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Abstract

The purpose of the present paper is to introduce several new classes of meromorphic functions de-
fined by using a meromorphic analogue of the Choi–Saigo–Srivastava operator for analytic functions
and investigate various inclusion properties of these classes. Some interesting applications involving
these and other classes of integral operators are also considered.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let M denote the class of functions of the form

f (z) = 1

z
+

∞∑
k=0

akz
k
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which are analytic in the punctured open unit disk D = {z ∈ C: 0 < |z| < 1}. If f and g

are analytic in U = D ∪ {0}, we say that f is subordinate to g, written f ≺ g or f (z) ≺
g(z), if there exists a Schwarz function w in U such that f (z) = g(w(z)). For 0 � η,
β < 1, we denote by MS(η), MK(η) and MC(η,β) the subclasses of M consisting of
all meromorphic functions which are, respectively, starlike of order η, convex of order η

and close-to-convex of order β and type η in U [5,9].
Let N be the class of all functions φ which are analytic and univalent in U and for

which φ(U) is convex with φ(0) = 1 and Re{φ(z)} > 0 (z ∈ U).
Making use of the principle of subordination between analytic functions, we introduce

the subclasses MS(η,φ), MK(η,φ) and MC(η,β;φ,ψ) of the class M for 0 � η,β < 1
and φ,ψ ∈ N , which are defined by

MS(η;φ) :=
{
f ∈M:

1

1 − η

(
−zf ′(z)

f (z)
− η

)
≺ φ(z) in U

}
,

MK(η;φ) :=
{
f ∈M:

1

1 − η

(
−

{
1 + zf ′′(z)

f ′(z)

}
− η

)
≺ φ(z) in U

}
,

and

MC(η,β;φ,ψ)

:=
{
f ∈M: ∃g ∈ MS(η;φ) s.t.

1

1 − β

(
−zf ′(z)

g(z)
− β

)
≺ ψ(z) in U

}
.

We note that the classes mentioned above is the familiar classes which have been used
widely on the space of analytic and univalent functions in U [2,7] and for special choices
for the functions φ and ψ involved in these definitions, we can obtain the well-known
subclasses of M. For examples, we have

MS
(

η; 1 + z

1 − z

)
= MS(η), MK

(
η; 1 + z

1 − z

)
= MK(η)

and

MC
(

η,β; 1 + z

1 − z
,

1 + z

1 − z

)
= MC(η,β).

Now we define the function λ(a, b; z) by

λ(a, b; z) := 1

z
+

∞∑
k=0

(a)k+1

(b)k+1
zk (a > 0; b 	= 0,−1,−2, . . . ; z ∈ D), (1.1)

where (x)k is the Pochhammer symbol (or the shifted factorial) defined by

(x)k :=
{

1 if k = 0,

x(x + 1) . . . (x + k − 1) if k ∈ N = {1,2, . . .}.
Let f ∈ M. Denote by L(a, b) :M →M the operator defined by

L(a, b)f (z) = λ(a, b; z) ∗ f (z) (z ∈ D),
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where the symbol (∗) stands for the Hadamard product (or convolution). The operator
L(a, b) was introduced and studied by Liu and Srivastava [6]. Further, we remark in pass-
ing that this operator L(a, b) is closely related to the Carlson–Shaffer operator defined on
the space of analytic and univalent functions in U [11].

Corresponding to the function λ(a, b; z), let λ†(a, b; z) be defined such that

λ(a, b; z) ∗ λ†(a, b; z) = 1

z(1 − z)μ
(μ > 0).

Analogous to L(a, b), we now introduce a linear operator Iμ(a, b) on M as follows:

Iμ(a, b)f (z) = λ†(a, b; z) ∗ f (z) (μ > 0; a > 0; b 	= 0,−1,−2, . . . ; z ∈ D).

(1.1)

We note that I2(2,1)f (z) = f (z) and I2(1,1)f (z) = zf ′(z) + 2f (z). It is easily verified
from the definition of the operator Iμ(a, b) that

z
(
Iμ(a + 1, b)f (z)

)′ = aIμ(a, b)f (z) − (a + 1)Iμ(a + 1, b)f (z) (1.2)

and

z
(
Iμ(a, b)f (z)

)′ = μIμ+1(a, b)f (z) − (μ + 1)Iμ(a, b)f (z). (1.3)

We note that the operator Iμ(a, b) is motivated essentially by the Choi–Saigo–Srivastava
operator [2], which extends the integral operator studied by Noor and Noor [10].

Next, by using the operator Iμ(a, b), we introduce the following classes of meromor-
phic functions for φ,ψ ∈N , μ > 0 and 0 � η,β < 1:

MSμ
a,b(η;φ) := {

f ∈ M: Iμ(a, b)f ∈MS(η;φ)
}
,

MKμ
a,b(η;φ) := {

f ∈ M: Iμ(a, b)f ∈MK(η;φ)
}
,

and

MCμ
a,b(η,β;φ,ψ) := {

f ∈M: Iμ(a, b)f ∈ MC(η,β;φ,ψ)
}
.

We also note that

f (z) ∈MKμ
a,b(η;φ) ⇔ −zf ′(z) ∈MSμ

a,b(η;φ). (1.4)

In particular, we set

MSμ
a,b

(
η; 1 + Az

1 + Bz

)
= MSμ

a,b(η;A,B) (−1 < B < A � 1)

and

MKμ
a,b

(
η; 1 + Az

1 + Bz

)
= MKμ

a,b(η;A,B) (−1 < B < A � 1).

In this paper, we investigate several inclusion properties of the classes MSμ
a,b(η;φ),

MKμ
a,b(η;φ) and MCμ

a,b(η;φ) associated with the operator Iμ(a, b). Some applications
involving integral operators are also considered.
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2. Inclusion properties involving the operator Iμ(a,b)

The following results will be required in our investigation.

Lemma 2.1. [3] Let φ be convex univalent in U with φ(0) = 1 and Re{κφ(z) + ν} > 0
(κ, ν ∈ C). If p is analytic in U with p(0) = 1, then

p(z) + zp′(z)
κp(z) + ν

≺ φ(z) (z ∈ U)

implies

p(z) ≺ φ(z) (z ∈ U).

Lemma 2.2. [8] Let φ be convex univalent in U and ω be analytic in U with Re{ω(z)} � 0.
If p is analytic in U and p(0) = φ(0), then

p(z) + ω(z)zp′(z) ≺ φ(z) (z ∈ U)

implies

p(z) ≺ φ(z) (z ∈ U).

At first, with the help of Lemma 2.1, we obtain the following theorem.

Theorem 2.1. Let φ ∈N with

max
z∈U

Re
{
φ(z)

}
< min

{
(μ + 1 − η)/(1 − η), (a + 1 − η)/(1 − η)

}
(μ,a > 0; 0 � η < 1).

Then

MSμ+1
a,b (η;φ) ⊂ MSμ

a,b(η;φ) ⊂ MSμ
a+1,b(η;φ).

Proof. To prove the first part of Theorem 2.1, let f ∈ MSμ+1
a,b (η;φ) and set

p(z) = 1

1 − η

(
−z(Iμ(a, b)f (z))′

Iμ(a, b)f (z)
− η

)
, (2.1)

where p is analytic in U with p(0) = 1. By a simple calculation with (1.3) and (2.1), we
obtain

1

1 − η

(
−z(Iμ+1(a, b)f (z))′

Iμ+1(a, b)f (z)
− η

)
= p(z) + zp′(z)

−(1 − η)p(z) + μ + 1 − η

(z ∈ U). (2.2)

Applying Lemma 2.1 to (2.2), it follows that f ∈ MSμ
a,b(η;φ). Moreover, by using the

arguments similar to those detailed above with (1.2), we can prove the second part of
Theorem 2.1. Therefore we complete the proof of Theorem 2.1. �
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Theorem 2.2. Let φ ∈ N with

max
z∈U

Re
{
φ(z)

}
< min

{
(μ + 1 − η)/(1 − η), (a + 1 − η)/(1 − η)

}
(μ,a > 0; 0 � η < 1).

Then

MKμ+1
a,b (η;φ) ⊂ MKμ

a,b(η;φ) ⊂ MKμ
a+1,b(η;φ).

Proof. Applying (1.4) and Theorem 2.1, we observe that

f (z) ∈MKμ+1
a,b (η;φ) ⇔ −zf ′(z) ∈MSμ+1

a,b (η;φ)

⇒ −zf ′(z) ∈MSμ
a,b(η;φ)

⇔ f (z) ∈ MKμ
a,b(η;φ),

and

f (z) ∈MKμ
a,b(η;φ) ⇔ −zf ′(z) ∈MSμ

a,b(η;φ)

⇒ −zf ′(z) ∈MSμ
a+1,b(η;φ)

⇔ f (z) ∈ MKμ
a+1,b(η;φ),

which evidently proves Theorem 2.2. �
Taking

φ(z) = 1 + Az

1 + Bz
(−1 < B < A � 1; z ∈ U)

in Theorems 2.1 and 2.2, we have

Corollary 2.1. Let

(1 + A)/(1 + B) < min
{
(μ + 1 − η)/(1 − η), (a + 1 − η)/(1 − η)

}
(μ,a > 0; 0 � η < 1; −1 < B < A � 1).

Then

MSμ+1
a,b (η;A,B) ⊂ MSμ

a,b(η;A,B) ⊂ MSμ
a+1,b(η;A,B)

and

MKμ+1
a,b (η;A,B) ⊂ MKμ

a,b(η;A,B) ⊂ MKμ
a+1,b(η;A,B).

Next, by using Lemma 2.2, we obtain the following inclusion relation for the class
MCμ

a,b(η,β;φ,ψ).

Theorem 2.3. Let φ,ψ ∈N with

max
z∈U

Re
{
φ(z)

}
< min

{
(μ + 1 − η)/(1 − η), (a + 1 − η)/(1 − η)

}
(μ,a > 0; 0 � η < 1).
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Then

MCμ+1
a,b (η,β;φ,ψ) ⊂ MCμ

a,b(η,β;φ,ψ) ⊂ MCμ
a+1,b(η,β;φ,ψ).

Proof. To prove the first inclusion of Theorem 2.3, let f ∈ MCμ+1
a,b (η,β;φ,ψ). Then, in

view of the definition MCμ+1
a,b (η,β;φ,ψ), there exists a function g ∈MSμ+1

a,b (η;φ) such
that

1

1 − β

(
−z(Iμ+1(a, b)f (z))′

Iμ+1(a, b)g(z)
− β

)
≺ ψ(z) (z ∈ U). (2.3)

Now let

p(z) = 1

1 − β

(
−z(Iμ(a, b)f (z))′

Iμ(a, b)g(z)
− β

)
, (2.4)

where p is analytic in U with p(0) = 1. Using (1.3), we obtain

1

1 − β

(
−z(Iμ+1(a, b)f (z))′

Iμ+1(a, b)g(z)
− β

)

= 1

1 − β

( z(Iμ(a,b)(−zf ′(z)))′
Iμ(a,b)g(z)

+ (μ + 1)
Iμ(a,b)(−zf ′(z))

Iμ(a,b)g(z)

z(Iμ(a,b)g(z))′
Iμ(a,b)g(z)

+ μ + 1
− β

)
. (2.5)

Since g ∈ MSμ+1
a,b (η;φ) ⊂ MSμ

a,b(η; φ), by Theorem 2.1, we set

q(z) = 1

1 − η

(
−z(Iμ(a, b)g(z))′

Iμ(a, b)g(z)
− η

)
, (2.6)

where q ≺ φ in U with the assumption for φ ∈ N . Then, by virtue of (2.4), (2.5) and (2.6),
we get

1

1 − β

(
−z(Iμ+1(a, b)f (z))′

Iμ+1(a, b)g(z)
− β

)
= p(z) + zp′(z)

−(1 − η)q(z) + μ + 1 − η
≺ ψ(z)

(z ∈ U). (2.7)

Hence, by taking

ω(z) = 1

−(1 − η)q(z) + μ + 1 − η
,

in (2.7), and applying Lemma 2.2, we can show that p ≺ ψ in U, so that

f ∈MCμ
a,b(η,β;φ,ψ).

Moreover, we have the second inclusion by using arguments similar to those detailed above
with (1.2). Therefore we complete the proof of Theorem 2.3. �
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3. Inclusion properties involving the integral operator Fc

In this section, we consider the integral operator Fc (see, e.g., [5]) defined by

Fc(f ) := Fc(f )(z) = c

zc+1

z∫
0

tcf (t) dt (f ∈ M; c > 0). (3.1)

From the definition of Fc defined by (3.1), we observe that

z
(
Iμ(a, b)Fc(f )(z)

)′ = cIμ(a, b)f (z) − (c + 1)Iμ(a, b)Fc(f )(z). (3.2)

We first state Theorem 3.1 below, the proof of which is much akin to that of Theo-
rem 2.1.

Theorem 3.1. Let φ ∈ N with

max
z∈U

Re
{
φ(z)

}
< (c + 1 − η)/(1 − η) (c > 0; 0 � η < 1).

If f ∈MSμ
a,b(η;φ), then Fc(f ) ∈MSμ

a,b(η;φ).

Next, we derive an inclusion property involving Fc, which is obtained by applying (1.4)
and Theorem 3.1.

Theorem 3.2. Let φ ∈ N with

max
z∈U

Re
{
φ(z)

}
< (c + 1 − η)/(1 − η) (c > 0; 0 � η < 1).

If f ∈MKμ
a,b(η;φ), then Fc(f ) ∈MKμ

a,b(η;φ).

From Theorems 3.1 and 3.2, we have

Corollary 3.1. Let

(1 + A)/(1 + B) < (c + 1 − η)/(1 − η) (c > 0; −1 < B < A � 1; 0 � η < 1).

Then if f ∈ MSμ
a,b(η; A,B) and MKμ

a,b(η; A,B), then Fc(f ) ∈ MSμ
a,b(η;A,B) and

MKμ
a,b(η;φ), respectively.

Finally, we obtain Theorem 3.3 below by using (3.2) and the same techniques as in the
proof of Theorem 2.3.

Theorem 3.3. Let φ,ψ ∈N with

max
z∈U

Re
{
φ(z)

}
< (c + 1 − η)/(1 − η) (c > 0; 0 � η < 1).

If f ∈MCμ
a,b(η,β;φ,ψ), then Fc(f ) ∈ MCμ

a,b(η,β;φ,ψ).

Remark. If we take μ = 2, a = 2 and b = 1 in all theorems of this section, then we extend
the results by Goel and Sohi [4], which reduce the results earlier obtained by Bajpai [1].
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