L

View metadata, citation and similar papers at core.ac.uk brought to you byf/\i CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com _
=o' . . Journal of
*»” ScienceDirect Differential

Equations

ELSEVIER J. Differential Equations 235 (2007) 31-55 —_—
www.elsevier.com/locate/jde

An initial boundary-value problem for model
electromagnetoelasticity system

Viatcheslav Priimenko *>*, Mikhail Vishnevskii *°

& North Fluminense State University, Rod. Amaral Peixoto, km 163, Imboacica, 27.925-310 Macaé, RJ, Brazil
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences,
Koptyug prosp., 4, 630090 Novosibirsk, Russia

Received 15 June 2004; revised 28 November 2006
Available online 10 January 2007

Abstract

In this paper we consider an initial boundary-value problem related to the electrodynamics of vibrating
elastic media. The aim is to prove an existence and uniqueness result for a model describing the nonlinear
interactions of the electromagnetic and elastic waves. We assume that the motion of the continuum occurs
at velocities that are much smaller than the propagation velocity of the electromagnetic waves through the
elastic medium. The model under study consists of two coupled differential equations, one of them is the
hyperbolic equation (an analog of the Lamé system) and another one is the parabolic equation (an analog
of the diffusion Maxwell system). One stability result is proved too.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this work we consider an initial boundary-value problem for a model nonlinear system of
differential equations related to the electrodynamics of vibrating elastic media. In order to intro-
duce the model we need some preliminary discussions. If an elastic electroconductive medium
is embedded in an electromagnetic field, then the elastic waves propagating through the medium
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will excite oscillations of the electromagnetic field and themselves will change under influence of
the latter. The waves arising as a result of such an interaction are called as electromagnetoelastic
waves. The first attempts to apply the theory of electromagnetoelasticity to the investigation of
the wave propagation process in electroconductive media were made by Knopoff [10], Chad-
wick [5], Dunkin and Eringen [6]. For a profound acquaintance with the modern state of the
theory of electromagnetoelastic interactions the reader is referred to, e.g., [7,17].

Consider an isotropic electromagnetoelastic medium from the viewpoint of linear elasticity
connected with the process of diffusion of electromagnetic waves through slow movement of the
medium only, i.e. we neglect by influence of the electrokinetic and piezo effects on the coupling
mechanism of the elastic and electromagnetic waves. Equations governing the electrodynamic
process are the following ones

Vxﬁ:oE+6ue(},xﬁ+f, (1)
VxE=—pH, V-(uH) =0. ©)

To describe of the elastic waves propagation we use the system
pUs =V -T(U) + pe(V x H) x H+F, 3)
where the stress tensor T(l} ) is defined by
T;; =2V -Ubij+uUis, +Ujs), 1<i, j<3. (4)

Here E = (Ey, Es, Eg)qand H= (Hy, Hy, H3) are the electrical and magnetic components of
electromagnetic field, U = (U, U, U3) is the displacement vector of medium, o, i., p, A,
w are the electroconductivity, the magnetic permeability, the density of medium and the Lamé
coefficients, respectively, J is a source of electromagnetic field, F is a source of elastic field;
and §; ; is the Kronecker symbol. Consider 1D case of Eqs. (1)—(4) when all functions depend of
(z, t) variables and J , F have the representations

J=(0,1,00J(z,1), F=(0,0,1)F(z,1), (5)

where J, F are scalar functions and z stands for the variable x3. In the case p = const, i = const
these assumptions allow us to form the following nonlinear model system

1 1

Ht:< Hz) _(HUt)z_( J) , (6)
O e z O [he Z

e 1
Un = (vpU.), — —HH, + —F, @)

P P

1

E:gHZ_MEHUt' (8)

Here H, E, U, and v, denote the first component of magnetic field, the second component of
electrical field and the third component of elastic field, respectively, v, = /(A +2u)/p is the
velocity of longitudinal elastic wave. For our further purposes it is convenient to have the non-
dimensional case of Egs. (6)—(8). After simple transformations we obtain, see [1]
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hy = (rhy); — (huy), — (rj)z, 9
i = (v2uz)_ — phh; + f. (10)
e=rh; — huy, (11

where &, e, u, j, f are the dimensionless analogues of H, E, U, J, F, respectively; rl =

e L Voo is the magnetic Reynolds number, p = Hoz,o’1 Vo_z, v =v,/V is the dimensionless
velocity of the elastic waves propagation; and L, Vy, Hy are the characteristic values of length,
velocity and magnetic field, respectively.

Finally, we stress that mathematical problems of the propagation of elastic and electromag-
netic waves with account of the interaction of the two fields have been dealt with in the recent
years by Avdeev, Goryunov, and Priimenko [2], Avdeev, Goryunov, Soboleva, and Priimenko [3],
Burdakova and Yakhno [4], Imomnazarov [9], Merazhov and Yakhno [16], Lavrent’ev (Jr.) and
Priimenko [11], Lorenzi and Priimenko [14], Lorenzi and Romanov [15], Priimenko and Vish-
nevskii [18,19], Romanov [20,21], Yakhno [23], Yakhno and Merazhov [24].

2. Definition of the basic functional spaces

Let Q7 be the bounded set £2 x (0, T), i.e. the set of points (z, ¢) of R? with z € 2 = (-1, 1),
te(0,7T).

The Banach space L,(£2) consists of all measurable functions on §2 that are gth-power
(g > 1) summable on £2 provided with the norm |v|, 2 = (fQ |v(2)|9 dz)'/4. Measurability
and summability are to be understood everywhere in the sense of Lebesgue.

The Banach space L, ,(Q71), g,y > 1, consists of all measurable functions on Qr with

a finite norm ||v|lg,y, 07 = (fOT(fQ lu(z, )4 dz)g dr)!/7 . In the case g = y, the Banach space
L4 4(Q7) will be denoted by L, (Q7), and the norm [[vly,4, 07—y lIvll4, 07

Weak (generalized) derivatives are to be understood in the way that is now customary in the
majority of books on differential equations, see, for example, [8,22].

Wé(.Q) for I integral is the Banach space consisting of all functions of L, (£2) having weak
derivatives of all forms up to order / inclusively, that are gth-power summable on §2. The norm
in Wé (£2) is defined by the equality

l
e =D [D5v], o
s=0

Vi/'é (£2) is the closure in Wé (£2) of all functions that are infinitely differentiable and finite in £2.

WqZZ’l(QT) for [ integral (¢ > 1) is the Banach space consisting of the L,(Qr)-elements
having weak derivatives of the form Dj D} with any r, s satisfying the inequality 2r + s < 2I.
The norm in it is defined by the equality

21
g, =>" > Ipipivl, -
j=02r+s=j

The summation ) ,., j 1s taken over all nonnegative integers r and s satisfying the condition
2r4+s=j.
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Wzl’k(QT), k =0, 1, is the Hilbert space with scalar product

(u, U)Wzl,k(QT) = [(uv 4+ u;v, + ku,v;)dzdr.
Or

V2(Qr) is the Banach space consisting of all W21 ’O(QT)-elements having a finite norm

[vlgy = vrai max [vl2.2 + llv:ll2, 07>
1€[0,T]

where here and below
1/2
ozl = ( / vgdzdt> .
or

VQI’O(QT) is the Banach space obtained by completing the set Wzl’ ! (Q7) in the norm of V,(Q7).
V21’1/2(QT) is the subset of those elements v(z, t) € VZI’O(QT) for which

~

=T

S

/‘[71 (v(z, 14+ 1) —0(z, t))zdzdt -0 ast—0.
2

A zero over WZI’O(QT), Wzl’l(QT), Vo (071), VZI’O(QT), Vzl’l/z(QT) means that only those ele-

ments of these spaces are taken, which vanish on S7 =92 x (0, T).
C*%/2(Q7) is the set of all continuous functions in Q7 satisfying Holder conditions in z with
exponent « and in ¢ with exponent «/2.

3. Statement of the problem. Weak solutions

We can now state our problem. Consider in Q7 the equations

hy = (rhz); — (hug); — (rj)z, (12)

wie = (v2uz)_ — phh; + f, (13)

where r(z), v(z) are positive piecewise smooth functions, discontinuous at the points z = zg,
k=1,2,....m, =l <z1 <z <--- <z, <l; pis a positive number.

The following first initial boundary-value problem is considered for Eqgs. (12)—(13) with the
initial data

h(z,0) =ho(z), z€8$, (14)
u(z,0) =up(z), u(z,0) =u1(z), z€£, (15)

and the boundary conditions
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h(=1,t)=h(,t)=0, te(0,T), (16)
u(=,t)=u(l,t)=0, te(,T). (17)

Problem (12)—(17) can be considered as a diffraction problem, i.e., as the problem with Qr
partitioned into several domains Qgc), Q(Tk) =02® x 0, 7), Q® = (Zks 2Zk+1), k=0,1, ..., m,
z0 = —I, Zm+1 =1, in each of which there is given parabolic-hyperbolic system (12)—(13) with
smooth coefficients and free terms. We wish to find in Q7 a solution of this system satisfying:

in Qg‘), k=1,2,..., m,the corresponding equations (12)—(13);

on the lower base of Q7 the initial condition (14)—(15);

on the lateral surface of Qr the boundary conditions (16)—(17);

at the jump points zx, k =1, 2, ..., m, the following compatibility conditions

[h]=[u] =0, (18)
[r(h. — j)] =[v?u:]=0. 19)

The symbol [v] denotes the jump of the function v as it passes through z.
Problems of this type can be reduced by means of a simple technique to problems for the
determination of weak (generalized) solutions of ordinary initial boundary-value problems with

discontinuous coefficients, see [12, pp. 224—232]. This fact will be used for the analysis of prob-
lem (12)—(19).

3.1. Weak solutions of problem (12)—(19)

Diffraction problem (12)—(19) can be formulated in weak terms defining its solutions as fol-
lows

Definition 3.1. Functions h(z,t) € ‘o/z(QT), u(z,t) € Wzl’l(QT) are called a weak solution of
the initial boundary-value problem (12)—(19) if they satisfy the identities

—/hmdzdt—l—[rhznzdzdt—/hu,nzdzdt

or or or
=/anzdzdt+/ho(z)n(z,0)dz, (20)
or Q
—/uzitdzdt—i-/vzuzg“zdzdt—i-/phhzg“dzdt
or Or or
=ff§dzdt+/u1(z)§(z,0)dz, u(z,0) =uo(z), z € 2, (21)
or 2

for all n(z, 1), ¢(z,t) from WZI’I(QT) that are equal to zero for t =T

It is possible to define the weak solution of (12)—(19) somewhat differently.
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Definition 3.2. Functions h(z,t) € ‘O/Q(QT), u(z,t) € Wzl1 (Q7) are called a weak solution of
problem (12)—(19) if they satisfy for almost all #; € [0, T] the identities

—/hn,dzdt—i—/rhznzdzdt—/hu,nzdzdt
0y 01 123

=/rjnzdzdt+/ho(z)n(z,0)dz—/h(z,tl)n(z,n)dz, (22)
2 2

0,

—/u,;tdzdt+fv2uzg'zdzdt+/phhzgdzdt
er QT1 Q’l

= / fédzdt+/u1(z)§(z,0)dz—/ut(z,tl)l(z,tl)dz, (23)

o 2 2

u(z,0) = uo(2), 7 € 2, where 0y, = 2 x (0,11), and 5(z, 1), { (2, 1) € W, (Qr).
Both of the definitions are equivalent to each other. The fulfillment of transmission conditions

(19) is understand in the sense of the identities considered in Definition 3.1. For more details we
refer of the reader to [18].

4. Main results
4.1. Existence of weak solutions

Suppose that the functions r, v, the free members j, f, the constant p and the initial data Ay,
uo, u1 in problem (12)—(19) enjoy the properties

(a) r,v, j, f are supposed to be piecewise smooth functions with jumps at the points z,,,: —I <
1<z <-<zZm<bLO0O<rg<r@@<r<oo,0<y<vi)<vy<ooand pisa
positive number;

(b) ho e C*(2), a € (0, 1), ho(£l) =0, and ug € Wzl(Q), uy € Ly(£2).

Let us show that problem (12)—(19) is solvable; namely, let us prove the following proposition:

Theorem 4.1 (Existence of weak solution). If conditions (a)—(b) are fulfilled, then problem (12)—
(19) has a weak solution

heVy(Qr), ueW,'(Qr).

Proof. For a proof we make use of Galerkin’s method. Let us check that the functions A, u
satisfy identities (22)—(23). Consider in W21 (£2) a fundamental system of functions {y} and
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assume it to be orthonormalized in L,(£2) and to be orthogonalized in W21 (£2). We will seek an
approximating solution in the form

N N
=Y a Ow@, 1= b O, (24)

k=1 k=1

where
ay = (WY, yx), by =@V, yx), k=1,...,N,

are determined from the equations

d
— (N ) = —(rhY —uMnN —rj, i),

dr
(RN (-, 0), ¥i) = hok. (25)
d2
2 ) = —(vzu?,“ - 2" wkz) + (. V).
d
@V 0, y%) =uok,  — (V- 0), ¥) = un, (26)

dt

and hoy, uok, U1k are the Fourier coefficients in L, (£2) of initial data with respect to the system of
the functions . Equations (25)—(26) are a system of nonlinear ordinary differential equations.
Its solution exists on a maximal interval [0, 7) if T < T, and

. N N
th_r)I% m]?x(|ak , 1Dy |) — 00.
We will prove that |a,iv|, |b,iv|, k=1,..., N, are bounded functions for ¢ € [0, T], and therefore

system (25)—(26) will have a unique solution on [0, T'] for any T > 0. For this purpose we
multiply the differential equation in (25) by pa) and the differential equation in (26)—by b,
then sum the obtained equalities over all £ from 1 to N; and integrate the result with respect to ¢
from O to #;. The sum of the results obtained gives

=t

14 2 = 1 2 1 2 = 2
SV G0l glizo + 5 Tut G oly glizo + 5 vl ¢ 0l ol 2o + vk [ o,
2 2 2 1

= / prjhY dzdr + f ful dzdr. @7
QH Qq
Note that
2 al 5 ul
[PV 050 =D aiO <lhol3 i [uf O3 o =D b (0) < llui 3 o:
k=1 k=1
1
[vu 0[5 o < ov}lluo: 13 ¢ -3 / pr[(nY) = 20Y ) + 2] dzdr <0,

o
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where the positive constant (.o does not depend on N. Therefore the following inequality is valid

p
5||hN<wt1>H§,9+ e .mlsg +5 e t1>||m+—||x/17hN||2Q,l

<m+/|fu,N|dzdz,
o
where
p 2 1 2 M0V12 2 1 .2
n1 = _||h0||2,9 + = luy ||2 ot —||’40z||2 otz prj-dzde
2 2 ’ 2 ’ 2
(o

does not depend on N. In particular, we have

||u, g <t ‘ / fup dzdt|. (28)
Oy
Integrate the latter inequality with respect to #; from O to 7. This gives
1 2
gHuzNHw 1T+/' fup dzde|dry. (29)
0 0y
Note that
N € N\2 1 2
Sfu, dzdt| < 3 (u')"dzdr + % fodzde. (30)
oy or or
Setting € = 1/2T we have
1
f‘/fug"dzdr dr; < Zf( ﬁv)zdzdr+T2ff2dzdt. 31
0 94 or

Then inequalities (29), (31) yield

||u 5.0, < mT+T2/f dzdt.
or

Using the latter and inequality (30) with € = 1/2T gives us

‘/fufvdzdt /(ut) dzdt+T/f dzdr < u1+2T/f dzdr.

or or

1
Sar
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Therefore from (27) we have for any #; € (0, T']

t=t =1

p 2 1 2 1 2 = 1 ’
E”hN('vt) ||2,9|t:0 + 5“”5\/(”)”2,9‘1:0 + §||Wiv("t)“2,9|§:g + §||~/ﬁhév”2,g,1

<2up + 2T / F2dzdr = o, (32)
or

where the positive constant 1, does not depend on N. It follows from (32) that a,ﬁv , b,’cv , b,’(\; are
uniformly bounded functions for ¢ € [0, 1], #; < T. Let us show that for fixed k and arbitrary
N > k they are equicontinuous on [0, T']. Indeed, from (25) we have

al (t+ A1) —al (1) = — / (rhY —uMhN —rj) g, dzdt,
Ottt
where Q; +ar = 2 X (t,t 4+ At). For an estimate of the right-hand side we use the following

inequalities

/ lvivavsfdzdr < villgy . Qrirar - ||v2||(12yV2,Qx,z+Az “Nv3llgs,ys, 0 s>

Qt,t+A[
, 11 1 11 1
gi.vi€ll,00),i=123, —+—+—=1, —+—+—=1. (33)
9 9@ 9 Yoo n
/ |rh? Y| dzdr < rillYellzrea |12 5,0, 0, (34)
QLH»At
/ ' h e | dz dt <WWkell2.0pm [0 1oa g, om 1V et 0rinr B39
Q!,[+At
Using Theorem 2.2 in [12, pp. 62-63] gives us
2 2

ollg.2 < Bllv:l] o - vy o -

where

2 1 1 1
B=27, gel2,400], y €[4, +00], —+_—=-.
Yy 2q 4

After an integration of the latter inequality with respect to the time variable from ¢ to t + At we
obtain

2 _2

= 1
y . : v
”U”q,y,Qt,HA, < ’8||UZ||2,Qt.x+At Vralre[rtl:l?—i)-(At] ”U”z’_q .
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Using Young’s inequality allows us to rewrite the latter as

2 2 .
1007 00rvsr < B 102010 + B (1 - ;) viai_max vl (36)

The fact that integrals (34)—(35) tend to zero as At — 0 gives
| (1 + A — apf (0] < e(AD Yzl

with €(At) not depending on N and tending to zero as At — 0, i.e., the equicontinuity of the
ay ,N=k,k+1,...,int.

Equicontinuity of functions b,lcv follows from the boundedness of their derivatives. The fact
that b}x are equicontinuous functions for N > k is proved in same way as it was done for the func-
tions a,lcv, N > k. By the usual diagonal process we select a subsequence {N,,}, m =1,2,...,

such that the function sequences {a,iv”’ }, {b,]j’”} be converging uniformly on [0, 7'] to some con-
tinuous functions ay (¢), bi (). The functions ay, by define two functions

o0 o
hzzaklﬁk, uzzbk%-
k=1 k=1

To the function (-, ) the sequence {h™"} converges weakly in L,(£2) and uniformly with re-
spect to ¢ in [0, T']. Indeed, for any function v (z) from L (§2) we have

(RN —hop) =D W ) (B — hoyi) + ( > (N =, mm)) (37)
k=1 k=s+1
with

00 1/2
< c1< > W, wwz) = C1R(s),

k=s+1

(th —h Y W, mm)

k=s+1

where the positive constant C; does not depend on N, s. We choose s so large that C1 R(s)
becomes less than a preassigned € > 0. On the other hand, for fixed s and large enough N,,, the
first sum in (37) will be less than € for all ¢ in [0, T]. Thus |(A"» — h, )| can be made less
than € for all ¢ in [0, T]. It is shown that the sequence {i""} converges to h weakly in L(£2),
uniformly with respect to t € [0, T'].

The sequence {u™Nm} is bounded in Lo (0, T Wzl (£2)) and the sequence {ufv "1 is bounded
in Loo(0, T; Ly(£2)). For this reason the sequence {u™"} converges to u *-weakly in Loo(0, T;
W21 (£2)) and the sequence {uﬁv’”} converges to u; *-weakly in Lo (0, T; L7(82)). The functions
uNm belong to WZI’I(QT) and in virtue of WZI’I(QT) — L7(Qr) the sequence {uN'"} converges
to the function u strongly in L>(Q7) and pointwise a.e. in Q7. Let us show that the sequence
{ul} is bounded in L>(0, T; H~'(£2)), where H~!(£2) is the dual space to H{ (2) = WJ ().
For this purpose consider a function ¥ from W21 (£2), such that ||11/||W21 @ = 1, U =y + Y,



V. Priimenko, M. Vishnevskii / J. Differential Equations 235 (2007) 31-55 41

where ¥ € span{lﬂk}k 1-and (Y2, Y) =0,k=1,..., N. Let us denote by (a, b) the pairing
betweena € H~'(22) and b € Vile (£2). From (26) we have

) = (. w1) = (2 1)+ 2 (002 1)+ v,

It is easy to check that || ¥ || Wl @) S < 1. In view of this and estimates obtained above, we get

. w)| < Care,

where the positive constant C, does not depend on N. It proves that {uf\t’} is bounded in
L,(0,T; H_l(.Q)). Thus we can take for granted

ul[\t] — u;;  weakly in LQ(O, T; H*I(.Q)).

It follows from (32) that one can extract from the sequence {1} a subsequence converging
to h weakly in L,(Qr) together with {hN’"} Let us show the sequence {hfv } is bounded in
L>(0,T; H-1(£2)). For this purpose consider a function @ € Vi/zl (£2) such that ||<1§||W21 @ = 1,

b = b1 + Dy, where @ € span{wk}k 1>and (@2, ¥3) =0,k=1,..., N. Because of

N
hY =" aly ¥ € span{y =y

k=1
the following equality is valid
(Y, ®)=(hN, @1) = —(rhY —u}n™ —rj, ®1.).

Using || @ ||W @2 S < 1 and (32)—(36) we obtain the inequality

. )| < Care,

where the positive constant C3 does not depend on N. The latter proves that {hﬁV } is bounded in
L>(0, T: H-'(£2)). From (32) follows that {1V} is bounded in L, (0, T’ W; (£2)) too. A subse-
quence of {1} converges strongly in L,(Q7), which means the convergence of a subsequence
of the previous one a.e. in Q7, see Theorem 5.1 in [13, p. 58]. Without loss of generality we
can assume that the sequences {7}, {u’"} converge to the limit functions &, u in the sense
mentioned above. By this reason the sequence {1} converges a.e. in Q7.

Let us prove now that the limit functions %, u satisfy equalities (20)—(21). First, we will show
that the function / satisfies equality (20). For this purpose we multiply each equation of (25) by
a smooth function ay (¢) that is equal to zero for ¢t = T, then sum over all k from 1 to N’ < N,
and integrate the result with respect to ¢ from O to 7. After an integration by parts we obtain

T T
[ ¥ ya= [l r) - @Y. ) - (i Yac (.Y co) Gs)
0 0
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where TN,(z, t) = ZIIC\]:/I o (1) Yk (z) belongs to Lo (0, T Hé (82)) = Loo(Q71). We claim that
we can pass to the limit in (38) along the subsequence {N,,} selected above, assuming V'
fixed, and thereby arrive at (38) with 27, 4™V being replaced by &, u. Indeed, let us prove that
S @ N v Ny dr tends to f (uh, YN dt, ie.,

T
/(usthm —uh, TZN/) dt >0, asm— oo.
0
Observe that the integral can be represented in the equivalent form

T T T
/(uﬁvthm —uh, TN d / ), V) dt+/ " —u, kTN dr.
0 0 0

But the first term in the right-hand side of the latter equality tends to zero for m — oo according
to the estimates

T

/!Mﬁv’”(-»f)(hN’” —h) (.0, TN (0| de
0
T
< HTZN/ Loo(Qr)f”“ﬁvm("t)HLz(Q) G _h)("t)HLz(.Q) dr
0

N Ny
<2l |7; “Lw(QT)“ (™ —h) ”LOO(O,T;Lz(.Q)) — 0, asm — oo.
Observe then that also the last term in (38) tends to 0, since we have proved that ul’ ;" converges
to u; *-weakly in Lo (0, T; L2($2)) and hTZN € Lr(0,T; Ly(£2)) — L1(0,T; Ly($2)) due to
the estimate
[nrY

“L2<0 a2y S MlL20.75 L0 (2)) ”T ”Loo(o T;Ly(2)°

But the TV are dense in the space of all functions required in the first definition of a weak
solution, see Lemma 4.12 in [12, p. 89]. In view of this & satisfies equality (20) and belongs to
be the space V>(Qr). Since

1
l/lt EL 2 (QT) KE(O, §>,
we deduce from Theorems 7.1 and 10.1 of [12, pp. 181, 204] that

max [h < Cs, e Cc*?(Qr)
T
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for some positive constant Cy4. Let us show now that the function u satisfies equality (21). For this
purpose we multiply each equation of (26) by the o (¢), then sum over all k from 1 to N’ < N,
and integrate the result with respect to ¢ from O to 7. After an integration by parts we arrive at

fT (', ) Z/T [ 2l TN = () T+ (1 TN/)} di

— @, Vo), w0 =ud (), (39)

where the TV were defined in (38). In this equality one can pass to the limit with respect to the
subsequence {N,,} selected above, assuming YV fixed, and thereby arrive at (39) with A", u¥
being replaced by 4, u. Lemma 1.3 of [13, p. 12] shows that the sequence {(hN)z} converges to h?
weakly and it allows to pass to the limit in the nonlinear term in (39). Since max g, |h| < C4 then

{fOT (h?, 7N") dr} is bounded for any TV ¢ Vi/zl’l(QT) and, as the YV are dense in the space
considered in the definition of weak solution, we deduce that the function u satisfies equality
(21) and is the weak solution from Vi’zl’l(QT), see Lemma 4.12 in [12, p. 89]. Theorem 4.1 is
proved. O

From Lemma 4.1 of [12, p. 158] and Theorem 4.1 we get

Corollary 4.1. Any weak solution h(z,t) of problem (12)-(19) from ‘O/Z(QT) belongs to
1 172
Q7).

Corollary 4.2. For any function ¢ (z,t) € L2(0, T} W21 (82)) is valid the following equality

T T
f r=f{<f—phhz,¢>—(vzuz,@)}dr
0 0

The latter allows us to conclude that the following equation holds for any function £(z) €
W21 (£2) and for almost all ¢ € [0, T']

(i, §) = (f = phhz, §) = (Vuz, &)
Moreover notice that
ueC([0, Tl La(82)),  u; € C([0, T, H ' (82)).
4.2. Uniqueness of weak solution
We need the following lemma to prove uniqueness theorem.

Lemma 4.1. Suppose h(z,t) € Vl 1/Z(QT), u(z,t) € WZI’I(QT) are a weak solution of problem

(12)—(19). Then the following mequality is valid for almost all t| € [0, T']
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1
/(phz(z, 1)+ u*(z, 1) + vzui(z, 1)) dz + 3 / prh?dz dr
Q Qtl

N =

é/‘(ph%+uf+v2u%’z)dz+/prjzdzdt+2t1ff2dzdt, (40)
2 0 01

where Q; = 2 x (0, 17).
Proof. Suppose &, u are a weak solution of problem (12)-(19). We take as n and ¢ in (20)—(21)
the functions

t

t
A 1 . A 1 A
m;(z,t)=zfn(z, 7)dr, S (z, t)=zf§(z, 7)dr,

t—k t—k

where #(z, 7), £ (z,7) € W, (Qx 1), and fi(z, ) =0, { (z, 1) = 0 for T € [k, 0] U[T — k, T1,
Q1 =82 % (=k,T), k € (0, T). In view of D;(ij;) = (D;1); we transform the first term in (20)
in the following manner

_ / hﬁ,;tdzdtz— / hin,dzdt = / hifdzdr.

Or—k Or—k Or—k
Here we have used the notation

1 t+k
hk(z,t)zz/h(z,r)dr

t

and the relation

T—k

T
/ fOgr()dr = / fr(®)g(t)dt,
0 0

valid for any piecewise summable functions f(¢), g(z) on [—k, T], one of each is equal to zero
on the intervals [—k, 0] and [T — k, T']. The latter equality is the result of interchanging the order
of integration with respect to ¢ and t. In a similar way we obtain

- / g, dzdr = f un ¢ dz dr.
Or—k 07—k

In all other terms of (20)—(21) we also transfer the averaging (); from 7, g: to theirs coefficients.
Taking into account the permutability of this averaging with differentiation with respect to z we
obtain identities
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/ {hieh + (s — huty — rj)ii;) dzdi =0, 1)
Or—k

/ (Vugs. + Gugy + phh — i) dede =0, 42)
Or—k

These identities are actually valid for a class of functions 7, E that is more extended than the
class just considered; namely, they are valid for any functions 7, Z that are equal to zero for r > 1
(0 <11 < T —k) and are equal to some functions n € \0721’0(Q,|), e Vi’zl’l(Qtl) for t € [0, 1].
This property was proved in [18]. Thereby we have

/ {hin + (s — huy — rj)en: ) dzdi =,
0,

[ ket + i+ pie = ) azar =o.
Oy

In the latter formulas we take n = phy, { = uy, and represent the corresponding terms in the
form

hehedzdi =+ [ 12 dz|/=" dedi= 1 [ 2 dz|/="
kehg dzdf = 5 (@ 1) Z|;=0’ Ukerlky dZ df = ) Uk (2, 1) Z|t=0’
o 2 o 2

1 =
/vzukzukz,dzdt:E/vz(z)uiz(z,l)dzﬁzg,
Qtl 2

after which let k tend to zero. By analogy with (27) we obtain

1 1
3 /(phz(z, t) + u,z(z, 1)+ vzui(z, 11)) dz — 3 /(ph% + u% + vzu(z)‘z) dz + / prhg dzdr
2 2 Oy

= /(prjhz—i—fu,)dzdt.
o

Note that
1 2 . 1 .2 1 N2
pr Ehz—jhz—i-ij dzdtzi pr(h; — j)“dzdt > 0.
Oy Oy

In view of this we have
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1 1 1
E/(th(z tl)—i—u,(z t1)+v u (z t1) dz / pho—i—u1 +v uOZ)dz—i—Z/prhgdzdt
2 2 oy
1
<§/prj2dzdt+f|fu,|dzdt. (43)
Oy Oy

The latter gives us

/ulz(z,tl)dzéf(ph2+u1+v uOZ)dz—i—/pr] dzdt+2/ | fus|dzdz.
2 2 0y, o

Integrating this inequality with respect to the time variable from O to #; and applying Cauchy’s
inequality with € = 1/2¢1, we obtain

/ufdzdt<4t1/(ph0+ul+v uOZ)dz+2t1/pr] dzdr 4 4} /f dzdr.
Q’l 2 Qtl er

Using the latter and Cauchy’s inequality with € = 1/2¢; in (43) gives us

1 1
Ef(ph%z,n)+u?(z,n)+v2u§(z,n))dz+5/prhgdzdt
2 o

/(pho—i-u]—i-v uOZ)dz—i-/pr] dzdt+2t1/f dzdr.
2 0y, 0,

Thus (40) is proved. O
From (40) we obtain (see [18] for details)

. a,a/2
max ] + lzll2.07 + ltll gy g,y < Cs. e C2(@r), (44)

where Cs is a positive constant. Fix now a positive constant Tj. Let us prove that the constant

Cs depends only on Ty whenever T € [0, Tp]: we will write C5 = C5(7p). From inequality (40)

it follows that ||A; |2, 0, llull Wl o) Are well defined from above with a constant not depending
2

on T'. To estimate max g, |h| we consider (20) as the linear parabolic equation with coefficients
satisfying additionally to conditions (7.1)—(7.2) in [12, p. 181] with constants independent of T'.
It follows from Theorem 7.1 of [12, p. 181] that vraimax g, |A| is estimated from above with a
constant not depending on 7. Let us use now Theorem 10.1 of [12, p. 204] taking into account
that on the parabolic boundary / is a function from the Holder space with exponent « in z.
Function £ is equal to zero in z = £/ and by this reason has any smoothness on the boundary
with respect to ¢. So, h € C""“/z(@T) and the exponent « is independent of T € [0, Tp]. By this
reason vraimaxg, |h| = maxg, |h|.
Let us now prove the uniqueness result about solvability of problem (12)—(19).
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Theorem 4.2 (Uniqueness of weak solution). A weak solution of (12)—(19) is unique.

Proof. Let Ay, ui, k =1, 2, be two weak solutions of problem (12)—(19). Introduce functions v,
w by the formulas

v(z,t) =ha(z,t) — hi(z, 1), w(z, t) =uz(z, 1) —ui1(z, t). (45)

The functions v, w are a weak solution of the homogeneous problem

v = (rvy); — (howy + u,v)g, (46)
Wi = (vzwz)z — p(hav, + hyv), 47)
v(El, 1) =w(xl, 1) =0, (48)
v(z,0) =w(z,0) =w(z,0) =0, (49)

satisfying at the jump points zx, k = 1,2, ..., m, the compatibility conditions (18)—(19). There-
fore the functions v, w satisfy the integral equalities

/{_U’?t + (rv; — howy — unv)nz} dzdr =0,
or

/{—wtc, +v2wel. + plhav + hizv)t ) dede =0,
or

By analogy with (41)-(42) we obtain

/ {vk,ﬁ + (rv; — how; — ultv)kﬁz}dzdt =0,
01—k

f (Vwiets + (wre + phve + phizo)id ) dzdr = 0. (50)
Or—k

Multiply the first equality in (50) by p and sum the result with the second one. In the result
obtained we take

A t)_{n(z,t), if 1 € (0,11,

70210, if1¢(0,1]
and

A e, ifre(0,n],

éh(z’t)_{o, if1¢ (0,11,

where n = vk, { = wyy, 11 € (0, T — k], and represent the corresponding terms in the form
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1 =
/ vktvkdzdtzifv,%dz|§=8,

Or—k 2
1 2 t=t| 1 2 1=t
Wit Wkt dZ dt = 5 wkt dZ|I:0 5 Wikt Wk dZdt = 5 wk dZ|t:0 :
Or—k 2 Or—« 2

Passing to the limit k — 0 and using the initial data (49) gives us

1 1
ot g + 5l g + 5 lvwccon g + [ prodazar
01,
:/p(u”vzv—hlsz,)dzdt. (29
01,

The integral in the right-hand side is estimated using (44)

‘/P(”lt”zv"‘hlszt)dzdt < pCs(llvzl.o, +||wt||2,Qt1)'HéaX|U|-
1

n

Thus, for almost all #; € [0, T'] the following inequality holds

1 1
Dot g + g luncon g + 5 vwccon g + [ prodazar
Oy

< pCs(lvzllz,o, + lwill2,07) - max Jv]. (52)
T

Consider the first boundary-value problem for the inhomogeneous parabolic equation (46) with
zero boundary and initial conditions and the free term (how;);. If [|how; (2,0, =0, then v =0
and, consequently, w = 0, see (47)—(49). Consider case ||how;||2,0; = ¢ > 0. From Theorem 7.1
of [12, p. 181] we deduce that

3‘ < Co(Ty), VT € (0, Ty,
q

max
or

where Cg(Tp) depends on Ty only, whenever T € (0, Tp]. This is proved in the same way as the
constant C5 was estimated previously. Then

Héax [v] < C5(Tp)Co(To) lwell2, 07, YT € (0, To].
T
This gives

1 1
Plocn g + 5 luncon g + 5 wccon g + [ prodazar
Oy

< pC3(T0)Co(To) (lv: 2.0, - lwill2.or + i3 0, )-
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Applying Cauchy’s inequality with € = ZrOC;Q(TO)Cgl(TO) to ||vz||2,Q[1 Nlwell2, 0p With g
being the positive constant in assumption (a), we obtain the following inequality, valid for almost
allt; €[0,T], T € (0, To],

1 1
2o g+ 3wl g+ 5l < pCr Tl o
where

CSZ(TO)CG(TO)>

C1(Ty) = C52(T0)C6(T0)<1 + 7
4]

Integrating the latter with respect to #; from 0 to T, with T € (0, Tp], we have

2
D 1 v
S5 0, + S lwnl3 o, + 3°||wz||%,QT < TpCr(To)lwill3. g, -

But it is impossible for TpC7(Tp) < 1/2 in the case when w;, w;, v are nonzero functions. There-
fore v=w =0 in Q7 with, e.g., T} = min{(4pC7(T0))_1, T}, which proves Theorem 4.2.
Applying this result recursively, after a finite number of steps, we conclude that v = w =0
in Or. O

4.3. Stability of a weak solution of the problem

Let us show that a weak solution of problem (12)—(19) is stable with respect to variations of
the coefficients (except v) and free terms of the equations, and also the initial conditions. This
result will be established in the case when v is supposed to be a smooth enough function. We
have shown that problem (12)—(19) has the unique weak solution 4 € Vz(QT), ue Wzl ’I(QT)
having additional properties

max |h| + hzlla.or + [ur ¢ 0], g + [usC.0)], 0 < Cs. (53)
T

where the positive constant Cg does not depend on 4, u. Along with problem (12)—(19) consider
the family of problems

= ("), = ("), = ("), @) € O, (54)
wlh = (Vul), — ph" " — f". (z.1) € O, (55)
h"(z,0) = hg'(2), z €2, (56)
u™(z,0) =ug (2), u'(z,0) =ul'(z), z€8£2, (57)
u (£l t)=h"(£l,t)=0, re(0,T), (58)

where m € N. Suppose that 7" (z), j" (z, 1), hy (2), ug (2), u{'(z), f™(z,t) are smooth functions
satisfying the conditions of the uniqueness and existence theorems. In this case transmission
conditions (18)—(19) can be dropped owing to the smoothness of the solution. Problems (54)—
(58) have the unique weak solutions 2", u™, m € N.
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Theorem 4.3. Suppose the sequence {r"} is uniformly bounded and converges a.e. to r, while
the sequences {j™}, {f™}, {hg'}, {ug'}), {u]'} converge to j, f, ho, uo, uy in the norms of the
spaces to which they belong according to the conditions of Theorem 4.1. Then the weak solutions
e ‘721’0(QT), u™ e W211 (Qr) converge in such spaces to the weak solution h, u of the limit
problem (12)—(19).

For a proof of this proposition we need the following lemma.

Lemma 4.2. Let h,u and b, u™ be weak solutions of problems (12)—(19) and (54)—(58), and
vV'(z,t) =h"(z,t) —h(z, 1), w"(z,t) =u"(z,t) —u(z,t). Then there exists a positive number §,
independent of h, u, K", u™, t1, t, such that for any t1,ty € [0, T], 0 < to — 11 < 6, the following
inequality holds true

. 2 2 2 2
Vralten[}i’le{p|| v Hz.o + ” wy" “29 + 2””“’;” “29} +2pr0|| vy ||2,Q,|,2

2 . 112 2
< ng{H (rm - r)hzuz,Q,l,z + “rme - ”2,Q,1,2} + Hfm - f”z,Q,l,2
+2p 0" s g 2w il o +2 el . (59)
where Qy 1, = 2 x (1, 12), and Cy is a positive constant.
Proof. For a proof of this proposition we subtract from the integral identities (20)—(21) for 1™,

u™ the corresponding ones for %, u and write the result of this subtraction in the form of integral
identities for the functions v, w™ in the following manner

—/vmntdzdt+/rmv;”nzdzdt—/v’"u}"nzdzdt—/hw;”nzdzdt

or or Or or
= /(rmjm —rj)nzdzdt—}— /(rm —r)hznzdzdt—i—/(hgl —h())n(z,O)dz, (60)
or or 2
—/w{”{,dzdl—l—/vzw;"gzdzdt—i—/ph;"vmgdzdt—i—/phv;"g“dzdt
or or or or
=/(f’"—f)§dzdt+/(u’1" —u1)¢(z,00dz,  w"(z,0) =uf(z) —uo(z). (61
or 94

We take as 7 in (60) the function

t

/ n(z, T)dt,

t—k

Np(z,0) =

x| —

where 7(z, t) is an arbitrary element of W211 (Qk 1) thatis equal to zero fort > T —k and ¢ < 0.
In a manner analogous to that of Lemma 4.1 we obtain (the latter integral in formula (60) is equal
to zero by the choice of the test function)
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/v,’ftﬁdzdt—i— / (r ol —v™ul" — hw}'), 7, dz dt

Or—k Or—k

= / (rmj’" —rj+ (rm — r)hz)kﬁZ dzdz. (62)
Or—k

This equality is actually valid for a class of functions 7(z, ) that is more extensive than the class
just considered; namely, it is valid for any function 7 that is equal to zero fort > 7,71 < T — k

and is equal to some function n(z, t) from \0721’0(Q,) for t € [0, t]. Indeed, the set ch/zl’l (Qk.1) 18
dense in ‘721 ’O( Qk.1)- Thus for any n from \0121 ’O(Qk,T) there is a sequence of functions 7, from

Wzl’l (Qk.7) that is strongly convergent to it for n — 0o in Vzl’o(Qk,T). We denote by x;(¢) the
continuous piecewise-linear functions

0, if 1 <0,
It, ifr €0, 1],
x@® =11, ifrelt,r—1,
It —1), iftelr—1 1],
0, ift>t

with T > 1/1. Identity (62) is established for 7,;(z, t) = 1, (z, t) x;(t) when T < T — k. It is easy
to see that one can pass to the limit in it as n and /[ — oo and thereby prove the identity

/v,’gndzdt—i—/(r’"v;” —v"u" — hw}"), n; dzdt
QT QT

= /(rmjm —rj+ (" - r)hz)knZ dzdr (63)
O

for any function n € ‘;21,0(QT) when 7 < T — k. In (63) we take n = v}" and represent the first
term in the form

1 -
[, dzar=3 [ o) el =
O« Q2

after which we let k tend to zero. This gives

ol oz + [mer — o — hu)or azar

o

= /(rmjm —rj+ (rm — r)hz)v;" dzdt. (64)
0+

Analogously the following equality can be obtained from (61)
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1 —
S ol g+ Dt 0+ [ poittuftacar+ [ iz
O O

_ / (f" = f)w dzdr. (65)
Q1

Multiply (64) by p and sum the result with (65). This gives

1 2 2 2 =
E(p”vm(" ’)”2,9 + Hw;n(" t)Hz,Q + ||vw’z"(-, t)Hz,Q)i;:(T)

+ / p(r’" (vg”)2 +v"hT wy — vmvg’u;”) dzdt
O

:/p(v;"(rmjm—rj)—i—(rm —r)hzwg")dzdt—i—/(fm—f)w;"dzdt. 66)
0+ (223

Subtract from (66) for v = ¢ the same equality for t = #1, #j < t < 1, and consider
vraimax;e[s, ,r,] of the result. We obtain

r .
gt max (oo g + o g + ot B+ p [ () acar
teltr,n] ’ ’ ’
Oy
e e e Y M R e
Qt1t2

1 1
+ [ 10 = gtz ol g+ gl el
Q[1T2

1
+ 5l o (67)

Using (33), (36) (with ¢ = 0o, y =4) and (53) gives us

[ hradear < ol g, B g, 1V g
Oy

1/4
< Cgd

> A ||2,Q,112 (Jor ||2,Q,1,2 +vrai max [v" ”29)

teltr.n]
with #, — #; < 4. To prove the latter inequalities we used (53) and

1/4

t ) 5 1/4 t
|wwmgm={f(/ww@)m} <@{/m} <l

I 2 sl
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The other terms are estimated in the similar way

/ |vmh;n |dzdt < ||hm ||2 O ” ||2,4,Qt1r2 . ” v ”00’4’Qf1’2
Qt112

|UmH2‘Q) vralterga); Hw, Hzg

Cgs'/* -
< 7(” v;’l H2,Q11t2 + Vralterg?:)t(z

' ' € 2 1 ; 1%
/ |(Vm]m —’”J)v?|d2dl < EHU?HZ,QW + Z”rm]m - ”2~fo1’2’
Oy
€ 2 1 2
/ |(”m —”)hzvgﬁ\dzdt S EHU?HZ,QHQ + Z” (rm _r)hZ“QOtltz’

Onny

1 2
/ | |dzdt < ||wtm||2,Qt1t2 + Z”fm — f||2,Qr1t2

Oy
<8vra1tn[1ax ||w ||2_Q+_||f’” f||2Qtt2

We can choose €, § such that the following inequalities are valid

5Cs8'/* < V2, pV2Css * +45 <1, 272 +6C38"* <rov/2.

From (67) this gives

vrai max {P||Um||2.rz+||w ||29+2||Vwm||29}+21”0”” ”2 011y

telt, 0]

< C9P{” (rm - r)hz H;,Q,l,z + ”rmjm =1 ”2,Q,1,2} + Hfm - f”z,Q,l,2

+2p|v" 103 g 2w ) o 2wl Cnll

with some positive constant C9. Lemma 4.2 is proved. O
Corollary 4.3. Under the fulfillment of the conditions of Lemma 4.2 there is valid the following
estimate

pv" ¢, t2)||2 P LA ’2)”2 o T2l t2)||2 o T 2prooY ”2 Oi

<C9p{H(rm—rhz||2Q“2+Hr J _rj”zQ,,2}"‘Hfm_fH2,Q,l,2

+2p[v" o g + 2wy ¢ g 2]l ¢ -
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Proof of Theorem 4.3. Let us partition the interval [0, 7] into a finite number of intervals of
length less than é by the points 0 =1y <t] <t <--- <t; =T with ¢;, § satisfied to the condi-
tions of Lemma 4.2. The s is a finite number and does not depend on A", u™, h, u. An inequality
of type (59) is valid for each cylinder Qy,_,,, = £2 x (t;—1,%),i =1,2,...,s. For this reason we
obtain in s steps

viai max {p|v" 3 o+ w3 ¢ + 205 |02 |5 0} + 2002 [ o,

<Cuolp|(™" =rhelly g, + 2l " =rils g, + 15" = £,
o+l —uol’ g+ It —u [y o) + 21 = ol o).

where C|g is a positive constant. The sequence {r"*} is bounded and tends to r a.e. in £2. Then in
view of i, € L>(Q7) and the Dominated Convergence Theorem, see Theorem 5 in [8, p. 648],

|| (rm — r)hZ ”;»QT —0 asm— oo.

Analogously we can show that |r™ ;™ — rj||% or 0 as m — oo too. This proves Theo-
rem4.3. O
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