wo)(,gé, C Z..(D,2) be a family of simple functions. Since @ is finite, there is a finite subset S := {t;,...,tn} C D s0
that

{(Wa(O)seolt € S} = {(Wo(D)eolt € D}
Let the elements of the set A be the families (o;),.s C £ (%,%) where S is a finite subset of D, o, > 0V teSand ), o = 1.

Putl}(u) = Zﬂegnmwo(t)z(;(u), thl.lS infteDI} = K((W{))O)
Forj e {1,...,m}, let V; be the set of elements u € # so that I';;(u) = inf.cpI':(u),

Up=V,\(ULV)  and & =1y, j=1,....m

Note that U; € %. The definition of {t1,...,tn} ensures that (Uj)._, ,, is a partition of %. Hence, Z[?&t =1 and (&‘)re§ cA.
€

Furthermore,
> s()re(u) = inf I'(u) (13)
tes

Let p be the restricted randomization which corresponds to (1r) S € A. Then,

Zﬂoﬂ So)| 0] = /12& I (w)s(du) = s[K((W)),)] (14)

0cO
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So, (12) follows from (14) and

. a7 1 P ition 3.1 j : j :
Lnf E n(yp(S())[W()] e (dr se/\ s |: WO :| - (“r) 56/\ /j :OC[ du)
o te te

pe7 (u.D) 6= co es tes

> inf [infr.(u )D e (w)s(du) = / inf I', (u) s(du)
€D

(ot )res€A
=1
2. Fix any ¢ > 0. Then, for every 0 € O, there is a simple function W(, € Z.(D,2) so that V\A/O —e< Wy < VAVO +¢ VO0€ O (cf.
[26, p. 86]). Hence,

Zn(;p 50)[Wo] < < inf Zn(;p ) [W(;D +eks [Wﬂ)u)] +e= s{mf Znnowo )1(;:|

pe/(//mn <o pe7 (D) 4=3 0c6

+e<Ss |}:2ﬂg Z nTE()W()(T)l() +2e= S[I(((W())[))] 4 2¢
0co

and, analogously, inf,c7u.0)>_jcom0p(S0)[Wo] = SIK((W)),)] — 2e.

Since ¢ > 0 was arbitrarily chosen, (12) follows. O

Lemma 8.3. If a precise model (p,),., 0n (4, ) is sufficient for the precise model (q,),., 0n (%, %), then
inf  R((pg)g: p» (Wa)g) < _Inf R((qy)y: 7, (Wo)y)

peT (4,D) ce7 (%,D)

for every decision space (D, Z) and every (Wy), C £ (D, 2).

Proof. There is some T € 7 (Z,%) so that T(p,) = q, V 0 € ©. Therefore,
n£m Z”W q,)[Wo] = m{m %m)ﬂ(T(Po))[Wd = UG}I};D) g{;“o(a o T)(py)[Wo] = pg}?{m %{; mop(Py) W]

(76/

because 6o T € 7 (%,D)Vo € 7 (2, D). O

Lemma 8.4.

(@) inf R((Qﬁ)m a,(Wy),) = sup inf  R((qy)y, 7, (Wh),)

o7+ (¥.D) (@0)o&(Hy)y 77 1(¥D)

(b) inf R((Qﬂ)w ,(Wo)y) = sup inf R((qy)g, 5, (Wo)y)

c€7(¥,D) (@9)o€ )y 77 (#:D)

Proof. (a) Theorem 2.1 and [14, Lemma V.3.3, Lemma 1.8.2 and Theorem 1.8.5] imply that [, ,-#, is a compact Hausdorff
space. For every oe 7,(%,D) there is some «k: % (¥ %B)— L(Z, /) so that o(u)[g]=px(g)] for every
g€ X (¥, %), uchba(?,5). Hence,

Mo — R, qo—0(qy)[Wol

is continuous for every 0 € @ and this implies continuity of the map

N Z m90(qp)[Wol =: T'((dy)p, 0)

0co

on H(,g@//g for every o € 7 (%, D). (qy)y—1((qy)y, o) is convex on [], o.#, for every ¢ € 7 (#%,D) and 6+—TI'((q,),, o) is con-
cave on 7 (%, D) for every (q), € [yco-#o. Then, the minimax theorem [20, Theorem 2] yields

inf R((Q())(,, 7(W0)4)) =— Ssup inf F((%)ora) == inf sup F((CI())()’ )

o€ r(%,D) e (%,D) (@o)o€(A0)y (@0)o€(#0)g ge7(%,D)

= sup inf _ R((qy)g, o, (Wo),)

(@0)oE(My)y 771 (4.D)

(b) Proposition 3.1 and part (a) of the present lemma yield

inf R((Q())()v ;(Wp)y) = sup inf R((qy)g, 7, (Wa),)

o€7(9.,D) (@0)o€(Mo), °7 (¥'D)
)
= su inf R W)Y inf R(Q w
(q,;),,e(g/u) cIneD) ((9o)g> 0, (Wo)y) D) ((Qo)g: 7, (Wh)y)

> inf R((Qy)y 0, (Wy),) O

ceT (¥.D)
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