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This article introduces the concept of a conducive domain, that is, an integral 
domain each of whose overrings, apart from the quotient field, has nonzero 
conductor. The principal examples of conducive domains are all D + M 
constructions and all (pseudo-) valuation domains. Several characterizations are 
obtained, notably that a domain R is conducive if and only if R has a valuation 
overring with nonzero conductor. It is proved that if R is a conducive domain but 
not a field, then Spec(R) is pinched at a prime P such that the set of primes within 
P is linearly ordered. The converse is shown for R a Priifer domain, in which case 
P = PR,. Consequences include pullback characterizations of the seminormal 
(resp., Prtifer) conducive domains. Special attention is paid to the class of 
conducive G-domains, with attendant interplay between “conducive” and the 
property of having a maximum overring. 

1. INTRODUCTION 

In recent years, one of the most fruitful sources of examples for desired 
ideal-theoretic behavior in integral domains has been the D + A4 
construction, whose basic properties are conveniently summarized in [3, 
Theorems 2.1 and 3.11. The present article initiates the study of a class of 
domains generalizing the D + A4 construction. Specifically, we shall say that 
a (commutative integral) domain R, with quotient field K, is a conducive 
domain in case, for each overring T of R other than K, the conductor 
(R : 7’) = {t E K: tTc R} is nonzero. Examples of conducive domains include 
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all domains of D + M-type (see Proposition 2.2), all valuation domains and, 
more generally, all pseudo-valuation domains in the sense of [lo] (see 
Proposition 2.1). 

Despite the wide range of behavior encompassed within the above types of 
rings, Section 3 develops extensive information about conducive domains. 
The study proceeds by introducing several concepts pertaining to the 
inclusions within the set of all nontrivial valuation overrings of a given 
domain. The section’s main result, Theorem 3.2, establishes, i.a., that a 
domain R is conducive if (and only if) (R : I’) # 0 for at least one valuation 
overring Y of R. As a consequence (see Corollary 3.3), if R is a conducive 
domain which is not a field, then Spec(R) is pinched at some nonzero prime 
P such that the set of primes within P is linearly ordered by inclusion. 
Another part of Theorem 3.2 asserts that if R is a seminormal domain which 
is not a field, then R is conducive if and only if some nonzero prime P of R 
is such that P = PR, and R, is a pseudo-valuation domain. In a more 
concrete vein, Corollary 3.4 asserts that if R is a Priifer domain which is not 
a field, then R is conducive if and only if Spec(R) is pinched. Also 
noteworthy in Section 3 (cf. also Proposition 2.12) are the following pullback 
characterizations. If R is a seminormal (resp., Priifer) domain which is not a 
field, then R is conducive if and only if R 2 Vx,A, where V is a nontrivial 
valuation domain with residue field k and A is a seminormal (resp., Priifer) 
domain contained in (resp., having quotient field) k. 

Section 2 foreshadows many of this paper’s main themes and, as noted 
above, provides our initial concrete examples of conducive domains. 
Moreover, it is shown that the “conducive” property serves to characterize 
valuation domains of finite rank (resp., discrete rank 1 valuation domains; 
resp., one-dimensional pseudo-valuation domains; resp., Noetherian pseudo- 
valuation domains) amongst suitably larger classes of domains: see 
Proposition 2.11 (resp., Corollary 2.5; resp., Corollary 2.6; resp., 
Corollary 2.9). A principal tool for these characterizations is Theorem 2.4, 
the especially tractable case of Corollary 3.3 in which R has a height 1 
prime ideal. Also noteworthy in Section 2 is Proposition 2.12(ii), which 
establishes the “conducive” property for a family of pullbacks including all 
D + M constructions and all pseudo-valuation domains. 

The conducive domains satisfying the tractable condition in Theorem 2.4 
are, apart from fields, those which are also G-domains (in the sense of 
having nonzero pseudo-radical). In Section 4, we pursue the suggested 
dichotomy, showing in Proposition 4.3 that a conducive domain, other than 
a field, is a G-domain if and only if R has a maximum nontrivial overring 
(which is necessarily the complete integral closure). Also noteworthy in 
Section 4 are Proposition 4.5, describing some of the pathology in a 
conducive domain which fails to be a G-domain, and Proposition 4.6, a 
characterization of the conducive Priifer G-domains. 
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Throughout the paper, “dimension” refers to Krull dimension, and R 
denotes a domain with integral closure R’, complete integral closure R* and 
quotient field K. Any unexplained terminology is standard, as in [ 11, 151. 

2. FIRST RESULTS AND EXAMPLES 

We begin with some elementary observations about the “conducive” 
property. 

LEMMA 2.0. (i) Each overring of a conducive domain is also conducive. 

(ii) A domain R is conducive if and only if (R : V) # 0 for each 
valuation overring V of R other than K. 

ProoJ: Just the “if’ half of (ii) requires any commentary. For this, let T 
be an overring of R other than K, select any valuation overring V of T whose 
maximal ideal lies over a preassigned nonzero prime ideal of T (cf. [ 15, 
Theorem 56]), and note that 0 # (R : V) c (R : T). 

In Theorem 3.2, we shall obtain a substantial improvement of the 
statement of Lemma 2.O(ii), in which “each” is replaced by “some” and 
“other than K” is deleted. 

Note that it is straightforward to verify that each valuation domain V 
must be conducive. Indeed, if T is an overring of V other than the quotient 
field then T = V, for some nonzero prime P of V (cf. [ 15, Theorem 65]), 
whence (R : T) contains PVp = P. 

More generally, one may show that certain so-called i-domains are 
conducive. Specifically, if R is a domain such that R’ is a valuation domain 
which is finitely generated as an R-module, then R is conducive. To see this 
via Lemma 2.O(ii), first argue as above that if V is a valuation overring of R 
other than K, then (R ’ : V) contains some nonzero prime P of R ‘. Next, use 
the finite-generation of R ’ to infer that (R : R ‘) is a nonzero ideal, say, I. 
Finally, observe that IP c (R : V) since IPV c IR’ c R. Variants of this 
result, again using the fact that module-finite overrings have nonzero 
conductor, may be couched in terms of the module-finite pairs introduced 
recently by Huckaba and Papick [ 141. 

We next give a second generalization of the fact that valuation domains 
are conducive. First, recall from [ 13, Theorem 2.71 and [ 1, Proposition 2.51 
that a domain R is said to be a pseudo-valuation domain (or, in short, a 
PVD) in case some valuation overring of R has the same set of prime ideals 
as R. 

PROPOSITION 2.1. Each pseudo-valuation domain is conducive. 
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Proof: Let R be a PVD. If T is an overring of R other than K, select a 
nonzero prime ideal P of T. By considering numerators, we have P ~7 R # 0. 
However, [ 13, Lemma 1.61 yields Pn R c (R : T), which completes the 
proof. 

In [l, pp. 364-3661, it was indicated that pseudo-valuation domains and 
D + M constructions have somewhat similar pullback characterizations. The 
next result provides another point of similarity. 

PROPOSITION 2.2. Let V be a valuation domain of the form V = F + M, 
where F is aJield and M (#0) is the maximal ideal of V. Let D be a subring 
of F. Then D + M is a conducive domain. 

Proof. For convenience, set A = D + M. According to [ 3, Theorem 3.11, 
the overrings T of A other than the quotient field are of two types: either T = 
E + M for some ring E contained between D and F or T = VP for some 
nonzero prime P of V. In either case, (A : 7’) # 0. Indeed, in the former case, 
M c (A : T); while in the latter case, P = PV, c (A : T). The proof is com- 
plete. 

Remark 2.3. By pooling the preceding two propositions, we see that the 
class of conducive domains admits great diversity. In particular, a conducive 
domain need not be integrally closed, it need not satisfy finiteness conditions 
(such as being Noetherian, coherent or finite-conductor), and it may have 
infinitely many maximal ideals. Moreover, unlike the case of a pseudo- 
valuation domain (whose primes are necessarily linearly ordered by 
inclusion), a conducive domain need not even have depth at most 1. This is a 
consequence of the following result, whose proof is left to the reader: in the 
context of Proposition 2.2, if b, a is a regular (R-) sequence in D, then b, a is 
also a regular sequence in A = D + M. 

We pause to recall that a domain R is said to be Archimedean in case 
f3Rr” = 0 for each nonunit r of R; and that, by a result of Ohm [ 17, 
Corollary 1.41, each one-dimensional domain is Archimedean. 

THEOREM 2.4. Let R be a conducive domain. Then: 

(i) If R is not afield, the Jacobson radical of R is nonzero. 

(ii) R has at most one height 1 prime ideal. 

(iii) If P is a (the) height 1 prime of R, then P c N for each nonzero 
prime N of R. 

Proof. (i) Without loss of generality, R is not quasilocal. Let M be a 
maximal ideal of R and set Z = (R :R,). Then I is an ideal of R which is 
nonzero (since R is conducive), is contained in MR, n R = M, and satisfies 
Z = IR,. It therefore suffices to prove that Z c N for each maximal ideal N 
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of R other than M. To this end, choose r E N\M and infer from I = IR, that 
Z c rI, whence I c N, as desired. 

(ii) If the assertion fails, let it4 and N be distinct height 1 primes of R. 
By Lemma 2.0(i), we may replace R by R, ,CMUN,; accordingly, we may 
suppose that 0, M and N are the only primes of R (cf. [ 15, Theorem 8 1 I). 
Let I and I be as in the proof of (i). As above, I = rI = r21 c * .a, whence 
I c nR,r”. However, r is a nonunit of R,, and R, (being one dimensional) 
is Archimedean, so that Z = 0, the desired contradiction. 

(iii) If the assertion fails, choose s E P\N. Set J = (R : RN). As above, 
one sees that 0 #J = JR,, entailing J= sJ. Select V to be a valuation 
overring dominating R,. As R, has but one nonzero prime, each nonzero 
prime of I’ lies over PR,. Thus, by replacing I’ with the localization of V at 
the (prime) intersection of the nonzero primes of I’, we may suppose that V 

also one dimensional, 
;snJC n Vs” 

and hence Archimedean. However, J= 
, which is 0 since s is a nonunit of V; thus J = 0, the desired 

contradiction, to complete the proof. 
One cannot hope to improve upon Theorem 2.4(ii), as it is easy to give 

examples of infinite-dimensional valuation domains having no prime with 
finite positive height. 

Note that, in the terminology of [lo], Theorem 2.4(iii) asserts that P 
coincides with the pseudo-radical of R. 

COROLLARY 2.5. For a domain R, the following conditions are 
equivalent: 

(1) R is a conducive Krull domain which is not afield; 

(2) R is a discrete rank 1 valuation domain. 

Proof. We need only discuss why (1) + (2). If R satisfies (l), the very 
definition of Krull domain (as in [ 15, p. 821) gives R = nRp, where P 
ranges over the height 1 primes of R and each such R, is a discrete rank 1 
valuation domain. As Theorem 2.4(ii) guarantees that only one such P exists, 
R = R,, and the proof is complete. 

Before stating the next result, we recall that a domain R (with quotient 
field K) is called seminormal in case u E K, u2 E R, u’ E R entail u E R. 

COROLLARY 2.6. For a one-dimensional domain R, the following 
conditions are equivalent: 

(1) R is conducive and seminormal; 

(2) R is a PVD. 

Proof (2) + (1): Since any pseudo-valuation domain is seminormal (cf. 
[ 2, Proposition 3.1 (a)]), the assertion follows from Proposition 2.1. 
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(1) * (2): Let R satisfy (1). As dim(R) = 1, Theorem 2.4(ii) assures 
that R is quasilocal, and so an application of [2, Theorem 3.71 completes the 
proof. 

We next give a variant of the preceding technique. 

COROLLARY 2.6 (bis). If R is a one-dimensional conducive domain, then 
R’isa PVD. 

Proof: By Lemma 2.0(i), R ’ inherits the conducive property from R 
(along with one-dimensionality). However, R’, being integrally closed, is 
certainly seminormal, and so an application of Corollary 2.6 completes the 
proof. 

COROLLARY 2.7. If R is a conducive Noetherian domain, then R is local 
and dim(R) < 1. 

Proof. Suppose that R is not local. Choose distinct maximal ideals M 
and N of R, and set Z = (R :R,). As in the proof of Theorem 2.4, I = IR, 
and I = t-1 for any element r E N\M. Since R, is Noetherian, a result of 
Chevalley [4, Lemma 2) supplies a discrete rank 1 valuation overring V 
which dominates R,. In particular, V is Archimedean. Moreover, 
I = n r”I c fl Vr” and r is a nonunit of V, whence I = 0, contradicting the 
hypothesis that R is conducive. Thus R is indeed local, say, with maximal 
ideal M. 

Without loss of generality, R is not a field. Since R is Noetherian, the 
principal ideal theorem of Krull (cf. [ 15, Theorem 1421 then provides a 
height 1 prime P of R and, in view of Theorem 2.4(ii), further assures that 
each nonunit of R lies in P. In other words M = P, so that dim(R) = 1, 
completing the proof. 

We next sketch an alternate proof of Corollary 2.7. Note that R ’ is a 
conducive domain (by Lemma 2.0(i)) and a Krull domain (by the theorem of 
Mori-Nagata), and so Corollary 2.5 assures that R’ is quasilocal, of 
dimension at most 1. The desired conclusion then follows by integrality (cf. 
[ 15, Theorems 44, 47, and 481). 

Remark 2.8. Despite expectations possibly raised by Corollary 2.6, one 
cannot strengthen the conclusion of Corollary 2.7 to “R is a pseudo- 
valuation domain.” To see this, let A = F[ [X’, X3]], the ring of those formal 
power series in the variable X, over a field F, whose coefficient of X is 0. 
Apart from itself and its quotient field, A has only its integral closure B = 
F[ [Xl] as overring. Since (A : B) = X*B # 0, A is conducive. In addition, A is 
Noetherian. However, A is not a PVD; indeed, A is not even seminormal. 
This suggests the next result. 
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COROLLARY 2.9. For a Noetherian domain R, the following conditions 
are equivalent: 

(1) R is conducive and seminormal; 
(2) R is a PVD. 

Proof One may argue that (2) Z- (1) as in the corresponding part of the 
proof of Corollary 2.6. As for proving that (1) * (2), one need merely 
combine Corollaries 2.7 and 2.6. 

The next lemma delves deeper into the topic in Theorem 2.4(iii). First, 
recall that the so-called “divided” property of primes P in, e.g., valuation 
domains V (viz., PVr = P, which has been used above) is stronger than the 
comparability conclusion of Theorem 2.4(iii). (In particular, the class of 
divided domains is properly contained in the class of treed domains: cf. [6, 
Proposition 2.1 I.) 

LEMMA 2.10. Let R be a seminormal domain. Then: 

(i) Let S be an overring of R, and set J = (R : S). Then J is a radical 
ideal of both S and R. If, in addition, the prime ideals of S are linearly 
ordered by inclusion and R # S, then J is a prime ideal of both S and R. 

(ii) If V is any valuation overring of R other than K and if 
(R : V) # 0, then there exists a nonzero prime ideal P of R such that P = 
PR, = PV is a prime ideal of V. 

(iii) If R is conducive and has a height 1 prime P, then P = PR,. 

Proof: (i) Let u E ‘ad,(J). Then U” E J for some n > 1, so that 
urn E JS = JC R for each m > n. As R is seminormal, the criterion in [ 12, 
Theorem 1.11 yields u E R. This shows that rad,(J) is an ideal of both S and 
R, so that J= ‘ad,(J) is radical in S; then J= Jf?R is also radical in R. 
For the second assertion of (i), it is enough to note that the hypothesis on S 
assures that each proper radical ideal of S is prime (cf. [ 15, Theorem 91). 

(ii) If R = V, then any nonzero prime ideal of R suffices as P. If 
R # V, apply (i) with S = V, denoting J by P. Since P c PR, c PVr = P, it 
follows that PR, = P = PV. Moreover, P # 0 by hypothesis. 

(iii) If P is the unique maximal ideal of R, the assertion is immediate. 
In the remaining case, apply the second assertion of (i) with S = R,: since 
J= (R :R,) is a nonzero prime of both R and R,, we have PR, = J= . 
Jn R = P. This completes the proof. 

It is convenient to recall next that a domain R is called a finite-conductor 
domain in case, for each v E K, the conductor {r E R : rv E R ) is a finitely 
generated ideal of R. Examples of finite-conductor domains include all 
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coherent domains (and, a fortiori, Priifer domains and Noetherian domains), 
all GCD- (pseudo-Bezout) domains, and certain D + M constructions [7, 
Proposition 3.91. The next result is motivated by the observation (cf. [ 13, 
Proposition 2.21) that a GCD-domain whose primes are linearly ordered by 
inclusion must be a valuation domain. 

PROPOSITION 2.11. For a domain R, the following conditions are 
equivalent: 

(1) R is an integrally closed, conducive and finite-conductor domain 
such that RIP is a PVD for some height 1 prime P of R; 

(2) R is a valuation domain with a height 1 prime. 

Proof. (2) Z- (1): This is evident in view of the above remarks. 

(1) 3 (2): We shall give two proofs. First, by appealing to the charac- 
terization of valuation domains in [ 16, Theorem 11, it is enough to prove 
that the prime ideals of R are linearly ordered by inclusion. Since the primes 
of (the pseudo-valuation domain) R/P do have this ordering property, one 
need merely apply Theorem 2.4(iii), completing the first proof. 

Here is a more baroque proof. According to the criterion in [B, 
Theorem 2.3(i)], note that the hypothesis about R/P combines with Lem- 
ma 2.lO(iii) to yield that R c R, is a strong extension in the sense of [B]. 
Moreover, as R, is one-dimensional, integrally closed and finite-conductor, 
an application of either [ 16, Theorem 1 ] or [5, Corollary 41 reveals that R, 
is a valuation domain. Thus, according to the criterion in [S, Theorem 2.91, 
R is a PVD. Another application of either [ 16, Theorem 1 ] or [5, 
Corollary 41 completes the (second) proof. 

We next pursue the pullback theme mentioned prior to the statement of 
Proposition 2.2. 

PROPOSITION 2.12. (i) Let R be a seminormal conducive domain which 
is not a field. Then R has a nonzero prime ideal P such that R, is a PVD 
with maximal ideal P = PR, and R is (isomorphic to) the pullback (in the 
category of commutative rings with identity) of the diagram 

in which the vertical (resp., horizontal) map is the canonical surjection (resp., 
injection into the quotient field). 
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(ii) Let R be the pullback of a diagram 

B 

A--+k 

in which B is a PVD with nonzero maximal ideal P, k is both the residue 
field of B and the quotient field of A, and the vertical (resp., horizontal) map 
is the canonical surjection (resp., injection). Then P is a prime of R, 
P = PR,, R, z B, R/P E A, and R is conducive. Moreover, R is seminormal 
(resp., root-closed) if and only if A is seminormal (resp., both A and B are 
root-closed). 

Proof. (i) Let P be a prime ideal of R of the kind guaranteed by Lem- 
ma 2.1O(ii). In particular, P = PR, is a prime ideal of some valuation 
overring of R, and so, by [ 13, Theorem 2.71, R, is a PVD. The final 
assertion follows since the given diagram’s pullback is canonically R + PR,. 

(ii) The first four assertions follow by straightforward calculations (cf. 
[S, Lemma 2.51). Next, we show that R is conducive, i.e., that (R : T) # 0 for 
each overring T of R (other than the quotient field K). To this end, let V 
denote the valuation overring canonically associated to the pseudo-valuation 
domain B(= Rp). By aping the proof in [3, Theorem 3.11, one shows that T 
is comparable to I’. If T c I’, then 0 # P c (R : 7’). If V c T, then (I’: T) # 0 
since I’ is conducive, (R : V) contains P, and so (R : T) contains the nonzero 
product (R : V)( V: T), as desired. 

In view of the criterion [ 12, Theorem 1.61 that a domain D is seminormal 
if and only if the canonical map Pit(D) + Pic(D[X]) is an isomorphism, the 
assertion about seminormality follows easily by a standard argument using 
Mayer-Vietoris sequences and the live lemma. It may also be proved 
computationally, by arguing as in the next paragraph. 

For the final assertion, assume that both A (= R/P) and B (= RP) are 
root-closed. To show that R is root-closed, begin with u E K such that 
U” E R for some n > 1. It is enough to show that u E B, for then 
(u + P)” E A and, by the hypothesis on A, u + PE R/P, whence 
u E R + P = R, as desired. However, by the hypothesis on B, u” E R c B 
entails u E B, completing the proof of the “if” half. We leave the proof of the 
“only if” half as a similar, but easier, exercise for the reader. 

One consequence of Proposition 2.12(ii) is a new proof of Proposition 2.2. 
Of course, the main consequence of Proposition 2.12 is a pullback charac- 
terization of the conducive seminormal domains. In view of the pullback 
characterization of pseudo-valuation domains [ 1, Proposition 2.61, we 
immediately infer this variant: conducive seminormal domains (other than 
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fields) coincide with the pullbacks Vx,A, where V is a nontrivial valuation 
domain with residue field k and A is a seminormal domain contained in k. 
The next section will present, i.a., additional characterizations of conducive 
seminormal domains and applications, notably to the Priifer case. 

3. UNIFORMLY MAJORIZED DOMAINS AND FUNNELED SPECTRA 

This section will present applications of a characterization of conducive 
domains (in Theorem 3.2) and deeper information about the spectra of such 
rings (Corollary 3.3). It is convenient to begin with the following definitions 
for a domain R which is properly contained in its quotient field K. We say 
that R is untformly majorized in case R has a valuation overring W# K 
such that W contains each minimal valuation overring of R. Next, we say 
that Spec(R) is pinched (at P) in case R has a nonzero prime ideal P which 
is comparable under inclusion to each prime of R. Finally, we say that 
Spec(R) is funneled in case Spec(R) is pinched at P and {Q E Spec(R): 
Q c P} is linearly ordered by inclusion. 

LEMMA 3.1. (i) Let {Vi} be a nonempty collection of nontrivial 
valuation domains of afield L. Then there exists a nontrivial valuation ring 
of L which contains each Vi tf and only tf there exists a subset of L which 
properly contains (0) and is a prime ideal of each Vi. 

(ii) A domain R is uniformly majorized I$ and only tf R has a 
nontrivial valuation overring W which is comparable under inclusion to each 
valuation overring of R. 

(iii) If a domain R is untformly majorized, then Spec(R) is funneled. 

(iv) If R is a domain such that R ’ is conducive and (R : R ‘) # 0, then 
R is conducive. 

Proof: (i) Suppose that W is a nontrivial valuation overring of each Vi ; 
let M be the maximal ideal of W. Fix any index j. Now W is the localization 
of Vj at some prime Pj (cf. [ 15, Theorem 65]), and so M = Pj(Vj)pi = Pj is a 
(nonzero)’ of Vi. 

Conversely, suppose that M (# 0) is a prime of each Vi. Fix any index k, 
and set W = (V,),. We shall show, for each index j, that Vj c W, indeed 
that W = ( Vj),,, . This follows from [ 11, Theorem 17.6(c)] since the maximal 
ideals coincide: M( V,), = M = M( VjJ,. 

(ii) For the “only if” half, let W be a nontrivial valuation overring of 
R which contains all the minimal valuation overrings of R. To show that W 
is comparable to any valuation overring T of R, note first that T contains 
some minimal valuation overring V of R (cf. [ 11, p. 23 1 I); of course, W 2 V 
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as well. Thus, T = VP and W= VP for suitable prime ideals P and Q of R 
(cf. [ 15, Theorem 651). As V is a valuation domain, P and Q are 
comparable, and hence so are T and W. 

Conversely, let W be a nontrivial valuation overring of R which is 
comparable to each valuation overring of R. Let {Vi} be the set of minimal 
valuation overrings of R. For each index i, the hypothesis assures that Vi and 
W are comparable, so that Vi c W, by the minimality of Vi. 

(iii) By (ii), some nontrivial valuation overring W of R is comparable 
to each valuation overring of R. Let N denote the maximal ideal of W, and 
set P = Nn R. To see that Spec(R) is pinched at P, consider any prime Q of 
R, choose a valuation overring V of R whose maximal ideal M satisfies 
Mn R = Q, and conclude that P and Q are comparable since N and M are 
comparable (cf. [ 11, Theorem 17.6(c)]). Moreover, Spec(R) is funneled since 
{QESpec(R): QcP}= {MnR: M is the maximal ideal of a valuation 
overring of W} = {Ni n R: Ni E Spec( IV)} has a linear order induced by that 
of {Ni}. 

(iv) It is enough to observe that if V is any nontrivial valuation 
overring of R, then R’ c V, and so (R : V) contains the nonzero product 
(R :R’)(R’ : V). 

THEOREM 3.2. Let R be a domain which is not a Jield. Then the 
following three conditions are equivalent: 

(1) R is uniformly majorized and (R :R’) # 0; 
(2) R is conducive; 
(3) (R : V) # 0 for some valuation overring V of R. 

Moreover, if R is seminormal, then the above conditions are also 
equivalent to 

(4) For each nontrivial valuation overring V of R, there exists a 
nonzero prime ideal P of R such that P = PR, = PV is a prime ideal of V. 

Proof. (1) 3 (2): Since R and R’ have the same sets of valuation 
overrings, it is evident that R’ is uniformly majorized if (and only if) R is 
uniformly majorized. Therefore, by Lemma 3.l(iv), we may suppose that 
R = R’. By Lemma 2.O(ii), it is enough to prove that (R : V) # 0 for each 
nontrivial valuation overring V of R. As is well known (cf. [ 11, p. 231]), 
R = n Vi, where Vi ranges over the set of minimal valuation overrings of R, 
and V 3 Vj for some index j. Since R is assumed to be uniformly majorized, 
Lemma 3.1(i) provides a nonzero set M which is a prime ideal of each Vi. In 
particular, M is an ideal of n Vi = R, and so (R : I’) contains the nonzero 
product M( Vj : V), as desired. 
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(2) + (3): Trivial. 

(3) =z- (1): Assume (3). Since R’ c I’, (3) assures that (R’: I’) # 0 and 
(R : R ‘) # 0. Thus, by earlier comments, we may suppose that R = R ‘. In 
particular, R is seminormal, and so Lemma 2.1O(ii) yields a nonzero prime 
P such that P = PR, = PV is a prime of V. We shall show that W = V, 
contains each minimal valuation overring T of R. To this end, let N be the 
maximal ideal of T, and observe from the minimality of T that Q = N n R is 
a maximal ideal of R (cf. [ 11, p. 23 11). As P = PR,, it follows that P is 
comparable to Q, and so P c Q, by maximality of Q. Therefore W 3 T by 
[ 11, Theorem 17.6(c)], since the corresponding maximal ideals satisfy PV, = 
P c N. 

Finally, note that (4) 3 (3) trivially; and that (3) + (4) in case R is 
seminormal, by Lemma 2.1O(ii). This completes the proof. 

The next result is a considerable sharpening of Theorem 2.4. 

COROLLARY 3.3. If R is a conducive domain which is not afield, then 
Spec(R) is funneled. 

Proof. Combine Lemma 3.l(iii) and Theorem 3.2. 

COROLLARY 3.4. For a Pruyer domain R which is not a field, the 
following conditions are equivalent: 

(1) R is untformly majorized; 
(2) R is conducive; 
(3) (R : RP) # 0 for some nonzero prime ideal P of R ; 
(4) P = PR, for some nonzero prime ideal P of R; 
(5) Spec(R) is pinched; 
(6) Spec(R) is funneled. 

Proof: Theorem 3.2 immediately implies the equivalence of conditions 
(l), (2), (3), and (4). Corollary 3.3 gives (2) + (6); and it is trivial that 
(6) * (5). It will therefore suffice to show that (5) Z- (1). For this, suppose 
that Spec(R) is pinched at P. By Lemma 3.1 (ii), it remains only to show that 
each valuation overring V of R is comparable to R,. This, in turn, follows 
since V = R, for some prime Q which, by (5), is comparable to P. 

By combining Corollary 3.4 with [9, Theorem 2.4(3)] and [8, 
Lemma 2.5(v)], we easily obtain the following pullback characterization of 
conducive Priifer domains (other than fields): they are pullbacks of the form 
Vx,A, where V is a nontrivial valuation domain with residue field k and A is 
a Priifer domain with quotient field k. 

The remainder of this section is devoted to studying the relation between 
“conducive” and the following property. A domain R is said to be majorized 

481/M/2-15 
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if, for each pair of nontrivial valuation overrings V, and I/, of R, there exists 
a nontrivial valuation overring W of R which contains both Vi and V,. 
Lemma 3.1 (i) easily leads to additional characterizations of majorized 
domains, which we leave for the reader. 

Despite Lemma 3.l(iv) and Theorem 3.2 [ (3) ~j (2)], one cannot conclude 
that a domain R is conducive when given only the existence of a conducive 
overring S such that (R : S) # 0. The next “descent” result gives a sufficient 
condition. 

PROPOSITION 3.5. Let R be a majorized domain with an overring S such 
that (R :S) # 0. Then R is conducive if (and only if) S is conducive. 

ProoJ: By Lemma 2.O(ii), it is enough to show that (R : V) # 0 for each 
nontrivial valuation overring V of R. Without loss of generality, R is not a 
field, and so neither is S. Choose a nontrivial valuation overring V, of S. 
Since R is majorized, R has a nontrivial valuation overring W which 
contains both V and Vi. Then (R : V) contains the nonzero product 
(R : S)(S : W), as desired. Finally, the parenthetical assertion follows trivially 
by Lemma 2.0(i). The proof is complete. 

The final result of this section should be compared with Theorem 3.2; its 
proof foreshadows some of the topics to be met in Section 4. 

PROPOSITION 3.6. Each conducive domain is majorized. 

Proof: Consider a conducive domain R which, without loss of generality, 
is distinct from its quotient field K. Let Z denote the pseudo-radical of R. 
There are two cases. 

If Z # 0, select a nonzero element u E I. Since R [u -‘I = K by a well- 
known characterization of the pseudo-radical, (R : R [u -‘I) = 0, and so u -’ 
is not almost integral over R; in particular, R * # K. Let W be a nontrivial 
valuation overring of R*. To show that R is majorized, it suffices to show 
that Vc W for each nontrivial valuation overring V of R. As R is conducive, 
(R : V) # 0, and so [ 11, Lemma 26.51 assures that R * coincides with I’*, the 
complete integral closure of I? Since Vc I/*, the assertion follows. 

In the remaining case, Z = 0. Consider a pair of nontrivial valuation 
overrings V, and V, of R ; as R is conducive, we may choose nonzero 
elements ri E (R : Vi), for i = 1, 2. Since s = r, rz is nonzero, s is not in Z, and 
so T = R [s-i] is unequal to K. Let W be a nontrivial valuation overring of 
T. It remains only to observe that each Vi c W, but this follows since 
Vi c R(ri)-’ c R[s-‘1. 

By combining Theorem 3.2 with Proposition 3.6, one shows readily that, 
as the terminology suggests, each uniformly majorized domain is indeed 
majorized. 
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4. THE DICHOTOMY AND MAXIMIZED G-DOMAINS 

The dichotomy of the title will be given in Proposition 4.3. First, we 
introduce a tractable kind of uniformly majorized (and majorized) domain. 
We shall say that a domain R (with quotient field K) is maximized in case R 
has a maximum overring, that is, an overring T # K such that T contains 
each nontrivial overring of R. Any such maximum overring is necessarily a 
one-dimensional valuation domain. For motivation, we recall that the 
“maximized” concept has figured in characterizations of pseudo-valuation 
domains amongst certain classes of quasilocal seminormal domains 12, 
Theorem 3.71. One may show that each maximized domain is a G-domain 
(in the sense of 1151, a domain with nonzero pseudo-radical). More 
precisely, we have 

PROPOSITION 4.1. For a domain R, the following conditions are 
equivalent: 

(1) R is maximized; 
(2) There exist a nonzero prime ideal P of R and a subset M of K 

such that M n R = P and, for each nontrivial valuation overring V of R, one 
has rad,(PV) = M. 

Moreover, tf the above conditions are satisfied, M must be the maximal ideal 
of the maximum overring of R, and P is a (the) height 1 prime of R 
contained in each nonzero prime of R, and so R is a G-domain. 

Proof Most of the assertions follow from the proof of Lemma 3.1(i), by 
taking {Vi} to be the set of nontrivial valuation overrings of R. For the 
remaining assertions, consider a maximum overring W of R. As noted above, 
the maximal ideal M of W has height 1. For each index i, write W = ( VJpi, 
so that Pi (= M) has height 1 in Vi. Thus, if P = M n R, then Pi is the 
minimal prime of Vi containing P, and so Pi = rad,,i(PVi). Finally, to show 
that P is the pseudo-radical of R, let Q be any nonzero prime of R, select an 
index j so that the maximal ideal Nj of Vi satisfies Nj n R = Q, and observe 
from Pi c Nj that P c Q. The proof is complete. 

By Theorem 3.2, a maximized domain R is conducive if and only if 
(R : R’) # 0. Further interplay between these concepts is facilitated by the 
following definition. A domain R will be called simply conducive in case 
each u E K such that R[u] #K satisfies (R :R[u]) # 0. Of course, each 
conducive domain is simply conducive. A partial converse will be given in 
Lemma 4.2(ii). 

LEMMA 4.2. (i) For a domain R which is not afield, the following three 
conditions are equivalent: 
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(1) R*=K; 

(2) R is simply conducive and R is not a G-domain; 

(3) Each u E K satisfies (R :R[u]) # 0. 

(ii) Let R be an integrally closed domain such that R * # K. Then R is 
conducive if (and only if) R is simply conducive. 

Proof: (i) This is straightforward, by using the ideas in the fourth and 
fifth sentences of the proof of Proposition 3.6. Details are left to the reader. 

(ii) By the above remarks, it is enough to prove that R is maximized. 
Indeed, R * is a maximum overring of R. To see this, consider any element 
u E K such that R[u] #K. The “simply conducive” hypothesis yields 
(R:R[u])#O, whence R*=R[u]* by [ll, Lemma26.51, and we have 

uER[u]cR[u]*=R*, 

completing the proof. 
The “dichotomy” is now an easy consequence. 

PROPOSITION 4.3. Let R be a conducive domain which is not a fteld. 
Then: 

(i) R * = K o R is not a G-domain o the pseudo-radical of R is 0. 

(ii) R * # K o R is a G-domain o the pseudo-radical of R is a height 
1 prime CJ R is maximized u R * is a maximum overring of R. 

Proof. (i) The first equivalence follows from Lemma 4.2(i); the second is 
standard (cf. [ 15, Theorem 191). 

(ii) If R * #K, then one may argue as in the proof of Proposition 3.6 
to show that R* is a maximum overring of R. Accordingly, one now needs 
merely to combine (i) with Proposition 4.1. 

In view of Proposition 4.1 and Proposition 4.3(ii), it seems worthwhile to 
note that a G-domain which is not a field need not be maximized. For an 
example, consider a one-dimensional Noetherian domain with precisely two 
maximal ideals. Of course, no such example can be conducive, by 
Proposition 4.3(ii). 

COROLLARY 4.4. Let R be an integrally closed G-domain which is not a 
field. Then R is conducive if and only if R is maximized. 

Proof. The “only if” half follows from Proposition 4.3(ii); the “if” half 
from Theorem 3.2. 

Section 1 emphasized the tractable nature of a conducive domain with a 
height 1 prime. By way of contrast, Proposition 4.3 reveals that any 
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conducive domain which has no height 1 prime and is not a field must 
exhibit the exotic behavior described in the following result. 

PROPOSITION 4.5. If R is a conducive domain which is not a G-domain, 
then fl Rr” # 0 for each nonzero element r of R and each nonzero prime 
ideal of R has infinite height. 

Proof. For the first assertion, consider a nonzero nonunit r of R and set 
T = R [r-l]. As R is not a G-domain, T # K, and so the (simply) conducive 
condition assures that I = (R : 7) is nonzero. Moreover, Z coincides with the 
localization of I at the multiplicatively closed set generated by r. In 
particular Z = rZ, so that I c nRr”, as desired. 

For the second assertion, note via Theorems 2.4(ii), (iii) (or Corollary 3.3) 
that the presence in R of a nonzero prime of finite height would entail that 
the pseudo-radical of R is a nonzero (height 1) prime, contradicting the 
hypothesis that R is not a G-domain. This completes the proof. 

Finally, it seems natural to ask for a global analogue of Proposition 2.11, 
that is, a characterization of the conducive Priifer G-domains. Such rings 
abound: consider Z + XC![ [Xl]. M ore generally, if F + M is a one- 
dimensional valuation domain and D is a Priifer domain with quotient field 
F, then D + M is a conducive Priifer G-domain. 

PROPOSITION 4.6. For a Prtijier domain R which is not a field, the 
following conditions are equivalent: 

(1) P = PR, for some height 1 prime ideal P of R; 

(2) The pseudo-radical of R is a nonzero prime ideal; 

(3) R is a conducive G-domain. 

Proof: (1) * (2): If P is as in (l), then P is comparable to each principal 
ideal of R, and hence P is the pseudo-radical of R. 

(2) * (3): Let I be the pseudo-radical of R. Since Z # 0 by (2), Zorn’s 
lemma assures that each prime containing I must contain a (nonzero) prime 
P minimal over I. By the definitions of I and P, we see that P has height 1; 
and since I is prime, I = P. 

As R is integrally closed, Theorem 3.2 (or Corollary 4.4) shows that it 
suffices to prove that R, is a maximum overring of R. To this end, let T be 
any nontrivial overring of R, expand T to a nontrivial valuation domain I’, 
observe that V= R, for some nonzero prime Q since R is a Priifer domain 
(cf. [ 15, Theorem 65]), and note P c Q since P is the pseudo-radical. Thus 
T c V c R,, as desired. 

(3) * (1): Assume (3). Since R is a G-domain, it follows as above 
that R has a height 1 prime ideal P. Since R is seminormal and conducive, 
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we may apply Lemma 2.1O(ii) with V= R,, to show that P = PR,. The 
proof is complete. 
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