A NEW PICK-TYPE THEOREM ON THE HEXAGONAL LATTICE

Ren DING
Hebei Teacher's University, Shijiazhuang, China

Krzysztof KOLODZIEJCZYK
Instytut Matematyki, Politechniki Wroclawskiej, 50-370 Wroclaw, Poland
John REAY
Western Washington University, Bellingham, WA 98225, U.S.A.
Received 10 January 1986
Let L be the lattice of all vertex points in a tiling of the plane by regular hexagons of unit area. Suppose the vertices of a planar polygon P are points of the lattice L. and points of L occur frequently along the edges of P. Then the area of P is $A(P)=\frac{1}{4} b+\frac{1}{2} i+\frac{1}{12} c-1$, where b is the number of lattice points on the boundary of P, i is the number of lattice points in the interior of P, and c is the boundary characteristic of P.

1. Introduction and notation

By a "Pick-type theorem" we mean a result which gives the exact area of any planar polygon P when
(1) the vertices of P lie in a given lattice, and
(2) information about P is known only at the lattice points.

Figure 1 shows the patterns of the lattice points generated by the face-to-face tilings of the plane using, respectively, regular squares, triangles, and hexagons of unit area. Given a lattice polygon P (i.e., a planar polygon whose vertices are lattice points), let b denote the number of lattice points on the boundary of P, let i denote the number of lattice points in the interior of P, and let $A(P)$ be the area of P.

The classical theorem of Pick [2] asserts that if P is a latice polygon using the square lattice, then $A(P)=\frac{1}{2} b+i-1$. It is easy to show (see Ding and Reay [1]) that if P uses the triangular latice, then $A(P)=\dot{D}+2 i-2$. For the rest of this paper we assume P uses the hexagonal lattice L. Since the area of P is not uniquely determined by the parameters b and i, an additional parameter c, the boundary characteristic, was introduced in [1]. Each lattice point x on the boundary ∂P of a hexagonai lattice polygon P is incident to exactly 3 edges of the hexagonal tiling. Each of these edges either
(1) lies in the boundary of P, or
(2) extends locally into the exterior of P near x, or
(3) extends locally into the interior of P near x.

The square lattice
The triangular lattice

The hexagonal lattice L

Fig. 1. Lattices from planar tilings by regular polygons of unit area.
We will denote these three disjoint sets of edges by $B(x), F(x)$, and $G(x)$, respectively. We will define the boundary characteristic $c(x, P)$ at the boundary point x as $c(x, P)=|F(x)|-|G(x)|$, and the boundary characteristic $c(P)$ of P is defined by

$$
c(P)=\sum_{x \in \partial P} c(x, P)
$$

(Throughout the paper, $|\vec{S}|$ denotes the cardinality of the set S.) Intuitively, to compute the boundary characteristic $c=c(P)$ of the lattice polygon P, travel once around the boundary of P, and add 1 each time we find a lattice enige that starts on the boundary and sticks out locally into the exterior of P, and add -1 each time we find such an edge that locally pokes into the interior of \boldsymbol{P}.

The following results ([1, Theorem 5]) will be used and extended in the next section.

Theorem A. If the vertices of the planar polygon P lie in the hexagonal lattice L, and if the boundary of P is the union of edges and/or minor diagonals and/or major diagonals of the hexagonal tiling, then

$$
\begin{equation*}
A(P)=\frac{1}{4} b+\frac{1}{2} i+\frac{1}{12} c-1 . \tag{1}
\end{equation*}
$$

Figure 2 shcws examples of the boundary characteristic for three simple lattice polygons of area $\frac{1}{6}, \frac{1}{3}$, and $\frac{1}{2}$ and also shows that the parameter c may vary even though the parameters $b=3$ and $i=0$ are the same for each of these examples. Theorem A applies in each case.

Theorem A also applies to the parallelogram $X Y Z W$ in Fig. 3, where $b=8$,

Fig. 2.

Fig. 3.
$i=3, c=6$, and thus the area is 3 . However Theorem A does not apply to triangle $X Y Z$ of Fig. 3. Its area is clearly 1.5 (half the area of the parallelogram), and $b=5, i=1, z=7$. Thus for triangle $X Y Z,\left(\frac{1}{4} b+\frac{1}{2} i+\frac{1}{12} c-1\right)=\frac{4}{3}$ and formula (1) is not valid. Hence formula (1) is not valid for all lattice polygons using L.

2. Main result

In this section we extend Theorem A to get a much broader class of polygons satisfying (1). We will define a lattice segment to be a line segment $S=[a, b]$ in a tiling of the plane by regular hexagons of unit area, with $[a, b] \cap L=\{a, b\}$. There is a discrete increasing sequence $\left\{a_{1}, a_{2}, \ldots\right\}$ of all possible real values that may be realized as the length of a lattice segment. The numbers $a_{1}=$ $0.620 \ldots, a_{2}=1.074 \ldots$, and $a_{3}=1.240 \ldots$ are respectively the lengths of an edge, a minor diagonal, and a major diagonal of a hexagon in the tiling. Lattice segments of lengths a_{4} to a_{11} are shown with solid lines in Fig. 4. The diagonal $X Z$ in Fig. 3 also has length a_{11}.

Fig. 4. The first few lattice segments in a hexagonal tiling.
Theorem. If the lattice polygon P has vertices in the hexagonal lattice L, and if each lattice segment in the boundary of P has length at most $a_{10}=3.77376 \ldots$, then $A(P)=\frac{1}{4} b+\frac{1}{2} i+\frac{1}{12} c-1$.

Overview of the Proof. Let d be the iength of the longest lattice segment in the boundary o: P. If $d \leqslant a_{3}$, then Theorem \mathbf{A} applies and the proof is completed. The proof now proceeds by induction on the lengths $d=a_{4}$ through length $d=a_{10}$. Note that the counterexample of Fig. 3 shows that the theorem fails, in general if $d \geqslant a_{11}$.

If $d=a_{i}$ is the maximal length of a lattice segment in ∂P, let $m=m(P)$ stand for the number of iattice segments in ∂P with length a_{i}, and procced with an induction on m. Choose a lattice segment $\left[v_{1} v_{2}\right]$ of length a_{i} in ∂P. We will add a
lattice-triangle $T=\operatorname{conv}\left\{v_{1} v_{2} v_{3}\right\}$, as shown in Fig. 4, to obtain a larger (possibly non-simple) polygon $P^{\prime}=P \cup T$ whose area we can determine by the induction hypotheses. Vertex v_{3} is always chosen to be the lattice point on the external side of the lattice segment [$v_{1} v_{2}$] which is closest to the segment. From the area of P^{\prime} we may determine the area of P.

Lemma 1. Vertex v_{3} is not in the interior of P and hence $A\left(P^{\prime}\right)=A(P)+A(T)$.
Proof. (Note that Lemma 1 is true in general only if $d \leqslant a_{10}$.) If v_{3} is in the interior of P, then there must exist a lattice segment in ∂P which is longer than $d=a_{i}$.

The following results are clear using Fig. 4.
Lemma 2. The sides $\left[v_{1} v_{3}\right]$ and $\left[v_{2} v_{3}\right]$ of triangle T have length less than $d=a_{i}$. Hence $m\left(P^{\prime}\right)=m(P)-1$.

Lemma 3. The area of triangle T is $\frac{1}{6}$ for a_{4}, a_{6}, a_{9}, and a_{10}. The area of triangle T is $\frac{1}{3}$ for a_{5} and a_{8}. For a_{7} the area of T is either $\frac{1}{3}$ or $\frac{1}{6}$, depending on which side of [$v_{1} v_{2}$] is the external side.

Lemma 4. Suppose formula (1) is true for P^{\prime}, and ∂P^{\prime} is a simple closed curve. Then formula (1) is true for P if and only if

$$
\begin{equation*}
c\left(P^{\prime}\right)=c(P)+12 A(T)-3 \tag{2}
\end{equation*}
$$

Proof. We must consider two cases. First, if $v_{3} \notin P$, then it is obvious that $b\left(P^{\prime}\right)=b(P)+1$ and $i\left(P^{\prime}\right)=i(P)$. (See Fig. 5.) Secondly, if $v_{3} \in P$, then, by Lemma $1, v_{3} \in \partial P$. In this case it is clear that $b\left(P^{\prime}\right)=b(P)-1$ and $i\left(P^{\prime}\right)=$ $i(P)+1$. (See Fig. 6.) Aliso $A(P)=A\left(P^{\prime}\right)-A(T)$ by Lemma 1. In either case, formula (i) is true for P iff

$$
{ }_{3}^{1} b(P)+\frac{1}{2} i(P)+\frac{1}{12} c(P)-1=\frac{1}{4} b\left(P^{\prime}\right)+\frac{1}{2} i\left(P^{\prime}\right)+\frac{1}{12} c\left(P^{\prime}\right)-1-A(T)
$$

iff $\frac{1}{12} c(P)=\frac{1}{4}+\frac{1}{12} c\left(P^{\prime}\right)-A(T)$ iff formula (2) is valid.

Fig. 5.

Fig. 6.

Fig. 7.

When $v_{3} \in \partial P$ and ∂P^{\prime} is not a simple curve then the complement of P^{\prime} consists of a lattice polygon P_{2}, and an unbounded region. (See Fig. 7.) Define $P_{1}=P \cup T \cup P_{2}=P^{\prime} \cup P_{2}$.

Lemma 5. Suppose ∂P^{\prime} is a non-simple curve and formula (1) is valid for P_{1} and P_{2}. Then formula (1) is true for P if and only if

$$
\begin{equation*}
c\left(P_{1}\right)-c\left(P_{2}\right)=c(P)+12 A(T)-9 \tag{3}
\end{equation*}
$$

Proof. It is obvious that $b(P)=b\left(P_{1}\right)+b\left(P_{2}\right)-1$ and $i\left(P_{1}\right)=i(P)+i\left(P_{2}\right)+$ $b\left(P_{2}\right)-1$. (See Fig. 7.) Substituting these results into formula (1) for P_{1} and P_{2}, and using the fact that $A(P)=A\left(P_{1}\right)-A\left(P_{2}\right)-A(T)$, we obtain the desired result.

For convenient notation in the following proof, we always assume that the lattice segment $\left[v_{2} v_{3}\right]$ is longer than the lattice segment $\left[v_{1} v_{3}\right]$, and we define $c(x, P)$ to be zero whenever $x \notin \partial ?$. With the above lemmas, the proof of the theorem is now reduced to verifying Eq. (2) or (3) for each case.

Lemma 6. Suppose $d=a_{i} \leqslant a_{10}$, and ∂P^{\prime}, is a simple closed curve. If $A(T)=\frac{1}{6}$ (so that $i \in\{4,6,7,9,10\}$), then $c\left(P^{\prime}\right)-c(P)=-1$. If $A(T)=\frac{1}{3}$ (so that $i \in\{5,7,8\}$), then $c\left(P^{\prime}\right)-c\left(P^{\prime}\right)=+1$. In each case formula (2) holds.

Proof. We consider only the case when $A(T)=\frac{1}{6}$. The proof when $A(T)=\frac{1}{3}$ is similar.

Case 1. Suppose $v_{3} \notin P$. Then

$$
\begin{aligned}
c\left(P^{\prime}\right)-c(P)= & c\left(v_{1}, P^{\prime}\right)-c\left(v_{1}, P\right) \\
& +c\left(v_{2}, P^{\prime}\right)-c\left(v_{2}, P\right)+c\left(v_{3}, P^{\prime}\right)-c\left(v_{3}, P\right) .
\end{aligned}
$$

In each case (see Fig. 4), $c\left(v_{3}, P\right)=0$ and $c\left(v_{2}, P^{\prime}\right)-c\left(v_{2}, P\right)=0$. Of the three edges of the hexagonal tiling which meet at v_{3}, exactly one extends into the exterior of P^{\prime} so $c\left(v_{3}, P^{\prime}\right)$ is either 0 or -1 . When $c\left(v_{3}, P^{\prime}\right)=0$, then $c\left(v_{1}, P^{\prime}\right)=c\left(v_{1}, P\right)-1$. When $c\left(v_{3}, P^{\prime}\right)=-1$, then $c\left(v_{1}, P^{\prime}\right)=c\left(v_{1}, P\right)$. In either case it is easy to show that $c\left(v_{i}, P^{\prime}\right)-c\left(v_{i}, P\right)+c\left(v_{3}, P^{\prime}\right)=-1$ and formula (2) holds.

Case 2. Suppose $v_{3} \in P$, so either v_{1} or v_{2} is in the interior of P^{\prime}. In either case the result is easily checked, as in Case 1.

Lemma 7. Suppose $d=a_{i} \leqslant a_{10}$, and ∂P^{\prime} is not a simple closed curve. If $A(T)=\frac{1}{6}$, then $c\left(P_{1}\right)-c\left(P_{2}\right)-c(P)=-7$. If $A(T)=\frac{1}{3}$, then $c\left(P_{1}\right)-c\left(P_{2}\right)-c(P)=-5$. In each case formula (3) holds.

Proof. We will prove the lemma only for the case when $A(T)=\frac{1}{6}$ and thus $i \in\{4,6,7,9,10\}$. The reasoning for the case when $A(T)=\frac{1}{3}$, so $i \in\{5,7,8\}$, is similar and is left to the reader.

Case 1. Suppose $i \in\{4,7,9\}$. In these cases $\left[v_{1} v_{3}\right]$ is an edge of a hexagon of the tiling and we denote this edge as e_{1}. Also, exactly one hexagonal edge at v_{3}, denoted as e_{2}, enters the interior of T from v_{3}. The third hexagonal edge at v_{3}, denoted by e_{3}, meets T only at v_{3}. (See Fig. 8.) We must show that $c\left(P_{1}\right)-c\left(P_{2}\right)-c(P)=-7$. Now $c\left(x, P_{1}\right)=c\left(x, P_{2}\right)+c(x, P)$ at all lattice points except the vertices of T, and it is easy to show that $c\left(v_{1}, P_{1}\right)-c\left(v_{1}, P_{2}\right)$ $c\left(v_{1}, P\right)=-1$ and $c\left(v_{2}, P_{1}\right)-c\left(v_{2}, P_{2}\right)-c\left(v_{2}, P\right)=0$. Thus it is sufficient to prove that

$$
\begin{equation*}
c\left(v_{3}, P_{1}\right)-c\left(v_{3}, P_{2}\right)-c\left(v_{3}, P\right)=-6 \tag{4}
\end{equation*}
$$

Let us define (e_{i}, P_{j}) to be the contribution of the edge e_{i} to $c\left(v_{3}, P_{j}\right)$ as an aid in the computations. Thus to show (4) it is sufficient to establish and sum the following:

$$
\begin{align*}
& \left(e_{1}, P_{1}\right)-\left(e_{1}, P_{2}\right)-\left(e_{1}, P\right)=-2, \tag{4.1}\\
& \left(e_{2}, P_{1}\right)-\left(e_{2}, P_{2}\right)-\left(e_{2}, P\right)=-3, \tag{4.2}\\
& \left(e_{3}, P_{1}\right)-\left(e_{3}, P_{2}\right)-\left(e_{3}, P\right)=-1 . \tag{4.3}
\end{align*}
$$

In all cases $\left(e_{1}, P\right)=1$, and $\left(e_{1}, P_{1}\right)=0$ iff $\left(e_{1}, P_{2}\right)=1$, and $\left(e_{1}, P_{2}\right)=0$ iff $\left(e_{1}, P_{1}\right)=-1$, so (4.1) is established. In all cases $\left(e_{2}, P_{2}\right)=\left(e_{2}, P\right)=1$ and ($\left.e_{2}, P_{1}\right)=-1$, so (4.2) is established.

In all cases, if $\left(e_{3}, P_{1}\right)=1$, then $\left(e_{3}, P\right)=\left(e_{3}, P_{2}\right)=1$.
If $\left(e_{3}, P_{1}\right)=-1$, then either $e_{3} \subset\left(\partial P_{2} \cap \partial P\right)$ so $\left(e_{3}, P_{2}\right)=\left(e_{3}, P\right)=0$, or else $e_{3} \notin\left(\partial P_{2} \cap \partial P\right)$ so $\left(e_{3}, P_{2}\right)+\left(e_{3}, P\right)=0$.

If $\left(e_{3}, P_{1}\right)=0$, then e_{3} is in the exterior of P_{2} and in ∂P, so $\left(e_{3}, P\right)=0$ and $\left(e_{3}, P_{2}\right)=1$. Thus (4.3) is established.

Case 2. Suppose $i \in\{6,10\}$. In these cases two hexagonal edges at v_{3}, denoted by e_{1} and e_{2}, extend into the interior of T. The third edge e_{3} meets T only at vertex v_{3}. (See Fig. 9.)
it is easy to show that

$$
c\left(v_{1}, P_{1}\right)-c\left(v_{1}, P_{2}\right)-c\left(v_{1}, P\right)=0
$$

Fig. 8. Case 1.

Fig. 9. Case 2.
and

$$
c\left(v_{2}, P_{1}\right)-c\left(v_{2}, P_{2}\right)-c\left(v_{2}, P\right)=0
$$

so it is sufficient to prove

$$
\begin{equation*}
c\left(v_{3}, P_{1}\right)-c\left(v_{3}, P_{2}\right)-c\left(v_{3}, P\right)=-7 \tag{5}
\end{equation*}
$$

To show (5) it is sufficient to establish and sum the following.

$$
\begin{align*}
& \left(e_{1}, P_{1}\right)-\left(e_{1}, P_{2}\right)-\left(e_{1}, P\right)=-3 \tag{5.1}\\
& \left(e_{2}, P_{1}\right)-\left(e_{2}, P_{2}\right)-\left(e_{2}, P\right)=-3 \tag{5.2}\\
& \left(e_{3}, P_{1}\right)-\left(e_{3}, P_{2}\right)-\left(e_{3}, P\right)=-1 \tag{5.3}
\end{align*}
$$

These are established in the same way, but with less work, as in Case 1 above. This completes the proof of Lemma 7 when $A(T)=\frac{1}{6}$.

The above lemmas complete the proof of the main theorem. Note that the proof of the lemmas depends on the fact that no lattice segment in ∂P ever enters the interior of the triangle T from the vertex v_{1} or v_{2}. This result is no longer valid in general for a lattice segment [$v_{1} v_{2}$] of length a_{11} no matter how the vertex v_{3} is chosen, and shows why the proof of the theorem fails in the cases where $d \geqslant a_{11}$. It would be interesting to give a complete characterization of the planar lattice polygons which use the hexagonal tiling of the plane for which formula (1) is valid.

See Varberg [3] or Ding and Reay [1] for references of papers related to Pick's theorem. Also see [1] for Pick type theorems using lattices that come from any of the 11 Archimedean tilings of the plane.

References

[1] R. Ding and J.R. Reay, The boundary characteristic and Pick's theorem in the Archimedean planar tilings, J. Combin. Theory Ser. A 44 (1987) 110-119.
[2] G. Pick, Geometrisches zur Zahlenlehre, Sitzungsber. Lotos Prague 19 (1900) 311-319.
[3] D.E. Varberg, Pick's tizorem revisited, Amer. Math. Monthly 92 (1985) 584-587.

