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Abstract

In this paper we consider an initial boundary-value problem related to the electrodynamics of vibrating
elastic media. The aim is to prove an existence and uniqueness result for a model describing the nonlinear
interactions of the electromagnetic and elastic waves. We assume that the motion of the continuum occurs
at velocities that are much smaller than the propagation velocity of the electromagnetic waves through the
elastic medium. The model under study consists of two coupled differential equations, one of them is the
hyperbolic equation (an analog of the Lamé system) and another one is the parabolic equation (an analog
of the diffusion Maxwell system). One stability result is proved too.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this work we consider an initial boundary-value problem for a model nonlinear system of
differential equations related to the electrodynamics of vibrating elastic media. In order to intro-
duce the model we need some preliminary discussions. If an elastic electroconductive medium
is embedded in an electromagnetic field, then the elastic waves propagating through the medium
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will excite oscillations of the electromagnetic field and themselves will change under influence of
the latter. The waves arising as a result of such an interaction are called as electromagnetoelastic
waves. The first attempts to apply the theory of electromagnetoelasticity to the investigation of
the wave propagation process in electroconductive media were made by Knopoff [10], Chad-
wick [5], Dunkin and Eringen [6]. For a profound acquaintance with the modern state of the
theory of electromagnetoelastic interactions the reader is referred to, e.g., [7,17].

Consider an isotropic electromagnetoelastic medium from the viewpoint of linear elasticity
connected with the process of diffusion of electromagnetic waves through slow movement of the
medium only, i.e. we neglect by influence of the electrokinetic and piezo effects on the coupling
mechanism of the elastic and electromagnetic waves. Equations governing the electrodynamic
process are the following ones

∇ × �H = σ �E + σμe
�Ut × �H + �J , (1)

∇ × �E = −μe
�Ht, ∇ · (μe

�H) = 0. (2)

To describe of the elastic waves propagation we use the system

ρ �Utt = ∇ · T ( �U) + μe(∇ × �H) × �H + �F, (3)

where the stress tensor T ( �U) is defined by

Ti,j = λ∇ · �Uδi,j + μ(Ui,xj
+ Uj,xi

), 1 � i, j � 3. (4)

Here �E = (E1,E2,E3) and �H = (H1,H2,H3) are the electrical and magnetic components of
electromagnetic field, �U = (U1,U2,U3) is the displacement vector of medium, σ , μe, ρ, λ,
μ are the electroconductivity, the magnetic permeability, the density of medium and the Lamé
coefficients, respectively, �J is a source of electromagnetic field, �F is a source of elastic field;
and δi,j is the Kronecker symbol. Consider 1D case of Eqs. (1)–(4) when all functions depend of
(z, t) variables and �J , �F have the representations

�J = (0,1,0)J (z, t), �F = (0,0,1)F (z, t), (5)

where J , F are scalar functions and z stands for the variable x3. In the case ρ = const, μ = const
these assumptions allow us to form the following nonlinear model system

Ht =
(

1

σμe

Hz

)
z

− (HUt)z −
(

1

σμe

J

)
z

, (6)

Utt = (
v2
pUz

)
z
− μe

ρ
HHz + 1

ρ
F, (7)

E = 1

σ
Hz − μeHUt . (8)

Here H , E, U , and vp denote the first component of magnetic field, the second component of
electrical field and the third component of elastic field, respectively, vp = √

(λ + 2μ)/ρ is the
velocity of longitudinal elastic wave. For our further purposes it is convenient to have the non-
dimensional case of Eqs. (6)–(8). After simple transformations we obtain, see [1]
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ht = (rhz)z − (hut )z − (rj)z, (9)

utt = (
ν2uz

)
z
− phhz + f, (10)

e = rhz − hut , (11)

where h, e, u, j , f are the dimensionless analogues of H , E, U , J , F , respectively; r−1 =
μeLV0σ is the magnetic Reynolds number, p = μeH

2
0 ρ−1V −2

0 , ν = vp/V0 is the dimensionless
velocity of the elastic waves propagation; and L, V0, H0 are the characteristic values of length,
velocity and magnetic field, respectively.

Finally, we stress that mathematical problems of the propagation of elastic and electromag-
netic waves with account of the interaction of the two fields have been dealt with in the recent
years by Avdeev, Goryunov, and Priimenko [2], Avdeev, Goryunov, Soboleva, and Priimenko [3],
Burdakova and Yakhno [4], Imomnazarov [9], Merazhov and Yakhno [16], Lavrent’ev (Jr.) and
Priimenko [11], Lorenzi and Priimenko [14], Lorenzi and Romanov [15], Priimenko and Vish-
nevskii [18,19], Romanov [20,21], Yakhno [23], Yakhno and Merazhov [24].

2. Definition of the basic functional spaces

Let QT be the bounded set Ω × (0, T ), i.e. the set of points (z, t) of R
2 with z ∈ Ω = (−l, l),

t ∈ (0, T ).
The Banach space Lq(Ω) consists of all measurable functions on Ω that are qth-power

(q � 1) summable on Ω provided with the norm ‖v‖q,Ω = (
∫
Ω

|v(z)|q dz)1/q . Measurability
and summability are to be understood everywhere in the sense of Lebesgue.

The Banach space Lq,γ (QT ), q, γ � 1, consists of all measurable functions on QT with

a finite norm ‖v‖q,γ,QT
= (

∫ T

0 (
∫
Ω

|u(z, t)|q dz)
γ
q dt)1/γ . In the case q = γ , the Banach space

Lq,q(QT ) will be denoted by Lq(QT ), and the norm ‖v‖q,q,QT
—by ‖v‖q,QT

.
Weak (generalized) derivatives are to be understood in the way that is now customary in the

majority of books on differential equations, see, for example, [8,22].
Wl

q(Ω) for l integral is the Banach space consisting of all functions of Lq(Ω) having weak
derivatives of all forms up to order l inclusively, that are qth-power summable on Ω . The norm
in Wl

q(Ω) is defined by the equality

‖v‖(l)
q,Ω =

l∑
s=0

∥∥Ds
zv

∥∥
q,Ω

.

W̊ l
q(Ω) is the closure in Wl

q(Ω) of all functions that are infinitely differentiable and finite in Ω .

W
2l,l
q (QT ) for l integral (q � 1) is the Banach space consisting of the Lq(QT )-elements

having weak derivatives of the form Dr
t D

s
z with any r, s satisfying the inequality 2r + s � 2l.

The norm in it is defined by the equality

‖v‖(2l)
q,QT

=
2l∑

j=0

∑
2r+s=j

∥∥Dr
t D

s
zv

∥∥
q,QT

.

The summation
∑

2r+s=j is taken over all nonnegative integers r and s satisfying the condition
2r + s = j .
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W
1,k
2 (QT ), k = 0,1, is the Hilbert space with scalar product

(u, v)
W

1,k
2 (QT )

=
∫

QT

(uv + uzvz + kutvt )dzdt.

V2(QT ) is the Banach space consisting of all W
1,0
2 (QT )-elements having a finite norm

|v|QT
= vrai max

t∈[0,T ]
‖v‖2,Ω + ‖vz‖2,QT

,

where here and below

‖vz‖2,QT
=

( ∫
QT

v2
z dzdt

)1/2

.

V
1,0
2 (QT ) is the Banach space obtained by completing the set W

1,1
2 (QT ) in the norm of V2(QT ).

V
1,1/2
2 (QT ) is the subset of those elements v(z, t) ∈ V

1,0
2 (QT ) for which

T −τ∫
0

∫
Ω

τ−1(v(z, t + τ) − v(z, t)
)2 dzdt → 0 as τ → 0.

A zero over W
1,0
2 (QT ), W

1,1
2 (QT ), V2(QT ), V

1,0
2 (QT ),V

1,1/2
2 (QT ) means that only those ele-

ments of these spaces are taken, which vanish on ST = ∂Ω × (0, T ).
Cα,α/2(QT ) is the set of all continuous functions in QT satisfying Hölder conditions in z with

exponent α and in t with exponent α/2.

3. Statement of the problem. Weak solutions

We can now state our problem. Consider in QT the equations

ht = (rhz)z − (hut )z − (rj)z, (12)

utt = (
ν2uz

)
z
− phhz + f, (13)

where r(z), ν(z) are positive piecewise smooth functions, discontinuous at the points z = zk ,
k = 1,2, . . . ,m, −l < z1 < z2 < · · · < zm < l; p is a positive number.

The following first initial boundary-value problem is considered for Eqs. (12)–(13) with the
initial data

h(z,0) = h0(z), z ∈ Ω, (14)

u(z,0) = u0(z), ut (z,0) = u1(z), z ∈ Ω, (15)

and the boundary conditions
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h(−l, t) = h(l, t) = 0, t ∈ (0, T ), (16)

u(−l, t) = u(l, t) = 0, t ∈ (0, T ). (17)

Problem (12)–(17) can be considered as a diffraction problem, i.e., as the problem with QT

partitioned into several domains Q
(k)
T , Q

(k)
T = Ω(k) × (0, T ), Ω(k) = (zk, zk+1), k = 0,1, . . . ,m,

z0 = −l, zm+1 = l, in each of which there is given parabolic–hyperbolic system (12)–(13) with
smooth coefficients and free terms. We wish to find in QT a solution of this system satisfying:

• in Q
(k)
T , k = 1,2, . . . ,m, the corresponding equations (12)–(13);

• on the lower base of QT the initial condition (14)–(15);
• on the lateral surface of QT the boundary conditions (16)–(17);
• at the jump points zk , k = 1,2, . . . ,m, the following compatibility conditions

[h] = [u] = 0, (18)[
r(hz − j)

] = [
ν2uz

] = 0. (19)

The symbol [v] denotes the jump of the function v as it passes through zk .
Problems of this type can be reduced by means of a simple technique to problems for the

determination of weak (generalized) solutions of ordinary initial boundary-value problems with
discontinuous coefficients, see [12, pp. 224–232]. This fact will be used for the analysis of prob-
lem (12)–(19).

3.1. Weak solutions of problem (12)–(19)

Diffraction problem (12)–(19) can be formulated in weak terms defining its solutions as fol-
lows

Definition 3.1. Functions h(z, t) ∈ V̊2(QT ), u(z, t) ∈ W̊
1,1
2 (QT ) are called a weak solution of

the initial boundary-value problem (12)–(19) if they satisfy the identities

−
∫

QT

hηt dzdt +
∫

QT

rhzηz dzdt −
∫

QT

hutηz dzdt

=
∫

QT

rjηz dzdt +
∫
Ω

h0(z)η(z,0)dz, (20)

−
∫

QT

ut ζt dzdt +
∫

QT

ν2uzζz dzdt +
∫

QT

phhzζ dzdt

=
∫

QT

f ζ dzdt +
∫
Ω

u1(z)ζ(z,0)dz, u(z,0) = u0(z), z ∈ Ω, (21)

for all η(z, t), ζ(z, t) from W̊
1,1
2 (QT ) that are equal to zero for t = T .

It is possible to define the weak solution of (12)–(19) somewhat differently.
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Definition 3.2. Functions h(z, t) ∈ V̊2(QT ),u(z, t) ∈ W̊
1,1
2 (QT ) are called a weak solution of

problem (12)–(19) if they satisfy for almost all t1 ∈ [0, T ] the identities

−
∫

Qt1

hηt dzdt +
∫

Qt1

rhzηz dzdt −
∫

Qt1

hutηz dzdt

=
∫

Qt1

rjηz dzdt +
∫
Ω

h0(z)η(z,0)dz −
∫
Ω

h(z, t1)η(z, t1)dz, (22)

−
∫

Qt1

utζt dzdt +
∫

Qt1

ν2uzζz dzdt +
∫

Qt1

phhzζ dzdt

=
∫

Qt1

f ζ dzdt +
∫
Ω

u1(z)ζ(z,0)dz −
∫
Ω

ut (z, t1)ζ(z, t1)dz, (23)

u(z,0) = u0(z), z ∈ Ω , where Qt1 = Ω × (0, t1), and η(z, t), ζ(z, t) ∈ W̊
1,1
2 (QT ).

Both of the definitions are equivalent to each other. The fulfillment of transmission conditions
(19) is understand in the sense of the identities considered in Definition 3.1. For more details we
refer of the reader to [18].

4. Main results

4.1. Existence of weak solutions

Suppose that the functions r , ν, the free members j , f , the constant p and the initial data h0,
u0, u1 in problem (12)–(19) enjoy the properties

(a) r , ν, j , f are supposed to be piecewise smooth functions with jumps at the points zm: −l <

z1 < z2 < · · · < zm < l; 0 < r0 � r(z) � r1 < ∞, 0 < ν0 � ν(z) � ν1 < ∞ and p is a
positive number;

(b) h0 ∈ Cα(Ω), α ∈ (0,1), h0(±l) = 0, and u0 ∈ W̊ 1
2 (Ω), u1 ∈ L2(Ω).

Let us show that problem (12)–(19) is solvable; namely, let us prove the following proposition:

Theorem 4.1 (Existence of weak solution). If conditions (a)–(b) are fulfilled, then problem (12)–
(19) has a weak solution

h ∈ V̊2(QT ), u ∈ W̊
1,1
2 (QT ).

Proof. For a proof we make use of Galerkin’s method. Let us check that the functions h,u

satisfy identities (22)–(23). Consider in W̊ 1(Ω) a fundamental system of functions {ψk} and
2
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assume it to be orthonormalized in L2(Ω) and to be orthogonalized in W 1
2 (Ω). We will seek an

approximating solution in the form

hN(z, t) =
N∑

k=1

aN
k (t)ψk(z), uN(z, t) =

N∑
k=1

bN
k (t)ψk(z), (24)

where

aN
k = (

hN,ψk

)
, bN

k = (
uN,ψk

)
, k = 1, . . . ,N,

are determined from the equations

d

dt

(
hN,ψk

) = −(
rhN

z − uN
t hN − rj,ψkz

)
,(

hN(·,0),ψk

) = h0k, (25)

d2

dt2

(
uN,ψk

) = −
(

ν2uN
z − p

2

(
hN

)2
,ψkz

)
+ (f,ψk),

(
uN(·,0),ψk

) = u0k,
d

dt

(
uN(·,0),ψk

) = u1k, (26)

and h0k , u0k , u1k are the Fourier coefficients in L2(Ω) of initial data with respect to the system of
the functions ψk . Equations (25)–(26) are a system of nonlinear ordinary differential equations.
Its solution exists on a maximal interval [0, τ ) if τ � T , and

lim
t→τ

max
k

(∣∣aN
k

∣∣, ∣∣bN
k

∣∣) → ∞.

We will prove that |aN
k |, |bN

k |, k = 1, . . . ,N, are bounded functions for t ∈ [0, T ], and therefore
system (25)–(26) will have a unique solution on [0, T ] for any T > 0. For this purpose we
multiply the differential equation in (25) by paN

k and the differential equation in (26)—by bN
kt ,

then sum the obtained equalities over all k from 1 to N ; and integrate the result with respect to t

from 0 to t1. The sum of the results obtained gives

p

2

∥∥hN(·, t)∥∥2
2,Ω

∣∣t=t1
t=0 + 1

2

∥∥uN
t (·, t)∥∥2

2,Ω

∣∣t=t1
t=0 + 1

2

∥∥νuN
z (·, t)∥∥2

2,Ω

∣∣t=t1
t=0 + ∥∥√

prhN
z

∥∥2
2,Qt1

=
∫

Qt1

prjhN
z dzdt +

∫
Qt1

f uN
t dzdt. (27)

Note that

∥∥hN(·,0)
∥∥2

2,Ω
=

N∑
k=1

a2
k (0) � ‖h0‖2

2,Ω ; ∥∥uN
t (·,0)

∥∥2
2,Ω

=
N∑

k=1

b2
kt (0) � ‖u1‖2

2,Ω ;

∥∥νuN
z (·,0)

∥∥2
2,Ω

� μ0ν
2
1‖u0z‖2

2,Ω ; −1

2

∫
Qt

pr
[(

hN
z

)2 − 2hN
z j + j2]dzdt � 0,
1
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where the positive constant μ0 does not depend on N . Therefore the following inequality is valid

p

2

∥∥hN(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥uN
t (·, t1)

∥∥2
2,Ω

+ 1

2

∥∥νuN
z (·, t1)

∥∥2
2,Ω

+ 1

2

∥∥√
prhN

z

∥∥2
2,Qt1

� μ1 +
∫

Qt1

∣∣f uN
t

∣∣dzdt,

where

μ1 = p

2
‖h0‖2

2,Ω + 1

2
‖u1‖2

2,Ω + μ0ν
2
1

2
‖u0z‖2

2,Ω + 1

2

∫
Qt1

prj2 dzdt

does not depend on N . In particular, we have

1

2

∥∥uN
t (·, t1)

∥∥2
2,Ω

� μ1 +
∣∣∣∣
∫

Qt1

f uN
t dzdt

∣∣∣∣. (28)

Integrate the latter inequality with respect to t1 from 0 to T . This gives

1

2

∥∥uN
t

∥∥2
2,QT

� μ1T +
T∫

0

∣∣∣∣
∫

Qt1

f uN
t dzdt

∣∣∣∣dt1. (29)

Note that ∣∣∣∣
∫

Qt1

f uN
t dzdt

∣∣∣∣ � ε

2

∫
QT

(
uN

t

)2 dzdt + 1

2ε

∫
QT

f 2 dzdt. (30)

Setting ε = 1/2T we have

T∫
0

∣∣∣∣
∫

Qt1

f uN
t dzdt

∣∣∣∣dt1 � 1

4

∫
QT

(
uN

t

)2 dzdt + T 2
∫

QT

f 2 dzdt. (31)

Then inequalities (29), (31) yield

1

4

∥∥uN
t

∥∥2
2,QT

� μ1T + T 2
∫

QT

f 2 dzdt.

Using the latter and inequality (30) with ε = 1/2T gives us∣∣∣∣
∫

Qt

f uN
t dzdt

∣∣∣∣ � 1

4T

∫
QT

(
uN

t

)2 dzdt + T

∫
QT

f 2 dzdt � μ1 + 2T

∫
QT

f 2 dzdt.
1
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Therefore from (27) we have for any t1 ∈ (0, T ]

p

2

∥∥hN(·, t)∥∥2
2,Ω

∣∣t=t1
t=0 + 1

2

∥∥uN
t (·, t)∥∥2

2,Ω

∣∣t=t1
t=0 + 1

2

∥∥νuN
z (·, t)∥∥2

2,Ω

∣∣t=t1
t=0 + 1

2

∥∥√
prhN

z

∥∥2
2,Qt1

� 2μ1 + 2T

∫
QT

f 2 dzdt ≡ μ2, (32)

where the positive constant μ2 does not depend on N . It follows from (32) that aN
k , bN

k , bN
kt are

uniformly bounded functions for t ∈ [0, t1], t1 � T . Let us show that for fixed k and arbitrary
N � k they are equicontinuous on [0, T ]. Indeed, from (25) we have

aN
k (t + �t) − aN

k (t) = −
∫

Qt,t+�t

(
rhN

z − uN
t hN − rj

)
ψkz dzdt,

where Qt,t+�t = Ω × (t, t + �t). For an estimate of the right-hand side we use the following
inequalities

∫
Qt,t+�t

|v1v2v3|dzdt � ‖v1‖q1,γ1,Qt,t+�t · ‖v2‖q2,γ2,Qt,t+�t · ‖v3‖q3,γ3,Qt,t+�t ,

qi, γi ∈ [1,∞), i = 1,2,3,
1

q1
+ 1

q2
+ 1

q3
= 1,

1

γ1
+ 1

γ2
+ 1

γ3
= 1. (33)

∫
Qt,t+�t

∣∣rhN
z ψkz

∣∣dzdt � r1‖ψkz‖2,Qt,t+�t · ∥∥hN
z

∥∥
2,Qt,t+�t

, (34)

∫
Qt,t+�t

∣∣uN
t hNψkz

∣∣dzdt � ‖ψkz‖2,Qt,t+�t · ∥∥uN
t

∥∥
2,4,Qt,t+�t

· ∥∥hN
∥∥∞,4,Qt,t+�t

. (35)

Using Theorem 2.2 in [12, pp. 62–63] gives us

‖v‖q,Ω � β‖vz‖
2
γ

2,Ω · ‖v‖1− 2
γ

2,Ω ,

where

β = 2
2
γ , q ∈ [2,+∞], γ ∈ [4,+∞], 1

γ
+ 1

2q
= 1

4
.

After an integration of the latter inequality with respect to the time variable from t to t + �t we
obtain

‖v‖q,γ,Qt,t+�t � β‖vz‖
2
γ

2,Qt,t+�t
· vrai max ‖v‖1− 2

γ

2,Ω .

τ∈[t,t+�t]
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Using Young’s inequality allows us to rewrite the latter as

‖v‖q,γ,Qt,t+�t � β
2

γ
‖vz‖2,Qt,t+�t + β

(
1 − 2

γ

)
vrai max

τ∈[t,t+�t] ‖v‖2,Ω . (36)

The fact that integrals (34)–(35) tend to zero as �t → 0 gives

∣∣aN
k (t + �t) − aN

k (t)
∣∣ � ε(�t)‖ψkz‖2,Ω

with ε(�t) not depending on N and tending to zero as �t → 0, i.e., the equicontinuity of the
aN
k , N = k, k + 1, . . . , in t .

Equicontinuity of functions bN
k follows from the boundedness of their derivatives. The fact

that bN
kt are equicontinuous functions for N � k is proved in same way as it was done for the func-

tions aN
k , N � k. By the usual diagonal process we select a subsequence {Nm}, m = 1,2, . . . ,

such that the function sequences {aNm

k }, {bNm

k } be converging uniformly on [0, T ] to some con-
tinuous functions ak(t), bk(t). The functions ak , bk define two functions

h =
∞∑

k=1

akψk, u =
∞∑

k=1

bkψk.

To the function h(·, t) the sequence {hNm} converges weakly in L2(Ω) and uniformly with re-
spect to t in [0, T ]. Indeed, for any function ψ(z) from L2(Ω) we have

(
hNm − h,ψ

) =
s∑

k=1

(ψ,ψk)
(
hNm − h,ψk

) +
( ∞∑

k=s+1

(
hNm − h, (ψ,ψk)ψk

))
(37)

with

∣∣∣∣∣
(

hNm − h,

∞∑
k=s+1

(ψ,ψk)ψk

)∣∣∣∣∣ � C1

( ∞∑
k=s+1

(ψ,ψk)
2

)1/2

≡ C1R(s),

where the positive constant C1 does not depend on Nm, s. We choose s so large that C1R(s)

becomes less than a preassigned ε > 0. On the other hand, for fixed s and large enough Nm, the
first sum in (37) will be less than ε for all t in [0, T ]. Thus |(hNm − h,ψ)| can be made less
than ε for all t in [0, T ]. It is shown that the sequence {hNm} converges to h weakly in L2(Ω),
uniformly with respect to t ∈ [0, T ].

The sequence {uNm} is bounded in L∞(0, T ; W̊ 1
2 (Ω)) and the sequence {uNm

t } is bounded
in L∞(0, T ;L2(Ω)). For this reason the sequence {uNm} converges to u ∗-weakly in L∞(0, T ;
W̊ 1

2 (Ω)) and the sequence {uNm
t } converges to ut ∗-weakly in L∞(0, T ;L2(Ω)). The functions

uNm belong to W̊
1,1
2 (QT ) and in virtue of W̊

1,1
2 (QT ) ↪→ L2(QT ) the sequence {uNm} converges

to the function u strongly in L2(QT ) and pointwise a.e. in QT . Let us show that the sequence
{uN

tt } is bounded in L2(0, T ;H−1(Ω)), where H−1(Ω) is the dual space to H 1
0 (Ω) = W̊ 1

2 (Ω).
For this purpose consider a function Ψ from W̊ 1

2 (Ω), such that ‖Ψ ‖ ˚ 1 = 1, Ψ = Ψ1 + Ψ2,

W2 (Ω)
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where Ψ1 ∈ span{ψk}k=N
k=1 , and (Ψ2,ψk) = 0, k = 1, . . . ,N . Let us denote by 〈a, b〉 the pairing

between a ∈ H−1(Ω) and b ∈ W̊ 1
2 (Ω). From (26) we have

〈
uN

tt ,Ψ
〉 = (

uN
tt ,Ψ1

) = −(
ν2uN

z ,Ψ1z

) + p

2

((
hN

)2
,Ψ1z

) + (f,Ψ1).

It is easy to check that ‖Ψ1‖W̊ 1
2 (Ω)

� 1. In view of this and estimates obtained above, we get

∣∣〈uN
tt ,Ψ

〉∣∣ � C2μ2,

where the positive constant C2 does not depend on N . It proves that {uN
tt } is bounded in

L2(0, T ;H−1(Ω)). Thus we can take for granted

uN
tt ⇀ utt weakly in L2

(
0, T ;H−1(Ω)

)
.

It follows from (32) that one can extract from the sequence {hNm} a subsequence converging
to h weakly in L2(QT ) together with {hNm

z }. Let us show the sequence {hN
t } is bounded in

L2(0, T ;H−1(Ω)). For this purpose consider a function Φ ∈ W̊ 1
2 (Ω) such that ‖Φ‖

W̊ 1
2 (Ω)

= 1,

Φ = Φ1 + Φ2, where Φ1 ∈ span{ψk}k=N
k=1 , and (Φ2,ψk) = 0, k = 1, . . . ,N . Because of

hN
t =

N∑
k=1

aN
kt ψk ∈ span{ψk}k=N

k=1

the following equality is valid

〈
hN

t ,Φ
〉 = 〈

hN
t ,Φ1

〉 = −(
rhN

z − uN
t hN − rj,Φ1z

)
.

Using ‖Φ1‖W 1
2 (Ω) � 1 and (32)–(36) we obtain the inequality

∣∣〈hN
t ,Φ

〉∣∣ � C3μ2,

where the positive constant C3 does not depend on N . The latter proves that {hN
t } is bounded in

L2(0, T ;H−1(Ω)). From (32) follows that {hN } is bounded in L2(0, T ; W̊ 1
2 (Ω)) too. A subse-

quence of {hN } converges strongly in L2(QT ), which means the convergence of a subsequence
of the previous one a.e. in QT , see Theorem 5.1 in [13, p. 58]. Without loss of generality we
can assume that the sequences {hNm}, {uNm} converge to the limit functions h, u in the sense
mentioned above. By this reason the sequence {hN } converges a.e. in QT .

Let us prove now that the limit functions h,u satisfy equalities (20)–(21). First, we will show
that the function h satisfies equality (20). For this purpose we multiply each equation of (25) by
a smooth function αk(t) that is equal to zero for t = T , then sum over all k from 1 to N ′ � N ,
and integrate the result with respect to t from 0 to T . After an integration by parts we obtain

T∫ (
hN,Υ N ′

t

)
dt =

T∫ [(
rhN

z ,Υ N ′
z

) − (
uN

t hN,Υ N ′
z

) − (
rj,Υ N ′

z

)]
dt + (

hN
0 ,Υ N ′

z (·,0)
)
, (38)
0 0
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where Υ N ′
(z, t) = ∑N ′

k=1 αk(t)ψk(z) belongs to L∞(0, T ;H 1
0 (Ω)) ↪→ L∞(QT ). We claim that

we can pass to the limit in (38) along the subsequence {Nm} selected above, assuming Υ N ′

fixed, and thereby arrive at (38) with hNm , uNm being replaced by h,u. Indeed, let us prove that∫ T

0 (u
Nm
t hNm,Υ N ′

z )dt tends to
∫ T

0 (uth,Υ N ′
z )dt , i.e.,

T∫
0

(
u

Nm
t hNm − uth,Υ N ′

z

)
dt → 0, as m → ∞.

Observe that the integral can be represented in the equivalent form

T∫
0

(
u

Nm
t hNm − uth,Υ N ′

z

)
dt =

T∫
0

(
u

Nm
t

(
hNm − h

)
,Υ N ′

z

)
dt +

T∫
0

(
u

Nm
t − ut , hΥ N ′

z

)
dt.

But the first term in the right-hand side of the latter equality tends to zero for m → ∞ according
to the estimates

T∫
0

∣∣uNm
t (·, t)(hNm − h

)
(·, t),Υ N ′

z (·, t)∣∣dt

�
∥∥Υ N ′

z

∥∥
L∞(QT )

T∫
0

∥∥u
Nm
t (·, t)∥∥

L2(Ω)

∥∥(
hNm − h

)
(·, t)∥∥

L2(Ω)
dt

� 2μ2T
∥∥Υ N ′

z

∥∥
L∞(QT )

∥∥(
hNm − h

)∥∥
L∞(0,T ;L2(Ω))

→ 0, as m → ∞.

Observe then that also the last term in (38) tends to 0, since we have proved that u
Nm
t converges

to ut ∗-weakly in L∞(0, T ;L2(Ω)) and hΥ N ′
z ∈ L2(0, T ;L2(Ω)) ↪→ L1(0, T ;L2(Ω)) due to

the estimate

∥∥hΥ N ′
z

∥∥
L2(0,T ;L2(Ω))

� ‖h‖L2(0,T ;L∞(Ω))

∥∥Υ N ′
z

∥∥
L∞(0,T ;L2(Ω))

.

But the Υ N ′
are dense in the space of all functions required in the first definition of a weak

solution, see Lemma 4.12 in [12, p. 89]. In view of this h satisfies equality (20) and belongs to
be the space V̊2(QT ). Since

u2
t ∈ L1, 2

1−2κ
(QT ), κ ∈

(
0,

1

2

)
,

we deduce from Theorems 7.1 and 10.1 of [12, pp. 181, 204] that

max |h| � C4, h ∈ Cα,α/2(QT )

QT
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for some positive constant C4. Let us show now that the function u satisfies equality (21). For this
purpose we multiply each equation of (26) by the αk(t), then sum over all k from 1 to N ′ � N ,
and integrate the result with respect to t from 0 to T . After an integration by parts we arrive at

T∫
0

(
uN

t ,Υ N ′
t

)
dt =

T∫
0

[(
ν2uN

z ,Υ N ′
z

) − p

2

((
hN

)2
,Υ N ′

z

) + (
f,Υ N ′)]

dt

− (
uN

1 ,Υ N ′
(·,0)

)
, uN(z,0) = uN

0 (z), (39)

where the Υ N ′
were defined in (38). In this equality one can pass to the limit with respect to the

subsequence {Nm} selected above, assuming Υ N ′
fixed, and thereby arrive at (39) with hN,uN

being replaced by h, u. Lemma 1.3 of [13, p. 12] shows that the sequence {(hN)2} converges to h2

weakly and it allows to pass to the limit in the nonlinear term in (39). Since maxQT
|h| � C4 then

{∫ T

0 (h2,Υ N ′
z )dt} is bounded for any Υ N ′ ∈ W̊

1,1
2 (QT ) and, as the Υ N ′

are dense in the space
considered in the definition of weak solution, we deduce that the function u satisfies equality
(21) and is the weak solution from W̊

1,1
2 (QT ), see Lemma 4.12 in [12, p. 89]. Theorem 4.1 is

proved. �
From Lemma 4.1 of [12, p. 158] and Theorem 4.1 we get

Corollary 4.1. Any weak solution h(z, t) of problem (12)–(19) from V̊2(QT ) belongs to
V̊

1,1/2
2 (QT ).

Corollary 4.2. For any function φ(z, t) ∈ L2(0, T ; W̊ 1
2 (Ω)) is valid the following equality

T∫
0

〈utt , φ〉dt =
T∫

0

{
(f − phhz,φ) − (

ν2uz,φz

)}
dt.

The latter allows us to conclude that the following equation holds for any function ξ(z) ∈
W̊ 1

2 (Ω) and for almost all t ∈ [0, T ]

〈utt , ξ 〉 = (f − phhz, ξ) − (
ν2uz, ξz

)
.

Moreover notice that

u ∈ C
([0, T ];L2(Ω)

)
, ut ∈ C

([0, T ];H−1(Ω)
)
.

4.2. Uniqueness of weak solution

We need the following lemma to prove uniqueness theorem.

Lemma 4.1. Suppose h(z, t) ∈ V̊
1,1/2
2 (QT ),u(z, t) ∈ W̊

1,1
2 (QT ) are a weak solution of problem

(12)–(19). Then the following inequality is valid for almost all t1 ∈ [0, T ]
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1

2

∫
Ω

(
ph2(z, t1) + u2

t (z, t1) + ν2u2
z(z, t1)

)
dz + 1

2

∫
Qt1

prh2
z dzdt

�
∫
Ω

(
ph2

0 + u2
1 + ν2u2

0,z

)
dz +

∫
Qt1

prj2 dzdt + 2t1

∫
Qt1

f 2 dzdt, (40)

where Qt1 = Ω × (0, t1).

Proof. Suppose h,u are a weak solution of problem (12)–(19). We take as η and ζ in (20)–(21)
the functions

η̂k̄(z, t) = 1

k

t∫
t−k

η̂(z, τ )dτ, ζ̂k̄(z, t) = 1

k

t∫
t−k

ζ̂ (z, τ )dτ,

where η̂(z, τ ), ζ̂ (z, τ ) ∈ W
1,1
2 (Qk,T ), and η̂(z, τ ) = 0, ζ̂ (z, τ ) = 0 for τ ∈ [−k,0] ∪ [T − k,T ],

Qk,T = Ω × (−k,T ), k ∈ (0, T ). In view of Dt(η̂k̄) = (Dt η̂)k̄ we transform the first term in (20)
in the following manner

−
∫

QT −k

hη̂k̄t dzdt = −
∫

QT −k

hkη̂t dzdt =
∫

QT −k

hkt η̂ dzdt.

Here we have used the notation

hk(z, t) = 1

k

t+k∫
t

h(z, τ )dτ

and the relation

T∫
0

f (t)ĝk̄(t)dt =
T −k∫
0

fk(t)ĝ(t)dt,

valid for any piecewise summable functions f (t), ĝ(t) on [−k,T ] , one of each is equal to zero
on the intervals [−k,0] and [T − k,T ]. The latter equality is the result of interchanging the order
of integration with respect to t and τ . In a similar way we obtain

−
∫

QT −k

ut ζ̂k̄t dzdt =
∫

QT −k

uktt ζ̂ dzdt.

In all other terms of (20)–(21) we also transfer the averaging ( )k̄ from η̂, ζ̂ to theirs coefficients.
Taking into account the permutability of this averaging with differentiation with respect to z we
obtain identities
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∫
QT −k

{
hkt η̂ + (rhz − hut − rj)kη̂z

}
dzdt = 0, (41)

∫
QT −k

{
ν2ukzζ̂z + (utt + phhz − f )kζ̂

}
dzdt = 0. (42)

These identities are actually valid for a class of functions η̂, ζ̂ that is more extended than the
class just considered; namely, they are valid for any functions η̂, ζ̂ that are equal to zero for t � t1

(0 � t1 � T − k) and are equal to some functions η ∈ V̊
1,0
2 (Qt1), ζ ∈ W̊

1,1
2 (Qt1) for t ∈ [0, t1].

This property was proved in [18]. Thereby we have

∫
Qt1

{
hktη + (rhz − hut − rj)kηz

}
dzdt = 0,

∫
Qt1

{
ν2ukzζz + (utt + phhz − f )kζ

}
dzdt = 0.

In the latter formulas we take η = phk, ζ = ukt and represent the corresponding terms in the
form

∫
Qt1

hkthk dzdt = 1

2

∫
Ω

h2
k(z, t)dz

∣∣t=t1
t=0 ,

∫
Qt1

ukttukt dzdt = 1

2

∫
Ω

u2
kt (z, t)dz

∣∣t=t1
t=0 ,

∫
Qt1

ν2ukzukzt dzdt = 1

2

∫
Ω

ν2(z)u2
kz(z, t)dz

∣∣t=t1
t=0 ,

after which let k tend to zero. By analogy with (27) we obtain

1

2

∫
Ω

(
ph2(z, t1) + u2

t (z, t1) + ν2u2
z(z, t1)

)
dz − 1

2

∫
Ω

(
ph2

0 + u2
1 + ν2u2

0,z

)
dz +

∫
Qt1

prh2
z dzdt

=
∫

Qt1

(prjhz + f ut )dzdt.

Note that

∫
Qt1

pr

(
1

2
h2

z − jhz + 1

2
j2

)
dzdt = 1

2

∫
Qt1

pr(hz − j)2 dzdt � 0.

In view of this we have
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1

2

∫
Ω

(
ph2(z, t1) + u2

t (z, t1) + ν2u2
z(z, t1)

)
dz − 1

2

∫
Ω

(
ph2

0 + u2
1 + ν2u2

0,z

)
dz + 1

2

∫
Qt1

prh2
z dzdt

� 1

2

∫
Qt1

prj2 dzdt +
∫

Qt1

|f ut |dzdt. (43)

The latter gives us

∫
Ω

u2
t (z, t1)dz �

∫
Ω

(
ph2

0 + u2
1 + ν2u2

0,z

)
dz +

∫
Qt1

prj2 dzdt + 2
∫

Qt1

|f ut |dzdt.

Integrating this inequality with respect to the time variable from 0 to t1 and applying Cauchy’s
inequality with ε = 1/2t1, we obtain

∫
Qt1

u2
t dzdt � 4t1

∫
Ω

(
ph2

0 + u2
1 + ν2u2

0,z

)
dz + 2t1

∫
Qt1

prj2 dzdt + 4t2
1

∫
Qt1

f 2 dzdt.

Using the latter and Cauchy’s inequality with ε = 1/2t1 in (43) gives us

1

2

∫
Ω

(
ph2(z, t1) + u2

t (z, t1) + ν2u2
z(z, t1)

)
dz + 1

2

∫
Qt1

prh2
z dzdt

�
∫
Ω

(
ph2

0 + u2
1 + ν2u2

0,z

)
dz +

∫
Qt1

prj2 dzdt + 2t1

∫
Qt1

f 2 dzdt.

Thus (40) is proved. �
From (40) we obtain (see [18] for details)

max
QT

|h| + ‖hz‖2,QT
+ ‖u‖

W̊
1,1
2 (QT )

� C5, h ∈ Cα,α/2(QT ), (44)

where C5 is a positive constant. Fix now a positive constant T0. Let us prove that the constant
C5 depends only on T0 whenever T ∈ [0, T0]: we will write C5 = C5(T0). From inequality (40)
it follows that ‖hz‖2,QT

, ‖u‖
W̊

1,1
2 (QT )

are well defined from above with a constant not depending

on T . To estimate maxQT
|h| we consider (20) as the linear parabolic equation with coefficients

satisfying additionally to conditions (7.1)–(7.2) in [12, p. 181] with constants independent of T .
It follows from Theorem 7.1 of [12, p. 181] that vrai maxQT

|h| is estimated from above with a
constant not depending on T . Let us use now Theorem 10.1 of [12, p. 204] taking into account
that on the parabolic boundary h is a function from the Hölder space with exponent α in z.
Function h is equal to zero in z = ±l and by this reason has any smoothness on the boundary
with respect to t . So, h ∈ Cα,α/2(QT ) and the exponent α is independent of T ∈ [0, T0]. By this
reason vrai maxQT

|h| = maxQT
|h|.

Let us now prove the uniqueness result about solvability of problem (12)–(19).
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Theorem 4.2 (Uniqueness of weak solution). A weak solution of (12)–(19) is unique.

Proof. Let hk , uk , k = 1,2, be two weak solutions of problem (12)–(19). Introduce functions v,
w by the formulas

v(z, t) = h2(z, t) − h1(z, t), w(z, t) = u2(z, t) − u1(z, t). (45)

The functions v,w are a weak solution of the homogeneous problem

vt = (rvz)z − (h2wt + u1t v)z, (46)

wtt = (
ν2wz

)
z
− p(h2vz + h1zv), (47)

v(±l, t) = w(±l, t) = 0, (48)

v(z,0) = w(z,0) = wt(z,0) = 0, (49)

satisfying at the jump points zk, k = 1,2, . . . ,m, the compatibility conditions (18)–(19). There-
fore the functions v, w satisfy the integral equalities

∫
QT

{−vηt + (rvz − h2wt − u1t v)ηz

}
dzdt = 0,

∫
QT

{−wtζt + ν2wzζz + p(h2vz + h1zv)ζ
}

dzdt = 0.

By analogy with (41)–(42) we obtain

∫
QT −k

{
vkt η̂ + (rvz − h2wt − u1t v)kη̂z

}
dzdt = 0,

∫
QT −k

{
ν2wkzζ̂z + (wtt + ph2vz + ph1zv)kζ̂

}
dzdt = 0. (50)

Multiply the first equality in (50) by p and sum the result with the second one. In the result
obtained we take

η̂(z, t) =
{

η(z, t), if t ∈ (0, t1],
0, if t /∈ (0, t1]

and

ζ̂ (z, t) =
{

ζ(z, t), if t ∈ (0, t1],
0, if t /∈ (0, t1],

where η = vk , ζ = wkt , t1 ∈ (0, T − k], and represent the corresponding terms in the form
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∫
QT −k

vkt vk dzdt = 1

2

∫
Ω

v2
k dz

∣∣t=t1
t=0 ,

∫
QT −k

wkttwkt dzdt = 1

2

∫
Ω

w2
kt dz

∣∣t=t1
t=0 ,

∫
QT −k

wktwk dzdt = 1

2

∫
Ω

w2
k dz

∣∣t=t1
t=0 .

Passing to the limit k → 0 and using the initial data (49) gives us

p

2

∥∥v(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥wt(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥νwz(·, t1)
∥∥2

2,Ω
+

∫
Qt1

prv2
z dzdt

=
∫

Qt1

p(u1t vzv − h1zvwt )dzdt. (51)

The integral in the right-hand side is estimated using (44)∣∣∣∣
∫

Qt1

p(u1t vzv + h1zvwt )dzdt

∣∣∣∣ � pC5
(‖vz‖2,Qt1

+ ‖wt‖2,Qt1

) · max
Qt1

|v|.

Thus, for almost all t1 ∈ [0, T ] the following inequality holds

p

2

∥∥v(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥wt(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥νwz(·, t1)
∥∥2

2,Ω
+

∫
Qt1

prv2
z dzdt

� pC5
(‖vz‖2,Qt1

+ ‖wt‖2,QT

) · max
QT

|v|. (52)

Consider the first boundary-value problem for the inhomogeneous parabolic equation (46) with
zero boundary and initial conditions and the free term (h2wt)z. If ‖h2wt‖2,QT

= 0, then v ≡ 0
and, consequently, w ≡ 0, see (47)–(49). Consider case ‖h2wt‖2,QT

= q > 0. From Theorem 7.1
of [12, p. 181] we deduce that

max
QT

∣∣∣∣vq
∣∣∣∣ � C6(T0), ∀T ∈ (0, T0],

where C6(T0) depends on T0 only, whenever T ∈ (0, T0]. This is proved in the same way as the
constant C5 was estimated previously. Then

max
QT

|v| � C5(T0)C6(T0)‖wt‖2,QT
, ∀T ∈ (0, T0].

This gives

p

2

∥∥v(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥wt(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥νwz(·, t1)
∥∥2

2,Ω
+

∫
Qt1

prv2
z dzdt

� pC2
5(T0)C6(T0)

(‖vz‖2,Qt · ‖wt‖2,QT
+ ‖wt‖2

2,Q

)
.

1 T
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Applying Cauchy’s inequality with ε = 2r0C
−2
5 (T0)C

−1
6 (T0) to ‖vz‖2,Qt1

· ‖wt‖2,QT
with r0

being the positive constant in assumption (a), we obtain the following inequality, valid for almost
all t1 ∈ [0, T ], T ∈ (0, T0],

p

2

∥∥v(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥wt(·, t1)
∥∥2

2,Ω
+ 1

2

∥∥νwz(·, t1)
∥∥2

2,Ω
� pC7(T0)‖wt‖2

2,QT
,

where

C7(T0) = C2
5(T0)C6(T0)

(
1 + C2

5(T0)C6(T0)

4r0

)
.

Integrating the latter with respect to t1 from 0 to T , with T ∈ (0, T0], we have

p

2
‖v‖2

2,QT
+ 1

2
‖wt‖2

2,QT
+ ν2

0

2
‖wz‖2

2,QT
� TpC7(T0)‖wt‖2

2,QT
.

But it is impossible for TpC7(T0) < 1/2 in the case when wt,wz, v are nonzero functions. There-
fore v = w ≡ 0 in QT1 with, e.g., T1 = min{(4pC7(T0))

−1, T0}, which proves Theorem 4.2.
Applying this result recursively, after a finite number of steps, we conclude that v = w ≡ 0
in QT . �
4.3. Stability of a weak solution of the problem

Let us show that a weak solution of problem (12)–(19) is stable with respect to variations of
the coefficients (except ν) and free terms of the equations, and also the initial conditions. This
result will be established in the case when ν is supposed to be a smooth enough function. We
have shown that problem (12)–(19) has the unique weak solution h ∈ V̊2(QT ), u ∈ W̊

1,1
2 (QT )

having additional properties

max
QT

|h| + ‖hz‖2,QT
+ ∥∥ut (·, t)

∥∥
2,Ω

+ ∥∥uz(·, t)
∥∥

2,Ω
� C8, (53)

where the positive constant C8 does not depend on h,u. Along with problem (12)–(19) consider
the family of problems

hm
t = (

rmhm
z

)
z
− (

hmum
t

)
z
− (

rmjm
)
z
, (z, t) ∈ QT , (54)

um
tt = (

ν2um
z

)
z
− phmhm

z − f m, (z, t) ∈ QT , (55)

hm(z,0) = hm
0 (z), z ∈ Ω, (56)

um(z,0) = um
0 (z), um

t (z,0) = um
1 (z), z ∈ Ω, (57)

um(±l, t) = hm(±l, t) = 0, t ∈ (0, T ), (58)

where m ∈ N. Suppose that rm(z), jm(z, t), hm
0 (z), um

0 (z), um
1 (z), f m(z, t) are smooth functions

satisfying the conditions of the uniqueness and existence theorems. In this case transmission
conditions (18)–(19) can be dropped owing to the smoothness of the solution. Problems (54)–
(58) have the unique weak solutions hm,um,m ∈ N.
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Theorem 4.3. Suppose the sequence {rm} is uniformly bounded and converges a.e. to r , while
the sequences {jm}, {f m}, {hm

0 }, {um
0 }, {um

1 } converge to j , f , h0, u0, u1 in the norms of the
spaces to which they belong according to the conditions of Theorem 4.1. Then the weak solutions
hm ∈ V̊

1,0
2 (QT ), um ∈ W̊

1,1
2 (QT ) converge in such spaces to the weak solution h,u of the limit

problem (12)–(19).

For a proof of this proposition we need the following lemma.

Lemma 4.2. Let h,u and hm, um be weak solutions of problems (12)–(19) and (54)–(58), and
vm(z, t) = hm(z, t)−h(z, t), wm(z, t) = um(z, t)−u(z, t). Then there exists a positive number δ,
independent of h, u, hm, um, t1, t2, such that for any t1, t2 ∈ [0, T ], 0 � t2 − t1 < δ, the following
inequality holds true

vrai max
t∈[t1,t2]

{
p
∥∥vm

∥∥2
2,Ω

+ ∥∥wm
t

∥∥2
2,Ω

+ 2
∥∥νwm

z

∥∥2
2,Ω

} + 2pr0
∥∥vm

z

∥∥2
2,Qt1 t2

� pC9
{∥∥(

rm − r
)
hz

∥∥2
2,Qt1 t2

+ ∥∥rmjm − rj
∥∥2

2,Qt1 t2

} + ∥∥f m − f
∥∥2

2,Qt1 t2

+ 2p
∥∥vm(·, t1)

∥∥2
2,Ω

+ 2
∥∥wm

t (·, t1)
∥∥2

2,Ω
+ 2

∥∥νwm
z (·, t1)

∥∥2
2,Ω

, (59)

where Qt1t2 = Ω × (t1, t2), and C9 is a positive constant.

Proof. For a proof of this proposition we subtract from the integral identities (20)–(21) for hm,
um the corresponding ones for h, u and write the result of this subtraction in the form of integral
identities for the functions vm, wm in the following manner

−
∫

QT

vmηt dzdt +
∫

QT

rmvm
z ηz dzdt −

∫
QT

vmum
t ηz dzdt −

∫
QT

hwm
t ηz dzdt

=
∫

QT

(
rmjm − rj

)
ηz dzdt +

∫
QT

(
rm − r

)
hzηz dzdt +

∫
Ω

(
hm

0 − h0
)
η(z,0)dz, (60)

−
∫

QT

wm
t ζt dzdt +

∫
QT

ν2wm
z ζz dzdt +

∫
QT

phm
z vmζ dzdt +

∫
QT

phvm
z ζ dzdt

=
∫

QT

(
f m − f

)
ζ dzdt +

∫
Ω

(
um

1 − u1
)
ζ(z,0)dz, wm(z,0) = um

0 (z) − u0(z). (61)

We take as η in (60) the function

η̂
k
(z, t) = 1

k

t∫
t−k

η̂(z, τ )dτ,

where η̂(z, t) is an arbitrary element of W̊
1,1
2 (Qk,T ) that is equal to zero for t � T − k and t � 0.

In a manner analogous to that of Lemma 4.1 we obtain (the latter integral in formula (60) is equal
to zero by the choice of the test function)
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∫
QT −k

vm
kt η̂ dzdt +

∫
QT −k

(
rmvm

z − vmum
t − hwm

t

)
k
η̂z dzdt

=
∫

QT −k

(
rmjm − rj + (

rm − r
)
hz

)
k
η̂z dzdt. (62)

This equality is actually valid for a class of functions η̂(z, t) that is more extensive than the class
just considered; namely, it is valid for any function η̂ that is equal to zero for t � τ , τ � T − k

and is equal to some function η(z, t) from V̊
1,0
2 (Qτ ) for t ∈ [0, τ ]. Indeed, the set W̊

1,1
2 (Qk,T ) is

dense in V̊
1,0
2 (Qk,T ). Thus for any η from V̊

1,0
2 (Qk,T ) there is a sequence of functions ηn from

W̊
1,1
2 (Qk,T ) that is strongly convergent to it for n → ∞ in V̊

1,0
2 (Qk,T ). We denote by χl(t) the

continuous piecewise-linear functions

χl(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if t � 0,

lt, if t ∈ [0, 1
l
],

1, if t ∈ [ 1
l
, τ − 1

l
],

l(τ − t), if t ∈ [τ − 1
l
, τ ],

0, if t � τ

with τ > 1/l. Identity (62) is established for η̂nl(z, t) = ηn(z, t)χl(t) when τ � T − k. It is easy
to see that one can pass to the limit in it as n and l → ∞ and thereby prove the identity

∫
Qτ

vm
ktη dzdt +

∫
Qτ

(
rmvm

z − vmum
t − hwm

t

)
k
ηz dzdt

=
∫
Qτ

(
rmjm − rj + (

rm − r
)
hz

)
k
ηz dzdt (63)

for any function η ∈ V̊
1,0
2 (Qτ ) when τ � T − k. In (63) we take η = vm

k and represent the first
term in the form ∫

Qτ

vm
k

(
vm
k

)
t
dzdt = 1

2

∫
Ω

(
vm
k

)2 dz
∣∣t=τ

t=0,

after which we let k tend to zero. This gives

1

2

∥∥vm(·, t)∥∥2
2,Ω

∣∣t=τ

t=0 +
∫
Qτ

(
rmvm

z − vmum
t − hwm

t

)
vm
z dzdt

=
∫
Qτ

(
rmjm − rj + (

rm − r
)
hz

)
vm
z dzdt. (64)

Analogously the following equality can be obtained from (61)
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1

2

(∥∥wm
t (·, t)∥∥2

2,Ω
+ ∥∥νwm

z (·, t)∥∥2
2,Ω

)∣∣t=τ

t=0 +
∫
Qτ

pvmhm
z wm

t dzdt +
∫
Qτ

pvm
z hwm

t dzdt

=
∫
Qτ

(
f m − f

)
wm

t dzdt. (65)

Multiply (64) by p and sum the result with (65). This gives

1

2

(
p
∥∥vm(·, t)∥∥2

2,Ω
+ ∥∥wm

t (·, t)∥∥2
2,Ω

+ ∥∥νwm
z (·, t)∥∥2

2,Ω

)∣∣t=τ

t=0

+
∫
Qτ

p
(
rm

(
vm
z

)2 + vmhm
z wm

t − vmvm
z um

t

)
dzdt

=
∫
Qτ

p
(
vm
z

(
rmjm − rj

) + (
rm − r

)
hzw

m
z

)
dzdt +

∫
Qτ

(
f m − f

)
wm

t dzdt. (66)

Subtract from (66) for τ = t the same equality for τ = t1, t1 < t < t2, and consider
vrai maxt∈[t1,t2] of the result. We obtain

1

2
vrai max

t∈[t1,t2]
{
p
∥∥vm

∥∥2
2,Ω

+ ∥∥wm
t

∥∥2
2,Ω

+ ∥∥νwm
z

∥∥2
2,Ω

} + p

∫
Qt1 t2

rm
(
vm
z

)2 dzdt

� p

∫
Qt1t2

{∣∣(rmjm − rj
)
vm
z

∣∣ + ∣∣(rm − r
)
hzv

m
z

∣∣ + ∣∣vmhm
z wm

t

∣∣ + ∣∣vmum
t vm

z

∣∣}dzdt

+
∫

Qt1t2

∣∣(f m − f
)
wm

t

∣∣dzdt + 1

2
p
∥∥vm(·, t1)

∥∥2
2,Ω

+ 1

2

∥∥wm
t (·, t1)

∥∥2
2,Ω

+ 1

2

∥∥νwm
z (·, t1)

∥∥2
2,Ω

. (67)

Using (33), (36) (with q = ∞, γ = 4) and (53) gives us

∫
Qt1 t2

∣∣vmum
t vm

z

∣∣dzdt �
∥∥vm

z

∥∥
2,Qt1 t2

· ∥∥um
t

∥∥
2,4,Qt1 t2

· ∥∥vm
∥∥∞,4,Qt1 t2

� C8δ
1/4

√
2

∥∥vm
z

∥∥
2,Qt1 t2

· (∥∥vm
z

∥∥
2,Qt1 t2

+ vrai max
t∈[t1,t2]

∥∥vm
∥∥

2,Ω

)
,

with t2 − t1 � δ. To prove the latter inequalities we used (53) and

∥∥um
t

∥∥
2,4,Qt1 t2

=
{ t2∫ ( ∫ ∣∣um

t

∣∣2 dz

)2

dt

}1/4

� C8

{ t2∫
dt

}1/4

� C8δ
1/4.
t1 Ω t1



V. Priimenko, M. Vishnevskii / J. Differential Equations 235 (2007) 31–55 53
The other terms are estimated in the similar way

∫
Qt1t2

∣∣vmhm
z wm

t

∣∣dzdt �
∥∥hm

z

∥∥
2,Qt1 t2

· ∥∥wm
t

∥∥
2,4,Qt1 t2

· ∥∥vm
∥∥∞,4,Qt1 t2

� C8δ
1/4

√
2

(∥∥vm
z

∥∥
2,Qt1 t2

+ vrai max
t∈[t1,t2]

∥∥vm
∥∥

2,Ω

) · vrai max
t∈[t1,t2]

∥∥wm
t

∥∥
2,Ω

,

∫
Qt1t2

∣∣(rmjm − rj
)
vm
z

∣∣dzdt � ε

2

∥∥vm
z

∥∥2
2,Qt1 t2

+ 1

2ε

∥∥rmjm − rj
∥∥2

2,Qt1 t2
,

∫
Qt1 t2

∣∣(rm − r
)
hzv

m
z

∣∣dzdt � ε

2

∥∥vm
z

∥∥2
2,Qt1 t2

+ 1

2ε

∥∥(
rm − r

)
hz

∥∥2
2,Qt1 t2

,

∫
Qt1t2

∣∣(f m − f
)
wm

t

∣∣dzdt �
∥∥wm

t

∥∥2
2,Qt1 t2

+ 1

4

∥∥f m − f
∥∥2

2,Qt1 t2

� δ vrai max
t∈[t1,t2]

∥∥wm
t

∥∥2
2,Ω

+ 1

4

∥∥f m − f
∥∥2

2,Qt1 t2
.

We can choose ε, δ such that the following inequalities are valid

5C8δ
1/4 �

√
2, p

√
2C8δ

1/4 + 4δ � 1, 2ε
√

2 + 6C8δ
1/4 � r0

√
2.

From (67) this gives

vrai max
t∈[t1,t2]

{
p
∥∥vm

∥∥2
2,Ω

+ ∥∥wm
t

∥∥2
2,Ω

+ 2
∥∥νwm

z

∥∥2
2,Ω

} + 2pr0
∥∥vm

z

∥∥2
2,Qt1 t2

� C9p
{∥∥(

rm − r
)
hz

∥∥2
2,Qt1 t2

+ ∥∥rmjm − rj
∥∥2

2,Qt1 t2

} + ∥∥f m − f
∥∥2

2,Qt1 t2

+ 2p
∥∥vm(·, t1)

∥∥2
2,Ω

+ 2
∥∥wm

t (·, t1)
∥∥2

2,Ω
+ 2

∥∥νwm
z (·, t1)

∥∥2
2,Ω

with some positive constant C9. Lemma 4.2 is proved. �
Corollary 4.3. Under the fulfillment of the conditions of Lemma 4.2 there is valid the following
estimate

p
∥∥vm(·, t2)

∥∥2
2,Ω

+ ∥∥wm
t (·, t2)

∥∥2
2,Ω

+ 2
∥∥νwm

z (·, t2)
∥∥2

2,Ω
+ 2pr0

∥∥vm
z

∥∥2
2,Qt1 t2

� C9p
{∥∥(

rm − r
)
hz

∥∥2
2,Qt1 t2

+ ∥∥rmjm − rj
∥∥2

2,Qt1 t2

} + ∥∥f m − f
∥∥2

2,Qt1 t2

+ 2p
∥∥vm(·, t1)

∥∥2
2,Ω

+ 2
∥∥wm

t (·, t1)
∥∥2

2,Ω
+ 2

∥∥νwm
z (·, t1)

∥∥2
2,Ω

.
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Proof of Theorem 4.3. Let us partition the interval [0, T ] into a finite number of intervals of
length less than δ by the points 0 = t0 < t1 < t2 < · · · < ts = T with ti , δ satisfied to the condi-
tions of Lemma 4.2. The s is a finite number and does not depend on hm, um, h, u. An inequality
of type (59) is valid for each cylinder Qti−1ti = Ω × (ti−1, ti), i = 1,2, . . . , s. For this reason we
obtain in s steps

vrai max
t∈[0,T ]

{
p
∥∥vm

∥∥2
2,Ω

+ ∥∥wm
t

∥∥2
2,Ω

+ 2ν2
0

∥∥wm
z

∥∥2
2,Ω

} + 2pr0
∥∥vm

z

∥∥2
2,QT

� C10
{
p
∥∥(

rm − r
)
hz

∥∥2
2,QT

+ p
∥∥rmjm − rj

∥∥2
2,QT

+ ∥∥f m − f
∥∥2

2,QT

+ ∥∥um
0 − u0

∥∥2
2,Ω

+ ∥∥um
1 − u1

∥∥2
W 1

2 (Ω)
+ p

∥∥hm
0 − h0

∥∥2
2,Ω

}
,

where C10 is a positive constant. The sequence {rm} is bounded and tends to r a.e. in Ω . Then in
view of hz ∈ L2(QT ) and the Dominated Convergence Theorem, see Theorem 5 in [8, p. 648],

∥∥(
rm − r

)
hz

∥∥2
2,QT

→ 0 as m → ∞.

Analogously we can show that ‖rmjm − rj‖2
2,QT

→ 0 as m → ∞ too. This proves Theo-
rem 4.3. �
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