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A b s t r a c t - - A  parametric family of iterative methods for the simultaneous determination of simple 
complex zeros of a polynomial is considered. The convergence of the basic method of the fourth order 
is accelerated using Newton's and Halley's corrections thus generating total-step methods of orders 
five and six. Further improvements are obtained by applying the Gauss-Seidel approach. Accelerated 
convergence of all proposed methods is attained at the cost of a negligible number of additional 
operations. Detailed convergence analysis and two numerical examples are given. (~) 2006 Elsevier 
Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The problem of determining polynomial  zeros has a great impor tance  in theory and practice 

(for instance, in the theory of control systems, digital signal processing, s tabil i ty of systems, 

analysis of transfer functions, various mathemat ical  models, differential and difference equations, 

eigenvalue problems). Iterative methods for the s imultaneous finding all polynomial  zeros belong 

to the most efficient approaches and became practically applicable with the rapid development of 

digital computers,  see, e.g., [1-9] and references cited therein. Since the corresponding iterative 

formulas run in identical versions, s imultaneous methods are very sui table for the implementa t ion  

on parallel computers,  which addit ionally increases their importance,  see [10-13]. Quant i ta t ive  

(initial) conditions for predicting the immediate  appearance of a safe and fast convergence of 

the simultaneous methods, in the spirit of Smale's point es t imat ion theory [14], were studied in 

details in [8,15]. 

*Author to whom all correspondence should be addressed. 
The authors would like to thank the anonymous referees who made valuable comments and suggestions that 
improved the presentation. 

0898-1221/06/$ - see front matter ~) 2006 Elsevier Ltd. All rights reserved. 
doi:10.1016/j.camwa.2005.10.013 

Typeset by .AA~-TEX 



I000 h4. S. PETKOVIC AND L. Z. RAN(~Id 

In this paper, we use a fixed-point relation involving a complex parameter  to construct a new 
family of simultaneous methods of the fourth order for solving the polynomial equation P(z) = 0 
in ordinary complex arithmetic. Interval versions of this family for the inclusion of simple and 
multiple zeros were studied in [16,17]. The motivation and reasons for developing higher-order 
methods were discussed in [13]. In order to decrease the computational cost of the basic method, 
we state another modification of this family which possesses very fast convergence (Section 2). 
The proposed methods have a high computational efficiency since the acceleration of convergence 
is attained with only few additional computations. Actually, the increase of the convergence 
rate is attained by means of Newton's and Halley's corrections which use the already calculated 
values of P, P~, pH at the points Z l , . . . ,  z~-- the  current approximations to the wanted zeros. 
The main convergence theorems for the total-step as well as single-step methods are established 
in Section 3. The results of numerical experiments are presented in Section 4. 

2. S I M U L T A N E O U S  M E T H O D S  

F O R  F I N D I N G  S I M P L E  Z E R O S  

Let P be a monic polynomial with simple zeros 41, . . . ,  ~, and let Z l , . . .  , Zn be their mutually 
distinct approximations. For the point 

= z~ (i e I~ :=  { 1 , . . . ,  ~ } ) ,  

and a complex parameter c~ ¢ -1 ,  let us introduce the notations, 

Ex,i = Sx,i = - (A = 1, 2) si = zi - ~i, 
J=~ (z~ - G )  ~ '  ~=, ( ~  - z j ) ~  ' 
j # i  j # i  

P'(z~) P'(z~) e - P(z,)P"(z~) 
~1,i = p ( z i  ) , ~2,i-~- p ( z i ) 2  , 

F~ = (a + 1)E2,i - (~(a + 1)E~,i, fi = (a + 1)$2# - ~(c~ + 1)S~,,, 

(2.1) 

LEMMA 2.1. For i E In the following identity is valid, 

(~ + 1)~,~ - ~ , ~  - F~ = ( ~  ~ + 1 - -  --  0~51,i)  2 . (2.2) 

PROOF. Starting from the identities, 

P'(zi) ~ 1 1 

j=l 

and 
5~i P'(zi)~-P(z~)P"(zi) (P ' (z , )~ '  ~ 1 "-~1 . . . .  - + E2,i, 

' P (zd  ~ \ ~ ( z d 7  ( z ~ - G )  ~ E~ 
j = l  

we obtain 

)(1 (~ + 1)&,~ - ~ , ~ , ~ - / *  = ( ~  + 1) 1 + 22,~ - ~ + Z~,~ 

2c~ E 1 2~E + a 2 E ~ i  - -  l i  
E i £i 1,~ ' £i  ' 

( 1 251# ~1, i -  + a  2 3 1 # -  
2 

£ i Ei 

_ (o~+ 1 zi O~(~1'i) 2 

- (a  + 1)E2,i + a(o~ + 1)E2,~ 
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From identity (2.2), we obtain the following fixed-point relation, 

c ~ + l  
~i = Z i -  r ~ 1/2 ( i  E I n ) ,  (2 .3)  

OZ(~l,/ + [(a + 1 ) 5 2 # -  a521 , , -  F i J .  

assuming tha t  two values of the square root  have to be taken in (2.3). The  symbol • points to the 
choice of the proper value of the square root  appearing in (2.3) as well as later iterative formulas 
and some expressions used in the convergence analysis. 

Let us introduce some additional notation. 

(m) . z (m) of the zeros at the m TM iterative step are denoted by 1 ° The approximations z I , . .  , 

z l ,  . . . ,  Zn, and the new approximations z~ re+ l ) , . . . ,  Z(m+l)n , obtained by some simultaneous 
iterative method, by ~1, • • •, in, respectively. 

2 ° 

o 

1 P (z,) 
N i  = N (z , )  = ~1,, P '  ( z i )  

= (z,)= [P_,(z,) P,,(z,) n,-' 
LP(zd 2P' (zdJ 

2513 
- 52# + ~2,~ 

(Newton's  correction), (2.4) 

(Halley's correction). (2.5) 

, - 1  

S k i ( a , b ) = ~  1 1 
' j.'= ( z i  ~ - a J )  k ~-j=i-t-1 ( z i  2 b j )  k '  

f / ( a ,  b) = (c~ + 1) S2,i (a ,  b) - o~ (o~ + 1) S12,i (a, b) ,  

where a = ( a l , . . . ,  an) and b = ( b i , . . . ,  bn) are vectors of distinct complex numbers. If 
a = b = z = (zi . . . . .  z,~), then we will write S k , i ( z ,  z )  = Sk, i  and f i ( z ,  z )  = f , .  

4 ° 
z = (Z l , . . . ,  zn) (the current approximation),  

£ = (~71,..., in) (the new approximation),  

ZN = ( Z N . 1 , . . . ,  ZN, n ) ,  ZN# = Zi -- N (z i )  (the Newton approximation),  

Z H = ( Z H , 1 , . . .  , ZH,n)  , ZH, i = z,  -- H (z i )  (the Halley approximation).  

We recall tha t  the correction terms (2.4) and (2.5) appear in the iterative formulas, 

= z - N (z) (Newton's method) 

and 

= z - H (z) (Halley's method),  

which have quadratic and cubic convergence, respectively. 
Put t ing ~i := zi in (2.3), where ii  is a new approximation to the zero ~i, and taking certain 

approximations zj of ~j in the sums involved in F, (see (2.1)) on the r ight-hand side of the 
fixed-point relation (2.3), we obtain approximations f ,  of F,.  Then, from (2.3), we construct 
some families of iterative methods for the simultaneous determination of all simple zeros of a 

polynomial. 
For the total-step methods ("Jacob," or parallel mode) and single-step methods (serial or 

"Gauss -Se ide l "  mode) the abbreviations TS and SS will be used. Besides, we denote the corre- 
sponding vectors of approximations as follows, 

z (1)  = z = ( z l , . . . , z ~ ) ,  

2.( 2 ) = Z N = (ZN, I , . . .  , z N , n ) ,  

2:(3) : Z H : (ZH, I , . . .  , z H , n ) .  
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Now, we are able to present three families of to ta l -s tep methods,  denoted with (TS(k))  (k = 
1, 2, 3), in the unique form, 

c ~ + l  
~ = z ,  ~ 1 # +  [(~+1)~2#_~@ _f,(z(~),~(~))]~/~ (~er~; k=1,2,3; ~#-1) .  (TS(k)) 

For some specific values of the pa ramete r  a ,  from the families of methods  listed above we obtain 
special cases of these families as Ostrowski-like method  (c~ = 0, studied in [18,19], Laguerre-like 
, ~ t h o d  (~ = 1 / (n  - 1), considered in [20]), E~le~-like m~thod (~ = 1) and HaUey-Zike m~thod 
(a  = - 1 ) ,  see [21,22]. The names come from the similari ty with the quoted classical methods. 
Indeed, omit t ing the sums Sl,i  and $2# (involved in f~) in the above formulas, we obtain the 
corresponding well-known classical methods.  

In our consideration, we will always assume tha t  c~ 7~ - 1 .  However, this part icular  case reduces 
the proposed family (by applying a limiting process) to the already known method of Halley's 
type studied in [21,22]. 

The  convergence rate of each of the three total-s tep methods  presented above can be accelerated 
using any new approximat ion as soon as it is found. In this way, we construct  the following families 
of single-step methods,  

a + l  ~=z~-  (iern; k=1,2,3; ~¢--1) (SS(k)) 
c~51# + [(c~ + 1) 6~,i - a6~, i - f i  (£', z(k))] i/~ 

REMARK 1. Considering the iterative formulas (TS(k)) ,  (SS(k)), and fixed-point relation (2.3), 
we observe tha t  a "proper" sign in front of the square root should be chosen (indicated by *). 
We take the sign so tha t  a smaller step I~i - z d is obtained.  

In a part icular  case a = 1 / ( n -  1), from the i terative formulas (TS(k))  and (SS(k)) we obtain 
the Laguerre-like methods  considered in [20]. Computa t ional ly  verifiable initial conditions which 
provide the guaranteed convergence of the basic to ta l -s tep  method  (k = 1) of Laguerre ' s  type 
were established in [23]. 

3.  C O N V E R G E N C E  A N A L Y S I S  

In this section, we state the main convergence theorems concerning the total -s tep methods 
(TS(k))  and the single-step methods  (SS(k)). For simplicity, we will often omit  the iteration 
index m and denote quantities in the lat ter  (rn + 1) TM i teration by 

Let us introduce the notation, 

4n 
d=min. .  I ¢ i - ¢ j ] ,  q - -  , 

,'~5 d 

and suppose tha t  the conditions, 

d 1 
]sil < - (i = 1 , . . . , n ) ,  (3.1) 

4n q 

are satisfied. In the sequel, we will assume tha t  n _> 3. Also, in our convergence analysis, we will 
deal with the pa ramete r  c~ lying in the disk {z : ]z I < 2.4} centered at the origin. 

LEMMA 3.1. Let  zl  . . . ,  z,~ be dist inct  approximat ions  to the zeros 41,.- •, ~ ,  and let zi = zi - ~ ,  
g~ = ~i -- ¢~, where  Z I , . . . ,  Zn are approximat ions  produced  by  the i terat ive m e t h o d s  (TS(k)) 
I f  (3.1) holds and Ic~] < 2.4 A c~ -7! --1, then 

(i) 
qk+2 [k 

Ig~l < ~--25_ 11Eda }--~ I~j ( i ~ I n ;  k = 1 ,2 ,3 ) ;  
j¢i  
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(ii) 
d 1 

[~1 < 4--n = -- (i = 1 , . . .  , n ) .  q 

The  proof of Assertions (i) and (ii) is laborious and extensive but  elementary, and can be 
derived applying a technique similar to tha t  used in [20]. For these reasons, we omit the proof. 

Let z~°) , . . . ,  z (°) be initial approximations to the zeros f z , - - - ,  ~ of the polynomial  P ,  and let 

e(m) A m )  _ ~ i ,  
i ~- ~i 

C(m) max ~!m) 
l < i < n  ~ 

where z~ m) . . . .  , z(~ m) are approximations obtained in the mth iterative step. 

THEOREM 3.1. Let  Io~1 < 2.4 A a ~ --1 and let the inequalities, 

d 1 ( i = 1 ,  . , n ) ,  (3.2) ~0) < 4-~ = q " 

hold. Then, the total-step methods  (TS(k))  are convergent with the order k + 3 (k = 1, 2, 3). 

PROOF. Start ing from condition (3.2) (which coincides with (3.1)) and using Assertion (i) of 
Lemma 3.1, we came to the following inequalities, 

_ qk+2 3 k 1 (i • In; 
E~x) < n - 1  e~°) Z e~ °) < q k = 1 ,2 ,3 ) ,  

which means that  the implication, 

d 1 ~1) d 1 
- -  ==> E < - -  , E 0) < 4n q 4n q 

is valid (see, also, Assertion (ii) of Lemma 3.1). We can prove by mathematical  induction that  
condition (3.2) implies 

¢Im+l)l-< nqk+2- 1 E~m) < -q (i • In; k = 1, 2, 3), (3.3) 
j#i  

for each m = 0, 1 , . . .  and i 6 In. Replacing I¢Im)l = t lm)/q in (3.3), we get 

- n - 1  j#i  

( m )  Let t (m) = maxl<i<n t i . First, from (3.2), it follows 

ql~O) l = t~o) _ r i o / <  1 (i • 1,4. 

Successive application of the inequalities of this type to (3.4) gives t~ m) < 1 for all i E In and 
m = 1 , 2 , . . . .  According to this, we get from (3.4), 

t~ _ (t~m)) 3 _< ( k = 1 , 2 , 3 ) .  (3.5) 
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From (3.5), we infer that  the sequences {tl m)} (i E In) converge to 0, which means that  the 

sequences {le~m)l} are also convergent, that  is z} m) --* (i (i • In). Finally, from (3.5), we 
conclude that  the total-step methods (TS(k)) have the convergence order k + 3, tha t  is, the basic 
total-step methods (TS(1)), the total-step methods with Newtons's corrections (TS(2)) and the 
total-step methods with Halley's corrections (TS(3)) have the order of convergence four, five, 
and six, respectively. | 

Let  us consider now the convergence rate of the single-step method (SS(k)). Applying the same 
technique and argumentations presented in [20] and starting from the initial conditions (3.2), we 
can prove that  the inequalities, 

1 
< -  (i • / ~ ;  k = 1,2,3),  (3.6) elm+l) -< n -  1 \j=l j=i+l  q 

hold for each m = 0, 1 , . . .  and i • In, supposing tha t  for i = 1, the first sum in (3.6) is omitted. 
Substi tut ing lelm) l = t}m)/q in (3.6), we obtain 

The convergence analysis of the single-step methods (SS(k)), similar to tha t  presented by 
Alefeld and Herzberger [5], uses the notion of the R-order of convergence introduced by Ortega 
and Rheinboldt [24]. The R-order of an iterative process IP with the limit point ¢ will be denoted 
by OR((IP),  ¢). 

THEOREM 3.2. Assume  that initial conditions (3.2) and inequalities (3.6) are valid for the sing/e- 
step method  (SS(k)).  Then, the R-order of  convergence of  (SS(k))  is given by 

OR((SS(k)), ¢) _> 3 + rn(k), (3.8) 

where "rn(k) > k is the unique positive root of  the equation, 

T n -- k n - l T  -- 3k n-1 = 0. (3.9) 

PROOF. As in the proof of Theorem 3.1, we first note tha t  condition (3.2) implies 

e~ 0) q = t ~  0) < t =  max t~ 0) < 1. (3.10) 
- -  l < i < n  

According to this and (3.7), we conclude that  the sequences {t~ m)} (i C In) converge to 0. Hence, 

the sequences {le~m)]} are also convergent which means that  z} "~) --* (~ (i e /~). Following 
Alefeld and Herzberger [5], the following system of inequalities can be derived from relations (3.7) 
and (3.10), 

< (i  = 1 , . . . , n ;  m = 0 , 1 , . . . ) .  (3 .11)  

The  column vectors r (m) -= [r~ m) . . -  r(~m)] T are successively computed by 

r (re+l) = An(k)  r ('~) (3.12) 

starting with r (°) = [1-.- 1] T. The n × n matr ix An(k) in (3.12) is given by 

An(k)  = 

-3 k 
3 k 0 

3 k 
• . .  " , .  

0 

3 k 0 0 
3 k 
0 3 

(k = 1 , 2 , 3 ) ,  
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(see [7, Sec. 2.3] for more general  case). The  character is t ic  po lynomia l  of the  ma t r ix  A ~ ( k )  is 

gn (~; k) = (~ - 3) ~ - (A - 3) k '~-1 - 3k n-1.  

Set t ing T = )~ -- 3, we get 
gn(T + 3; k) = T n - -  kn-17" - 3k n-1 .  

It  is easy to show tha t  the equation,  

T n - k n - l T  -- 3k n-1 = 0, 

has the  unique posit ive root  Tn(k) > k. The corresponding (posit ive) eigenvalue of the  ma t r ix  

A,~(k) is 3 + Tn(k). Using some elements of the  ma t r ix  analysis  we find tha t  the  ma t r ix  A,~(k) 

is i r reducible and pr imit ive so tha t  i t  has the  unique posi t ive eigenvalue equal to its spectra l  

radius  p(A,~(k)).  According to  the analysis  presented in [5], i t  can be shown tha t  the  spect ra l  
radius  p ( A ~ ( k ) )  gives the  lower bound of the R-order  of i te ra t ive  me thod  (SS(k)) ,  for which the 
inequali t ies (3.8) are valid. Therefore,  we have 

O R ( ( S S ( k ) ) ,  ¢) > p(A,~(k))  = 3 + ~'n(k), 

where Tn(k) > k is the  unique posit ive root  of equat ion (3.9). | 

The  lower bounds  of OR((SS(1)) ,  ¢), OR((SS(2)) ,  ¢), and OR((SS(3)) ,  ~) are displayed in Table 

1. 

Methods \ n 

(SS(1)): 

(ss(2)): 

(ss(3)): 

Table 1. The lower bound of the R-order of convergence. 

3 4 5 6 7 8 9 10 Very Large n 

4.672 4 . 4 5 3  4 .341  4 . 2 7 4  4 . 2 2 9  4 . 1 9 6  4.172 4.153 ---* 4 

5.862 5 . 5 8 6  5 .443  5 . 3 5 7  5 . 2 9 9  5 . 2 5 7  5 . 2 2 5  5.201 --* 5 

6.974 6 . 6 6 2  6 . 5 0 3  6 . 4 0 4  6 . 3 3 9  6 . 2 9 1  6 . 2 5 5  6.228 --~ 6 

4. N U M E R I C A L  R E S U L T S  

To i l lus t ra te  the convergence rate  of the considered i te ra t ive  methods ,  we tes ted  a great  number  

of polynomials .  Tota l -s tep  as well as single-step methods  with  the  Newton and Hal ley corrections,  
presented in this paper ,  use the  a l ready calculated values P ,  p i ,  p ,  a t  the  points  z l , . . . ,  zn so 
tha t  the  convergence ra te  of these i te ra t ive  methods  is accelera ted at  the  price of a negligible 

number  of addi t ional  operat ions.  Therefore,  the employed approach  provides high computa t iona l  

efficiency of the proposed methods  with corrections. 

For the selection between the two values of the square root ,  we adopt  the  cr i ter ion proposed 

by Henrici [25, p. 532]. 
The  argument  of the  square root  is to be chosen to differ by less than  ~T/2 from the argument  

of P ' ( z i ) .  

This cri ter ion provides the greater  denomina tor  in magni tude  (between two values), giving a 
smaller  s tep I~i - zil. The  tes ted  numerical  examples  showed t h a t  the  above cri ter ion gives quite 

sa t is factory  results even for crude init ial  approximat ions .  

The  performed numerical  exper iments  demons t ra ted  very fast convergence of the  modified 

methods ,  which is i l lus t ra ted in the  first of the two presented numerica l  examples .  

EXAMPLE 1. The methods  (TS(k))  and (SS(k)) were appl ied  to  s imul taneous ly  approx imate  the  
zeros of the polynomial ,  

P ( z )  = z 2° - (5 - 4i)z m + (22 - 20i)z is - (72 - 68i)z 17 + (52 - 188i)z 16 - 132iz 15 
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-- (1586 -- 940i)z  14 + (5026 -- 5684i)z  13 -- (13337 -- 15404i)z 12 

÷ (31425 -- 24928i)z 11 -- (44644 -- 48680i)z l°  ÷ (24414 -- 53936i)z  9 

÷ (10964 -- 145744i)z s -- (360780 -- 313536i)z  7 ÷ (793808 -- 714400i)z  6 

- -  (1103368 -- 1607552i)z 5 ÷ (2420320 -- 841472i)z  4 -- (1944640 -- 1643520i)z 3 

÷ (3782400 -- 3571200i)z 2 -- (4464000 -- 6912000i)z + 8640000 

-- (z - 4)(z - i)(z ÷ 5i)(z ÷ 3)(z 2 + 9)(z 2 + 2z + 5)(z 2 + 4)(z 2 - 4) 

× (z 2 ÷ 2 z ÷ 2 ) ( z  2 - 2 z ÷ 2 ) ( z  2 - 4 z ÷ 5 ) ( z  2 - 2 z ÷ 1 0 ) .  

All tested methods started with the same initial approximations. 
As a measure of accuracy of the produced approximations, we have calculated Euclid's norm, 

_ = _ ( m )  _ ~ i  e(m) :-~ ~i 

\ i=1 

The entries e (m) (m -- 1,2, 3) are given in Table 2 where A(-q) means A × 10 -q.  In the presented 
example  for the  in i t ia l  approx imat ions ,  we have e (°) -- 0.80. 

F rom Tab le  2 an d  a n u m b e r  of o ther  tes ted  po lynomia l s  we conclude  t h a t  the  resul ts  o b t a i n e d  

by  the  proposed  me t h o d s  coincide wi th  the  theore t ica l  resul t s  given in  T h e o r e m s  3.1 and  3.2. 

Also, note tha t  two iterative steps are usually sufficient for solving most of the practical problems 
when initial approximations are reasonably good and polynomials are well-conditioned. The third 
i t e r a t ion  is g iven to conf i rm fast convergence of our  new fami ly  of roo t - f ind ing  m e t h o d s  and  good 

m a t c h i n g  the  convergence orders  wi th  those given in theore t ica l  analysis .  

The  s tud ied  me t h o d s  from the  families (TS(k) )  and  (SS(k)) ,  as the  m a j o r i t y  of i te ra t ive  meth-  

ods wi th  s imilar  s t ruc tu re ,  work very well w h e n  the  sought  zeros are s imple  and  their  measure  

of s epa ra t ion  (given by  m i n ~ j  [~ - CJl or m i n ~ j  Iz~ - zj]) is no t  very  smal l  entry.  A precise 

q u a n t i t a t i v e  measure  of separa t ion  was given in  [26]. The  case of mul t ip le  zeros was considered 

in [17]. As well known,  a direct  appl ica t ion  of numer ica l  i t e ra t ive  me thods ,  in  general,  is no t  

efficient for the  ca lcu la t ion  of clusters of zeros w i thou t  the  help of some o the r  procedures.  As 

discussed in  [17,27-30], the  p rob lem of f inding clusters of zeros requires a mu l t i s t age  composi te  

Table 2. Euclid's norm of errors. The three first iterations. 

TS(1) TS(2) TS(3) SS(1) SS(2) SS(3) 

8.11 (-3) 3.02 (-3)  1.19 (-3) 7.55 (-3)  2.06 ( -3)  8.84 (-4) 

1.36 (-9) 1.75 (-14) 3.54 (-19) 1.02 (-9)  5.45 (-15) 4.37 (-20) 

3.29 (-38) 8.34 (-70) 5.12 (-113) 3.58 (-39) 2.30 (-74) 3.05 (-124) 

8.40 (-3) 3.13 (--3) 1.20 (--3) 7.68 (--3) 2.13 (--3) 8.59 (--4) 

1.36 (-9) 1.91 (--14) 3.67 (--19) 9.99 (--10) 6.98 (--15) 5.75 (--20) 

1.78 (--37) 1.30 (-69) 4.79 (--]13) 4.43 (--39) 9.01 (--74) 2.18 (--123) 

1.78 (--2) 5.85 (--3) 1.94 (--3) 1.22 (--2) 4.47 (--3) 1.44 (--3) 

3.30(--7) 1.74(-11) 2.23(--16) 7.09(--8) 5.40(--12) 8.93(--18) 

1.42 (-27) 1.22 (--54) 3.01 (--95) 2.58 (--30) 8.32 (--59) 6.07 (--104) 

1.78 (-2) 5.46 (--3) 2.04 (--3) 1.25 (--2) 4.62 (--3) 1.55 (--3) 

2.29 (--8) 4.68 (--13) 2.68 (--18) 4.50 (--9) 1.14 (--13) 6.85 (--19) 

1.20 (-31) 8.74 (-63) 1.57 (--106) 1.81 (-34) 3.44 (--66) 7.40 (--110) 

Methods 

c ~ = 0  

1 

n - i  

o~= i  

0 ~  - - i  

e(~) 

e (2) 

e(3) 

e(1) 

e(2) 

e(3) 

e(1) 

e(2) 

e(3) 

eO) 

e(2) 

e (3) 
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algorithm that  includes some auxiliary methods such as a detection, localization, enclosure, split- 

ting, and, in final step, a refinement. These addit ional  procedures were omit ted  in this paper and 

we did not consider the problem of clusters. We hope to address the problem concerning clusters 

in future works. 

In the next  example, we present a globally convergent properties of the considered methods in 

a restrictive sense. For comparison purpose, we have also tested two another  methods.  

Weierstrass'  (or Durand-Kerner)  quadrat ical ly convergent method,  one of the most efficient 

methods for the simultaneous determinat ion of polynomial zeros, tha t  possesses a global conver- 

gence for almost all arbi t rary distinct initial  approximations (the conjecture tha t  has not been 

proved yet), 
P(zd 

: (i c ( w )  
YI (zi  - z j )  

Ehrl ich-Aberth 's  method with Newton's  corrections (EAN) of the fourth order tha t  has very 

high computat ional  efficiency, 

Ni 
Si = z~ - (i E IN). (EAN) 

1 - g ( z  0 E (1/(z~ - zj + N j ) )  
j# i  

EXAMPLE 2. We applied the proposed methods (TS(k)), (EAN), and (W) for the simultaneous 

approximation to the zeros of the polynomial,  

P ( z )  : z 50 -[- z 49 ~- 1, 

often used in the l i terature as a test example. We find that  all zeros of the above polynomial  lie 

in the annulus  

{ z e C :  r = O . 5 < l z l < 2 = R } ,  

where r and R are calculated by 

1 a ~  1/k 

r ---- ~ l<k<nmin a ~ k  

a~oo 1/ k R =- 2 m a x  
l<k<n 

(see [25, Theorem 6.4b, Corollary 6.4k]. All tested methods started with Aberth's initial approx- 

imations [31], 

z ( ° ) =  ---al+r0exp(iOv), i x / ~ , =  O~ = - ~ ( 2 ~  _ 3~  (v = 1,. . . ,  n), 
n n \ z /  

equidistant ly distr ibuted along the circle [z + a l /n [  = ro. In this concrete case, we have n = 50, 

at = 1, and choose r0 = 2. The stopping criterion was given by 

E (m) = max [f(z~m))] < ~- = 10 -12. (4.1) 
I<i<50 

Table 3 gives the number of iterative steps for the considered iterative procedures. 

Table 3. The number of iterations for Aberth's initial approximations and r ---- 10 -12.  

Methods a = 0 

TS(1) 13 

TS(2) 12 

TS(3) 11 

1 
a - -  a =  -1  

(~- i) 

13 17 

12 15 

11 13 

a = 1 EAN 

> 50 17 

> 50 - 

> 50 - 

W 

40 
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Figure 1. The approach of approximations to the zeros. 

Aber th ' s  initial approximations should be regarded as very crude ones, especially when r0 is 
considerably large (see Figure 1). As a consequence, first iterations give very rough approxima- 
tions until they reach the zone of local convergence. Then, the applied iterative methods start  to 
converge very fast and only 3 to 4 iterations are needed to fulfill the required stopping criterion. 

In other words, the great deal of procedure happens in the range of slow convergence. In 
this concrete example, the best results were obtained for small lal, while Euler-like method 
(c~ = 1) showed the worst convergence. It  is evident tha t  the methods with corrections cannot 
be accelerated during the slow-convergent iterating since Newton's  and Halley's corrections are 
calculated at the points which are very crude approximations to the zeros. For these reasons, 
the number of iterations needed to satisfy the stopping criterion is slightly less for the methods 
with corrections compared to the basic method (TS(1)). The initial approximations are closer 
to the zeros (as in Example 1), the total efficiency of the methods with corrections is greater. 
Let us note tha t  the implementation of single step methods is pointless in the case of Aberth 's  
approximations; indeed, the use of the already calculated approximations is aimless since they 
are very crude and cannot cause any improvement. 

To display visually the process of convergence and clarify the above discussion, we have tested 
the considered methods to find the zeros of the polynomial P ( z )  = z ~° + z 49 + 1, but  with 
very crude initial approximations taking r0 = 10. For illustration, we have chosen Laguerre-like 
method (a  = 1 / ( n  - 1) = 1/49). The stopping criterion (4.1) was satisfied after 36 iterations. 
The approaching course of current approximations is shown in Figure 1. One can observe that  
the approximations converge radially straightforward to the exact zeros, distributed along the 
unit circle [z I = 1. Indeed, from the list of exact zeros, we found tha t  all zeros lie in the 
annulus {z E C : 0.986 < Izl < 1.055}, which means tha t  the distance between neighboring 
zeros is very small - the average distance is about 5 x 10 -2. In a certain sense, we could regard 
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that very close zeros make groups of clusters. We have also observed that log E (m) is positive 
monotonically decreasing arithmetical sequence until the approximations are far from the zone 
of local convergence. In the domain of convergence, log E (m) behaves as negative geometrical 
sequence with the quotient equal to the order of convergence of the applied method. 
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