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Abstract 

A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. 
At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local 
level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing
system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected 
to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension 
and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such
as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response
at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace-
ment response of the beam.

Keywords: ceramic matrix composite; dynamic analysis; vibration analysis; multiscale analysis; matrix crack; interface debond-
ing

1. Introduction1

Comparing with monolithic ceramic, ceramic matrix 
composite (CMC) exhibits a remarkable increase in 
strain-to-failure due to the multiple energy dissipation 
mechanism. Much works have been done to estimate 
the static performance of CMC[1-5]. This kind of mate-
rial is often used to manufacture the parts of aeroengine, 
rocket, and so on due to the high temperature resistant 
capability. In these systems the dynamic problem can-
not be ignored since the external dynamic force may be 
the main driver of failure. Thus, the dynamic problems 
of CMC structure are getting more and more attention 
in recent years. Both experimental researches[6-11] and 
theoretical analyses[12-15] have been widely performed 
in this field.  

J. Lankford[6] investigated the high-strain-rate com-
pressive failure mechanisms of fiber reinforced CMC. 
The results were compared with those of composite 
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damage development at low strain rates and the dy-
namic failure of monolithic ceramics. They found that 
the fiber direction affected the dynamic compressive 
strength of CMC greatly. P. T. Jaminet, et al.[7] used the 
piezoelectric ultrasonic composite oscillator technique 
(PUCOT) to measure the damping and dynamic elastic 
moduli of certain kinds of ceramics and CMC at ele-
vated temperatures. C. Wang, et al.[8] investigated the 
damping behavior of C/C composites which were fab-
ricated by chemical vapor infiltration (CVI) method, in 
the low-frequency range by means of a pendulum 
method. The results implied that the internal friction of 
the C/C composites decreased with the decrease of the 
volume fraction of fibers. Meanwhile, the internal fric-
tion of the composites was found to increase with in-
crease of porosity. Q. Zhang, et al.[9] measured the in-
ternal friction of 2D C/SiC composites fabricated by 
CVI method through the dynamical mechanical analy-
sis (DMA) method at different frequencies from room 
temperature to 400 ºC in the atmosphere. The results 
showed that the damping peak of the composites in-
creased gradually and the temperature of the peak 
shifted to the lower temperature with the increase of 
PyC interphase thickness. Q. Zhang, et al.[10] used the 
DMA method to measure the damping properties of 
C/SiC composites at different frequencies from room Open access under CC BY-NC-ND license.
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temperature to 400 ºC in the atmosphere. The results 
showed that SiC coating and heat treatment decreased 
the damping capacity of C/SiC composites and the 
damping peak disappeared or decreased within the 
testing temperature range. M. Liu, et al.[11] investigated 
the compressive properties of 2D C/SiC composites by 
quasi-static experiments and split-Hopkinson pressure 
bar system. The results showed that the dynamic com-
pressive stress-strain curves were nonlinear. Based on 
the experimental results, they proposed a new constitu-
tive model which was fit for one dimensional dynamic 
compressure. 

In the area of theoretical investigation, C. Cho, et 
al.[12] developed a method to estimate the interfacial 
shear in ceramic composites from frictional heating 
measurements. They first assumed a forward slip zone 
and a reversed slip zone at the interface and then de-
rived the formulas for the work of interface slip by us-
ing shear-lag method. Even though the original goal of 
the work was not directly related to the damping capac-
ity of CMC, the results were used by other researchers 
to estimate the energy dissipation due to interface fric-
tion. V. Birman, et al.[13] employed the energy dissipa-
tion formula developed by C. Cho, et al.[12] to estimate 
the damping in unidirectional composites with matrix 
cracks, cross-ply laminates with tunneling cracks in 
transverse layers, and bridging cracks in longitudinal 
layer. V. Birman, et al.[14] extended the theory to an-
gle-ply laminate and investigated the effects of the fre-
quency and magnitude of local dynamic stresses on the 
loss factor. Based on the theory of Y. M. Han, et al.[16],
V. Birman, et al.[15] developed an approach to the 
analysis of cross-ply composite beams with distributed 
damage and distributed stiffness subjected to static 
bending. They also investigated the effect of matrix 
crack on the stiffness and natural frequency. The results 
showed that the changes of stiffness and natural fre-
quency of CMC beam due to matrix crack were small. 

Based on the above literature review, it can be seen 
clearly that up to now the experimental studies of CMC 
dynamic problem are focused on the dynamic failure 
mechanism, testing damping capacity, testing dynamic 
elastic modulus, and dynamic constitutive behavior; 
while the theoretical researches are restricted to the 
estimation of damping capacity and natural frequency. 
However, little work has been done to simulate the 
dynamic response of CMC structure.  

Previous researches have evidenced that the property 
of CMC is commonly affected by the external load[17].
For example, the stiffness of CMC laminates may be 
changed under repeating loading due to open (under 
tension) and closed (under compression) cracks. Thus, 
it is inappropriate to model the dynamic response by 
the linear dynamic governing equations. This will 
greatly increase the difficulty of modeling the dynamic 
response of CMC, but this kind of modeling is impor-
tant for conducting structure design. 

The dynamic relation between the stress and strain of 
CMC is quite complicated. According to the above 
literature review, people have not yet understood all the 

mechanisms of CMC dynamic constitutive relation 
clearly. V. Birman, et al.[13-14] considered that the matrix 
crack, interface friction and the elastic moduli of fiber 
and matrix were the main factors which affected the 
dynamic response of CMC structure. Based on the 
classical shear-lag model, they developed a microme-
chanics method to predict damping capacity of CMC. 
However, their method could not be used to model the 
dynamic stress/strain response under complicated loa- 
ding history, and the Poisson’s effect and the nonlinear 
interface contact were not taken into account. 

In this article, in order to simulate the nonlinear dy-
namic response of CMC structure, a multiscale model-
ing method which includes global and local analyses is 
developed. At the local level, a unit-cell model is used 
to estimate the stress/strain response of CMC; while at 
the global level, the response of CMC beam is simu-
lated by finite element method (FEM). The dynamic 
constitutive model is developed from homocentric 
column model which considers the Poisson’s effect and 
the nonlinear interface contact. Following the theoreti-
cal analysis, as a numerical example, the stress/strain 
response of Nicalon/CAS-II material is predicted and 
compared with the experimental data. The dynamic 
response of CMC beam subjected to harmonic load is 
also simulated. The difference between the responses 
of CMC and elastic beam is also discussed. Recent 
works about the multiscale modeling of composite can 
be seen from Refs.[18]-[21]. However, it should be 
noted that an analytical prediction of dynamic response 
of CMC structure with damage has not been thoroughly 
investigated. 

2. CMC Damage Mechanisms 

Comparing with the polymer matrix composite, the 
damping coefficients of ceramic fiber and matrix are 
quite small[22-24]. The energy dissipation of CMC in-
creases dramatically with the increasing matrix cracks. 
That means the damping capability of CMC is affected 
by the damage greatly. So, it is necessary to understand 
the damage pattern of CMC.  

In the case of a unidirectional CMC material being 
subjected to axial tensile load, an extensive amount of 
damage will develop within the material. Matrix crack, 
interface slip and debonding, fiber failure and fiber 
pull-out are the main damage mechanisms during under 
tensile loading. In the process of preparing CMC, lots 
of small defects may be introduced into the material. 
When loading the material, matrix cracks will be initi-
ated from these small defects and then will be propa-
gated in the planes perpendicular to the fibers. When 
the matrix cracks approach the fiber, an alternative 
damage pattern may happen depending on the strength 
of fiber/matrix interface. In most cases, the interface is 
weak and the matrix crack will propagate around the 
fiber and induce interface debonding. As the load is 
continually increasing, the number of matrix cracks 
increases and then reaches a saturation state. Thus, a 
larger percentage of the load will be carry by the fibers 
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due to the degradation of matrix. Eventually, if fibers 
are broken, the fiber may be pulled out from the matrix. 
When the number of broken fibers achieves a critical 
value, the laminate will be failed[25-26].

In the case of small external load, such as the small 
amplitude vibration, the number of broken fibers is so 
small that the effect of broken fibers can be ignored. 
Thus, it is appropriate to consider the effects of matrix 
crack and interface slip only. In addition, since the ex-
ternal load is small, the space between adjacent matrix 
cracks and the debonding length of fiber/matrix inter-
face are assumed to be constants during loading.  

3. Simulating Dynamic Response of CMC 

3.1. Unit-cell model of CMC 

Based on the damage mechanisms described previ-
ously, a simplified unit-cell model is used to predict the 
stress-strain response of the unidirectional fiber rein-
forced CMC. First, we assumed that the arrangement of 
the fibers in matrix is uniform and symmetric. In par-
ticular, the fibers are assumed to be prismatic and con-
tinuous and embedded in the matrix with the form of 
regular rectangular array (see Fig.1). In addition to this 
assumption, the constituents of fiber and matrix are 
assumed to be intact. Therefore, the fiber and matrix 
are responding in perfectly linear-elastic modes.  

Fig.1  Assumed geometric arrangement of fibers. 

Once a matrix crack appears, it will spread to the en-
tire cross section of lamina soon. Thus, every crack is 
considered as an infinitely thin plane being perpen-
dicular to the loading axis. Experimental data indicate 
that the space between two adjacent matrix cracks is 
approximately uniform[27-28]. In addition to the matrix 
cracks, the interface debonding also occurs during 
loading. Since the stress concentration at the tip of ma-
trix crack, the interface debonding is assumed to be 
originated from the crack planes, spreaded uniformly 
around the fibers, and of constant length for all fi-
ber/crack pairs.  

The above-mentioned assumptions allow the com-
posite to be modeled by a simple unit-cell model con-
sisting of a single fiber and surrounding matrix. The 
length of the cell is equal to the average crack space 
which is denoted by L. Interface debonding is symmet-
ric about the plane of matrix crack which is perpen-
dicular to the fiber and we use d to denote the length of 
interface debonding at each side (see Fig.2, where R is 
the radius of unit cell). 

Fig.2  Illustration of unit cell with matrix cracks and inter-
face debonding. 

In the debonding area, the interface shearing stress i
is governed by the Coulomb’s friction law as follows 

i max i max

i max

r

x x r r ru u u u
   (1) 

where  is the coefficient of friction, r the radial stress 
at the interface, and u+ and u  are the interface dis-
placements of fiber and matrix respectively (see Fig.2). 

CMC is often prepared at a high temperature of 
1 000 °C. During process of cooling down to room 
temperature, an initial compressive stress is induced at 
the contacting area of fiber and matrix due to their dif-
ferent thermal expansion coefficients. The difference of 
radial displacements between fiber and matrix can be 
estimated by 

m f f m f( )r r ru u u r T      (2) 

where urm and urf are the radial displacements of matrix 
and fiber, m and f the thermal expansion coefficients 
of matrix and fiber respectively, T is the difference 
between CMC preparing temperature and room tem-
perature, and rf the radius of fiber. 

FEM is employed to model the stress/strain response 
of CMC. The unit cell is discretized by a four-node 
axisymmetric element which is shown in Fig.3. In ad-
dition to showing the layout of the fiber and matrix 
elements, Fig.3 also shows the boundary conditions of 
axial loading. Since the unit cell is distributing peri-
odically in material, the uniform displacement bound-
ary condition is employed at each side of unit cell, as 
follows: 

00 0x r rx

x xx L

u u

u L
       (3) 

where x  denotes the global strain in the axial direc-
tion.  

Fig.3  Finite element model of unit cell for modeling 
stress/strain response of CMC with matrix crack and 
interface debonding. 
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Since all the loads are transmitted through the cross 
section at the end of unit cell, the global axial stress is 
defined as the average of the axial stress of this plane, 
as follows: 

0
2

2 ( 0) d
R

x

x

x r r

R
        (4) 

The friction in debonding zone is modeled by the 
contact and friction element which obeys the law of 
friction expressed by Eq.(1). When the unit cell is be-
ing compressed, the matrix crack at the center of unit 
cell may be closed and then transmit the loads. There-
fore, the contact element should also be employed at 
the surface of matrix crack. The initial compressive 
stress between fiber and matrix is modeled by setting 
the initial offset displacement of contact element in 
debonding region. The initial offset displacement ur is 
expressed by Eq.(2). 

The process of modeling the strain/stress response is 
given as follows. First, a global strain is given, and 
then the displacement at the end of unit cell is calcu-
lated by Eq.(3) and applied to the finite element model. 
Through performing the finite element analysis, the 
stress field of the unit cell is estimated. By using Eq.(4), 
we obtain the global stress corresponding to the given 
global strain. Repeating the above-mentioned process, 
we can obtain all the global stress for a complicated 
loading history (the load is in the form of global strain). 
Thus, a numerical constitutive model of the CMC is 
constructed and expressed by 

( )x x x             (5) 

Since the calculation of nth step depends on the cal-
culated result of (n 1)th step, a small load increment is 
necessary for a complicated loading history.  

3.2. Finite elment simulation of nonlinear vibration   
of CMC beam 

(1) Governing equations 
As an example, the problem of a laminated cantile-

ver CMC beam of unit width subjected to an axial 
stress ˆ ( )t  which is applied on the free end is con-
sidered. The CMC beam is assumed to be homogene-
ous at the global level and the constitutive equation is 
given by Eq.(5). Thus, the equation of longitudinal 
vibration of the beam at the global level can be written 
as

2

2
x u

x t
             (6) 

where  is the mass density of beam. The solution of 
Eq.(6) must satisfy the dynamic boundary conditions: 

( 0) 0
ˆ ( )x x l

u x
t

              (7) 

where l denotes the length of the beam. 

In the case of linear-elastic beam, Eq.(6) can be ex-
pressed as  

2 2

2 2
u uE

x t
              (8) 

where E is the elastic modulus of the beam. Eq.(8) can 
be solved by assuming the u has the following form: 

( ) ( )u U x T t              (9) 

where U (x) and T (t) are the functions of coordinate x
and time t respectively. In the case of CMC beam, it’s 
difficult to solve Eq.(6) analytically since the nonlinear 
behavior of CMC. Thus, we employ Galerkin method 
to obtain the approximate solution of Eq.(6). Firstly, 
the equivalent integral form of Eqs.(6)-(7) is expressed 
as

2

20
ˆd ( ( )) 0

l x
x x l

uu x u t
x t

  (10) 

Performing the integration by parts and simplifica-

tion, the expression of 
0

( / )d
l

xu x x  can be 

rewritten as 

,0 0
d d

l lx
x x xx lu x u u x

x
 (11) 

Substituting Eq.(11) into Eq.(10) gives the following 
formulation: 

2

,20 0
ˆd d ( )

l l
x x x l

uu x u x u t
t

    (12) 

We employ the two-node linear element to discretize 
the beam as shown in Fig.4. Then, displacement within 
ith element can be expressed as 

1
1( ) ( )i i

i i
i i

u uu x x x x
l l

      (13) 

where ui and xi denote the displacement and the coor-
dinate of ith node respectively, and li is the length of ith
element. 

Fig.4  Finite element model of CMC beam.

Based on Eq.(13), the strain and acceleration of a 
point in ith element can be expressed as 

1i i i
x

i i

u uu
x l l

           (14) 

1
1( ) ( )i i

i i
i i

u uu x x x x
l l

     (15) 

where iu  denotes the acceleration of ith node. Sub-
stituting Eqs.(13)-(15) into Eq.(12) gives the discre-
tized form of Eq.(12) as follows: 
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1
1( ) ( )

i

i i
i iL

i i i

u ux x x x
l l

1
1( ) ( ) di i

i i
i i

u u
x x x x x

l l

i

1
1 ˆ( )d ( )i i

x n x lL
i i i

u u x x u t
l l

  (16) 

Simplifying Eq.(16) gives that 

1 1 3 1 2 1 4

1 1

( ) ( )

ˆd d ( )
i i

i i i i i i i i i i
i

x x
i i n x lL L

i i i

u u M u M u u M u M

u x u x u t
l l

 (17) 
where

2
1

1 2

1
2 3 2

2

4 2

( ) d
3

( )( ) d
6

( ) d
3

i

i

i

i i
i L

i

i i i
i i L

i

i i
i L

i

x x lM x
l

x x x x lM M x
l

x x lM x
l

  (18) 

Since Node 1 is constrained, u1 and u1 are equal to 
zero constantly. Thus, we obtain a linear system of    
n algebraic equations containing n unknowns u2,
u3, …, un+1. It can be written as 

1

1 1 3 1 ( 1)2 ( 1)4

1

2 1 4

   d d     ( 2,3, , )

ˆ ( ) d

i i

n

i i i i i i i i

x x
L L

i i

x
n n n n x l L

n

u M u M u M u M

x x i n
l l

u M u M t x
l

     

(19)

 Transforming Eq.(19) into matrix form, we can obtain 

M u F                (20) 

where the mass matrix M, acceleration vector u  and 
load vector F are given by 

T
21 14 22

23 31 24

23

2

4

0
0

0 0
0 0 0

0 0
0 0

n

n

M M M
M M M

M

M
M

M   (21a) 

T
2 3 1[ ]nu u uu          (21b) 

2 1

3 2

2 1

3 2

( / )d ( / )d

( / )d ( / )d

ˆ ( ) ( / )d
n

x xL L

x xL L

x nx l L

l x l x

l x l x

t l x

F    (21c) 

Since the nonlinear behavior of CMC, it is difficult 
to solve Eq.(20) with the method of mode superposi-
tion. Thus, we employ the direct integration methods 
involving the central difference method and the New-
mark method to obtain the solution of each time step. 

(2) Central difference method 
Within the theoretical framework of central differ-

ence method, the acceleration is expressed as[29]

2
1 ( 2 )t t t t t tt

u u u u      (22) 

The displacement solution for time t+ t is obtained 
by using Eq.(20) for time t, i.e. 

t tMu F               (23) 

Substituting the expression of tu  written as Eq.(22) 
into Eq.(23), we obtain 

2 2 2
2

t t t t t tt t t
M M Mu F u u   (24) 

From which, we can find ut+ t. It should be noted that 
using the central difference method, the calculation of 
ut+ t involves ut and ut t. Therefore, to calculate the 
solution at time t, a special starting procedure must be 
used. Since u0, 0u  and x  are known, Ft can be cal-
culated using Eq.(21). Eq.(23) can be used to obtain 

0u . Therefore, the displacement vector at time t can 
be calculated by 

2

0 0 02t
ttu u u u      (25) 

Table 1 summarizes the calculation flow of conduct-
ing the integration with the computer. 

Table 1  Step-by-step solution using central difference 
method

1) Initial calculation: 

  (a) Initialize u0, 0 ,u and .x

  (b) Form mass matrix M and load vector F by Eq.(21). 

  (c) Select time step t, and calculate u t by Eq.(25). 

  (d) Calculate u t by Eq.(24). 

2) For each time step: 

  (a) Calculate ut+ t by Eq.(24). 

  (b) Calculate global strain ( )
i
x t t  of each element by Eq.(14). 

  (c) Calculate global stress ( )
i
x t t  of each element by Eq.(5). 

  (d) Calculate load vector Ft+ t by Eq.(21). 
  (e) Let ut t = ut, ut = ut+ t, and Ft = Ft+ t, then go back to Step  

(a). 
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(3) Newmark method 
The Newmark integration method can also be under-

stood to be an extension of the linear acceleration 
method[29]. The following assumptions are used: 

[(1 ) ]t t t t t t tu u u u      (26) 

21
2t t t t t t tt tu u u u u    (27) 

where  and  are parameters determined by the re-
quired integration accuracy and stability. If these pa-
rameters satisfy the following conditions: 

2

0.5

0.25(0.5 )
          (28) 

The Newmark method will be of unconditional stabil-
ity[29].

The displacement solution for time t + t is obtained 
by using Eq.(20) for time t + t, i.e. 

t t t tM u F          (29) 

Through Eq.(27), the equation of t tu  expressed 
with ut+ t can be obtained, and then substituting the 
obtained equation into Eq.(29), we obtain the expres-
sion of ut+ t as follows: 

2
1

t tt
Mu

2
1 1 1 1

2t t t t ttt
F M u u u   (30) 

Based on Eq.(5), Eq.(15) and Eq.(21), the load vec-
tor Ft+ t can be expressed as the function of t tu , i.e.
Ft+ t( ut+ t). Thus, Eq.(30) is a nonlinear equation set of 
n algebraic equations containing the unknown dis-
placement ut+ t only. It can be solved by numerical 
method such as Newton method. The complete algo-
rithm using the Newmark integration method is given 
in Table 2. 

Table 2  Step-by-step solution using Newmark integra-
tion method 

1) Initial calculation: 

  (a) Initialize u0, 0u  and x .

  (b) Form mass matrix M and load vector F by Eq.(21). 

  (c) Select time step t and parameters  and  which satisfy 
Eq.(28). 

  (d) Calculate u t by Eq.(30). 

2) For each time step: 

  (a) Calculate ut+ t by Eq.(30). 

  (b) Calculate global strain ( )
i
x t t  of each element by Eq.(14). 

  (c) Calculate global stress ( )
i
x t t  of each element by Eq.(5). 

  (d) Calculate load vector Ft+ t by Eq.(21). 

  (e) Let ut t =ut, ut = ut+ t, and Ft = Ft+ t, then go back to Step  
(a). 

3.3. Distributed computing scheme 

Based on the theory presented above, the simulating 
process includes two levels of computation. In the 
global level, the dynamic response of beam is simu-
lated by the central difference method or Newmark 
method. In the local level, the stress/strain response is 
estimated by the unit cell model of CMC. This two 
levels computing scheme will be time-consuming if the 
number of nodes is increased to a large number. In or-
der to speed up the process, a distributed computing 
system is designed as shown in Fig.5. 

Fig.5  Distributed computing system for multiscale simulat-
ing of dynamic response of CMC beam. 

The system is composed of a server and several cli-
ents. The server performs global computing and sends 
the global strains of nodes to the clients. Each client 
receives the global strain of one or more nodes and 
performs the local computing. Then the client sends the 
results back to the server. At last, the server gives the 
global strain for next time step. 

Since the most time of entire process is taken by the 
local analysis, the distributed computation scheme can 
speed up the computing greatly. For example, consid-
ering a simulation including 10 nodes and 8 000 time 
steps, if each local analysis takes one second, the entire 
process take 80 000 seconds which is about 22.2 hours. 
If 10 clients are used, all local analyses for a time step 
will be performed at the same time. Thus, only one 
second will be used for a time step, and the entire 
process will take only 2.22 hours. 

4. Results and Discussion 

In order to prove the capability of the method de-
veloped above, a numerical example for Nicalon/ 
CAS-II material is presented. Both the stress/strain 
response under repeating loading and the dynamic dis-
placement response subjected to harmonic loading are 
predicted. 

4.1. Estimating stress/strain response of CMC 

Calculation is performed for a typical Nicalon/ 
CAS-II material with the following properties[12]: the 
elastic modului of fiber and matrix are Ef=200 GPa and 
Em=88 GPa, the volume fraction of fiber is vf=0.35,
rf=7.3 m, f=3.1×10 6 /°C, m=4.5×10 6 /°C, and the 
temperature difference between the experimental proc-
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ess and processing process is T= 1 000 °C. To achieve 
the constant matrix crack space, the specimen is first 
pre-fatigued for 100 000 cycles within a fixed stress 
range of 10-180 MPa. After approximately 100 000 
cycles, the mean crack space approached a plateau at 
approximately 198 m[12].

Fig.6 shows the mesh of the unit cell model. A 2D 
four-node axisymmetric element is used. The symmetry 
axis is x axis. We denote the fiber/matrix interface and 
the contact region of matrix cracks by black lines in 
Fig.6. The offset displacement between fiber and ma-
trix is calculated by Eq.(2). The length of the unit cell 
model is equal to the mean crack space, i.e. 198 m. 
The gray region stands for the fiber and the white re-
gion denotes the matrix. Based on the radius and vol-
ume fraction of fiber, the radius of unit cell can be cal-
culated by following equation: 

f fR r v                 (31) 

Fig.6  Finite element model of unit cell used for predicting 
stress/strain behavior of Nicalon/CAS-II. 

Using the data given above, the stress/strain behavior 
is modeled by the unit cell model developed previously. 
Fig.7 shows the predicted results being compared with 
the experimental data which are taken from Ref.[12] 
and has a stable hysteresis loop. It can be seen that with 
the value of 0.025 for the interfacial frication coeffi-
cient the predicted result is in good agreement with 
the experimental stress/strain data. The value of 
seems reasonable given that the fiber/matrix bond in 
this type of composite is extremely weak since the 
degradation of interface after pre-fatigue. 

Fig.7  Comparison of predicting stress/strain response with 
experimental data of Nicalon/CAS-II material. 

The stress/strain response of this material subjected 
to loading history including compressive loading is 
illustrated in Fig.8 (where Ec is the compressive 
modulus). The loading history involves a tensile load-
ing up to 0.001 442 9x , an unloading down to 

0x , a compressive loading up to 0.001x  and 
a final unloading down to 0x . The result shows 
that the stress/strain response of being subjected to 
compressive loading appears to be nonlinear. This can 
be explained by deformation at local level which is 
illustrated in Fig.9. When the global stress is reduced to 
zero, the fiber near the matrix crack is slipped into the 
matrix. The axial load borne by the fiber is transmitted 
to the matrix through the interface shear stress caused 
by slipping. Fig.10 shows the axial stress distributions 
of fiber and matrix when the global strain is approxi-
mately equal to 0.000 25. In this case, the stress field 
within the material is self-balanced, so the global stress 
is close to zero. On the other hand, in the view of mi-
crostructure, the fiber is pulled out by matrix while the 
matrix is compressed by fiber. Therefore, a part of the 
fiber is still left outside the plane of matrix crack and 
causes the residual strain (Fig.9(a)). 

Fig.8  Stress/strain response of Nicalon/CAS-II material 
under tension and compressive loading.  

Fig.9  Microstructure of CMC in cases of open and closed 
matrix cracks. 

Fig.10  Stress distributions in unit cell when global stress 
close to zero. 
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When the material is being subjected to compressive 
loading, the fiber will be pressed into the matrix first. 
Due to the frictional slip, the stress/strain response is 
still nonlinear until the matrix crack is closed. When 
the fiber is completely pressed into the matrix, both 
sides of the matrix crack will be in contact with each 
other (see Fig.9(b)), and then the material will be ap-
peared to be linear as illustrated in Fig.8. At this mo-
ment, the elastic modulus of material is close to the 
modulus of intact material. In this article, Ec in Fig.8 is 
about 126 GPa which is close to 122 GPa for the elastic 
modulus of the intact material reported by Ref.[12]. 

4.2.  Simulating dynamic response of CMC beam 

The dynamic response of CMC beam is simulated 
here by the FEM presented in Section 3.2. The length 
of beam is equal to 0.2 m and the mass density is equal 
to 2.578 5×103 kg/m3. Firstly, the response of the beam 
which is subjected to axial periodic stress (i.e. 

0ˆ ( ) sin(2 )t ft ) being applied on the free end is 
simulated by Newmark method. The amplitude and the 
frequency of the external load are 100 MPa and 100 Hz 
respectively. The displacement response of point x=l
during the first 15 cycles is presented in Fig.11(a). The 
result is compared with the response of an elastic beam 
which is illustrated in Fig.11(b). The length and mass 
density of the elastic beam are 0.2 m and 2.578 5×103

kg/m3 respectively. The elastic modulus of the elastic 
beam is 80 GPa which is equal to the average elastic 
modulus of Nicalon/CAS-II.  

Fig.11  Comparing dynamic responses of CMC and elastic  
beams (frequency of external load is 100 Hz). 

The result shows that both the displacement re-
sponses of CMC and elastic beams are periodic re-
sponse. The frequency of the response is equal to 
100 Hz. However, due to the nonlinear character of 
CMC beam, the response is not symmetric about the 
axis of u=0.

Fig.12 presents the displacement responses of the 
CMC and elastic beams at 3 000 Hz which are simu-
lated by central difference method. Since the effect of 
the wave propagation in the beams, the displacement 
responses are not strictly periodic. However the time 
internal of the first twelve wave peaks is about 
3.663×10 3 s, so the average period is 3.333×10 4 s
which is close to the period of external load. 

Fig.12  Comparing dynamic responses of CMC and elastic 
beams (frequency of external load is 3 000 Hz). 

The natural frequency of the elastic beam is given by 
the following equation 

(2 1)    ( 1,2, )
4i

i af i
l

Ea
      (32) 

Substituting the average elastic modulus, the mass 
density and the length of the beam into Eq.(32) (i.e. 
E=80 GPa, =2.578 5×103  kg/m3, l=0.2 m) gives the 
first order natural frequency of the CMC beam, that is 
f1=6 963 Hz. Fig.13 illustrates the displacement re-
sponse of the CMC and elastic beams at 7 000 Hz 
which is close to f1. We can see that the amplitude of 
the beams is quite greater than the responses at other 
frequencies. However, the response of the elastic beam 
is divergent while the displacement of the CMC beam 
is restrained within a limited range. This result implies 
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that the damping caused by the interface friction de-
creases the resonance of the beam. 

Fig.13  Comparing dynamic responses of CMC and elastic 
beams (frequency of external load is 7 000 Hz). 

In order to study the dynamic response of the entire 
beam, we record the displacement of each node at the 
moment denoted by “P” in Figs.11-13, and then obtain 
the nondimensional displacement distribution presented 
in Fig.14. 

Fig.14  Nondimensional distributions along CMC beam. 

The result shows that the displacement distribution 
of the beam is almost a straight line when the fre-
quency of external load is quite low. However, the dis-
placement distribution approaches to the first order 
modal of the elastic beam when the frequency of ex-
ternal load is close to the first order natural frequency. 

4.3. Convergence and stability of algorithm 

As mentioned in Section 3.2, the Newmark method 
will be unconditional stable, while the central differ-
ence method is conditional stable. The time step length 

t of central difference method should satisfy the fol-
lowing condition to make the algorithm stable[29]:

cr min,ele

1/ 2

/

/

t t L C

C E
       (33) 

where tcr is the critical time step length, Lmin,ele the 
length of the minimum element, and E and  are the 
elastic modulus and mass density of material respec-
tively. 

However, the elastic modulus of CMC depends on 
the level of external load as illustrated in Figs.7-8. In 
the case of unidirectional Nicalon fiber reinforced 
CAS-II composite, the average elastic modulus is about 
80 GPa if it is subjected to tension load. The elastic 
modulus will increase to about 122 GPa, if the material 
is subjected to compress load. The critical time step 
lengths for these two cases are 3.989 6×10 6  s and 
3.230 7×10 6  s respectively. Thus the time step length 
for central difference method should be shorter than 
3.230 7×10 6  s to make the algorithm be stable.  

In addition to the stability requirement, the algorithm 
should be convergent too. Theoretically, if the time step 
length is small enough, both the central difference 
method and the Newmark method should converge to 
the accurate solution. However, the time step length 
cannot be infinitely small due to the limitation of com-
puter capability. Thus we use a trial-and-error method 
to select a proper time step length which meets the re-
quirements of both algorithm convergence and computer 
capability. The method is described bellow: 1) a series of 
time step lengths t1> t2 >… > ti >…> tn 1> tn is 
given; 2) performing simulation by using each time 
step length and making a comparison of these results. If 
the results for two adjacent time step lengths (i.e. ti
and ti+1) are close to each other, then ti is the proper 
time step length for simulation. 

Fig.15 shows the displacement-time curves of Node 9 
simulated by central difference method with t =
5.0×10 7 s and t =2.5×10 7 s. We can see that the two 

Fig.15  Convergence analysis of central difference 
method (frequncy of external load is 7 000 Hz). 
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displacement-time curves almost coincide with each 
other. Thus the time step length t=5.0×10 7 s is se-
lected for central difference method. Similarly, Fig.16 
shows the results predicted by Newmark method with 

t=5.0×10 4 s and t=2.5×10 4 s. Based on the results 
we can also conclude that t=5.0×10 4 s is proper to 
make the Newmark method be convergent in the nu-
merical analysis. 

Fig.16  Convergence analysis of Newmark method (fequncy 
of external load is 100 Hz). 

The frequency of external load is another important 
factor that affects the convergence of algorithm. Fig.17 
shows the displacement response of Node 9 with dif-
ferent time step lengths predicted by central difference 
method. The frequency of external load is equal to 
5×105 Hz. We can see that in the case of f =5×105 Hz, 
the algorithm cannot be convergent with t =5.0×10 7 s.
A smaller time step length (such as t =0.5×10 7 s) is 
needed to make the algorithm be convergent.  

Fig.17  Displacement response of Node 9 with different time 
step lengths (predicted by central difference me- 
thod).

Fig.18 show the displacement responses of Node 9 
predicted by Newmark method. The frequencies of 
external load are equal to 5 Hz and 50 Hz respectively. 
The results show that in the case of f =5 Hz, the algo-
rithm is convergent with t =0.010 s. However, when 
the frequency of external load rises to 50 Hz, the result 
with t =0.010 s denoted by dash line in Fig.18(b) de-
parts from the accurate solution greatly. 

Fig.18  Displacement response of Node 9 with different time 
step lengths ( predicted by Newmark method). 

4.4. Effect of distributed computing system 

As mentioned in Section 3.3 the distributed comput-
ing scheme can speed up the simulating process. Table 3 
lists the time taken from testing processes which in-
clude 9 elements and 500 time steps for central differ-
ence method and 9 elements and 50 time steps for 
Newmark method respectively. By using distributed 
computing scheme, the stress/strain response of more 
than one node can be calculated parallelly with the 
identical time step length. Thus the entire time of test-
ing computation is shortened. However, the speeding 
up ratio is not changed linearly with the increase of the 
number of clients strictly. For central difference 
method, only 42.7% (not 50%) of the time is saved by 
using 2 clients, and only 62.0% (not 66.7%) of the time 
is saved by using 3 clients. Similarly, for Newmark 
method, only 42.3% (not 50%) of the time is saved by 
using 2 clients, and only 60.9% (not 66.7%) of the time 
is saved by using 3 clients. This is due to the delay of 
signal transmission and the different computing speeds 
of the clients. 

Table 3  Effect of distributed computing scheme on effi-
ciency of simulation 

Number of 
clients 

Time for central differ-
ence method/min 

Time for Newmark 
method/min 

1 295 797
2 169 462
3 112 312
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4.5. Effect of matrix crack space on global dynamic 
response 

Matrix crack space is equal to the length of unit cell. 
It affects both the elastic modulus and damping capac-
ity of CMC. Fig.19 shows the displacement response of 
Node 9 with different matrix crack spaces. The fre-
quency of external load is equal to 105 Hz. The result 
indicates that decreasing the matrix crack space will 
increase the displacement response of the beam. This 
can be explained as due to the decrease of average 
elastic modulus when the number of matrix cracks is 
increased.

Fig.19  Effect of matrix crack space on global dynamic re-
sponse (frequency of external load is 105 Hz, and 
predicted by central difference method). 

5. Conclusions 

In this article, a method for simulating the dynamic 
response of CMC beam with matrix cracks and inter-
face debonding is proposed. Numerical results pre-
sented in the article result in the following conclusions. 

(1) The stress/strain response of the unidirectional 
CMC with bridging matrix cracks under compressive 
loading exhibits nonlinear status. However, the 
stress-strain curve appears to be linear and the slope 
approaches to the elastic modulus of intact material 
when the compressive load increases. This can be ex-
plained as the close of matrix cracks.  

(2) The displacement response of CMC beam being 
subjected to harmonic loading is affected by the fre-
quency of external load greatly. If the frequency is 
quite low, the displacement response of CMC beam is 
almost periodic. In addition, the time internal between 
two adjacent zero-points is constant and it is equal to 
the period of external load. Due to the effect of inter-
face slip, the displacement response of CMC is not 
symmetrical about the axis of u=0. When the frequency 
increases, the effect of wave on the displacement re-
sponse cannot be ignored and the time internal between 
two adjacent zero-points is not constant. However the 
average period is close to the period of external load. In 
the case of 7 000 Hz which is close to the first order 
natural frequency the amplitude of displacement is 
quite greater than that for other frequencies. Due to the 
effect of damping caused by the interface friction the 

response of the CMC beam is limited within a finite 
range.

(3) Convergence and stability of the algorithm are 
also discussed in this article. Newmark method is un-
conditionally stable, but the central difference method 
is conditionally stable. In order to keep the central dif-
ference method be stable, the time step length t must 
be shorter than critical time step length tcr. Since the 
elastic modulus of CMC varies with the changing of 
external load, the critical time step length of central 
difference method is also affected by external load. The 
maximum elastic modulus corresponds to the minimum 
critical time step length under compressive loading. 
Thus the minimum critical time step length which is 
equal to 3.230 7×10 6 s is calculated by using compres-
sive modulus (i.e. 122 GPa) and mass density (i.e. 
2.578 5×103  kg/m3). In order to study the effect of 
time step length on the convergence of the central dif-
ference method, we make a comparison between the 
predicted displacement-time response for t=5.0×10 7 s
with that for t=2.5×10 7 s. The comparison shows that 
the algorithm is convergent when t=5.0×10 7 s. The 
similar analysis is also performed to estimate the con-
vergence of Newmark method, and it is found that 

t=5.0×10 4 s is proper to make the Newmark method 
be convergent in this article. The frequency of external 
load is another important factor which should be con-
sidered to make sure that the algorithm be convergent. 
The test numerical examples performed in this article 
indicate that the time step length for assuring conver-
gence is inversely proportional to external load fre-
quency.  

(4) Distribution computing scheme provides a feasi-
ble method to reduce the needed time of entire simula-
tion process. For central difference method, 42.7% of 
the time is saved by using 2 clients, and 62.0% of the 
time is saved by using 3 clients. Correspondingly, for 
Newmark method, 42.3% of the time is saved by using 
2 clients, and 60.9% of the time is saved by using 3 
clients.  
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