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Abstract

We show that for an n-gon with unit diameter to have maximum area, its diameter graph must contain
a cycle, and we derive an isodiametric theorem for such n-gons in terms of the length of the cycle. We
then apply this theorem to prove Graham’s 1975 conjecture that the diameter graph of a maximal 2m-gon
(m � 3) must be a cycle of length 2m − 1 with one additional edge attached to it.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Consider all polygons with unit diameter and n sides. Which of these have the largest area?
In 1922, Reinhardt [9] proved that for n odd the regular n-gon has the maximum area, but he
noticed that this is not the case for n even. For n = 4, although the square is maximal, there
are infinitely many quadrilaterals with unit diameter and the same area of 1/2. Bieri [2] in 1961
found the largest hexagon with unit diameter, but the proof of this is due to Graham [5] who
proved that there is a unique hexagon with maximal area, about 4% larger than the regular one.
He also conjectured that the diameter graph of a maximal n-gon for n even must have a specific
form, which we will state shortly. The first open case of this conjecture (n = 8) was proved by
Audet et al. [1] in 2002 following Graham’s method of examining all possible diameter graphs.
Recently Mossinghoff [8] has provided numerical evidence for this conjecture up to n = 20 (see
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Fig. 1. Conjectured shape of the diameter graph.

also his expository article [7]). The main result of this paper is a proof of Graham’s conjecture,
and on the way to proving it, we derive a new isodiametric inequality for polygons.

The diameter graph of a set of points X is defined as the graph with vertices corresponding
to the points of X, and an edge between two vertices if the distance between the corresponding
points of X is equal to the diameter of X. A segment connecting two such vertices is also com-
monly called a diameter. It is an elementary geometric fact that if X is a set in the plane, then
any two of its diameters must intersect in either a common endpoint or a common interior point.
It follows then that the diameter graph of a set must have a linear thrackleation: a representation
where each edge is represented by a line segment and each edge intersects every other edge,
possibly at an endpoint.

The diameter graph of a polygon is the diameter graph of its vertex set. An old result of Hopf
and Panwitz [6] (proved by Sutherland [10]) says that the number of edges of a polygon’s diam-
eter graph cannot exceed the number of vertices. Using a convexity result of Fáry and Rédei [3],
Graham [5] proved that the diameter graph of a polygon of maximum area with unit diameter
must be connected, and made the following conjecture:

Conjecture. (See Graham [5].) The diameter graph of a unit diameter 2m-gon with maximal
area has a cycle of length 2m − 1 and one additional edge from the remaining vertex.

Figure 1 shows the conjectured shape of the diameter graph for m = 4. We will prove this
conjecture in the following way. In Section 2 we use a convexity argument to show that the
diameter graph cannot be a path. Then we use this result in Section 3 to prove that it cannot even
be a tree, and thus must contain a cycle. Section 4 uses the isodiametric theorem for Reuleaux
polygons to derive an isodiametric theorem for fixed-diameter polygons whose diameter graphs
contain a cycle of given length. In Section 5, we use this theorem to prove Graham’s conjecture
by constructing a 2m-gon whose area is larger than that of any 2m-gon whose diameter graph
contains a cycle of length less than 2m − 1.

Since the convex hull of a set of points has the same diameter as the set itself, we can restrict
the discussion that follows to convex polygons.

2. The diameter graph cannot be a path

Suppose a unit-diameter convex k-gon P (k � 5) has a path of length k − 1 as its diameter
graph. We will describe P as p1p2p3 . . . pk , where pipi+1 are the successive diameters. We can
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Fig. 2. Polygons whose diameter graphs are paths.

parameterize P by the angles θi = � pipi+1pi+2, 1 � i � k − 2, as in Fig. 2. If we imagine each
diameter rotating into the next one, the fact that diameters not having a common endpoint must
cross implies that the total rotation is less than π :

0 <

k−2∑
i=1

θi < π.

Adding the vertex pk to the polygon p1p2p3 . . . pk−1 increases its area by the area of
�p1pk−2pk if k is even or of �p2pk−2pk if k is odd (see Fig. 2 again). Let ak(θ1, . . . , θk−2)

denote twice the area of P , and bk(θ1, . . . , θk−2) denote twice the area of the last triangle added
to P . Clearly, ak = ak−1 + bk .

Place a coordinate system so that p1 = (1,0) and p2 = (0,0). Then p3 = (cos θ1, sin θ1),
p4 = (cos θ1 − cos(θ1 + θ2), sin θ1 − sin(θ1 + θ2)) and in general

pk =
(

k−2∑
j=1

(−1)j+1 cosψj ,

k−2∑
j=1

(−1)j+1 sinψj

)
,

where ψj = ∑j

i=1 θi .
If k is odd, then

bk =
∣∣∣∣pk−2 − p2

pk − p2

∣∣∣∣ =
∣∣∣∣pk−2

pk

∣∣∣∣ =
∣∣∣∣ pk−2
pk − pk−2

∣∣∣∣
=

k−4∑
j=1

(−1)j+1 cosψj

[
(−1)k−2 sinψk−3 + (−1)k−1 sinψk−2

]

−
k−4∑
j=1

(−1)j+1 sinψj

[
(−1)k−2 cosψk−3 + (−1)k−1 cosψk−2

]

= (−1)k−2
k−4∑
j=1

(−1)j+1[sin(ψk−3 − ψj) − sin(ψk−2 − ψj)
]
.

If k is even,

bk =
∣∣∣∣pk−2 − p1

p − p

∣∣∣∣ =
∣∣∣∣pk−2 − p1
p − p

∣∣∣∣ =
∣∣∣∣ pk−2
p − p

∣∣∣∣ −
∣∣∣∣ p1
p − p

∣∣∣∣ .

k 1 k k−2 k k−2 k k−2
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The first determinant is the same as for odd k, and the second determinant, including the minus
sign in front, is equal to sinψk−2 − sinψk−3. We can combine them as

bk = (−1)k−2
k−4∑
j=0

(−1)j+1[sin(ψk−3 − ψj ) − sin(ψk−2 − ψj )
]
,

under the convention that ψ0 = 0.
We will show in the following lemma that ak is a strictly convex function of (θ1, . . . , θk−2) in

the direction (1,−1,1,−1, . . .). More precisely, we will show that

fk(t) = ak

(
θ1 + t, θ2 − t, θ3 + t, θ4 − t, . . . , θk−2 + (−1)k−1t

)
is a strictly convex function of t , where t is restricted to a sufficiently small interval about 0.

Lemma 1. If k � 5, then fk(t) is a strictly convex function of t for t sufficiently small.

Proof. The proof is by induction on k. First, f4(t) = sin(θ1 +θ2) and f ′′
4 (t) = 0. Now let gk(t) =

bk(θ1 + t, θ2 − t, . . . , θk−2 + (−1)k−1t). Then fk(t) = fk−1(t) + gk(t), and the lemma will be
true if we can show that g′′

k (t) > 0 for k � 5. From the formula for bk ,

g′′
k (t) =

∑′
sin

(
ψk−3 − ψj + (−1)kt

) +
∑′′

sin
(
ψk−2 − ψj + (−1)k+1t

)
where

∑′ is the sum over j ∈ {1,3,5, . . . , k − 4} if k is odd and over j ∈ {0,2,4, . . . , k − 4} if k

is even, and
∑′′ is the sum over j ∈ {2,4,6, . . . , k−5} if k is odd and over j ∈ {1,3,5, . . . , k−5}

if k is even. If we take t small enough that the arguments of all the sine functions are in (0,π),
each of the above sums is positive, and g′′

k (t) > 0. �
Theorem 1. If n � 5, the diameter graph of an n-gon with unit diameter and maximal area
cannot be a path.

Proof. Suppose such a polygon P has a path with k vertices as its diameter graph. By the con-
nectedness of the diameter graphs of polygons of maximal area, we must have k = n. If we
perturb the angles of the path by ±t , as in the definition of the function fk(t), where t is small
enough that the polygon is still convex and has unit diameter, then by Lemma 1 we can find a
nearby n-gon with a larger area than P . �
3. The diameter graph cannot be a tree

Let P be a polygon whose diameter graph is a tree. Using the fact that all diameters have to
intersect, it is not hard to see that the tree must be a caterpillar, a path with possible additional
edges hanging on its vertices. For if it were not, it would have a vertex p with at least three
neighbors p1, q1, r1 so that each of those have additional neighbors p2, q2, r2. Since the edges
represent diameters of P , one of p1, q1, r1 is between the other two, say q1 is in the acute angle
p1pr1 (see Fig. 3). Now the diameter q1q2 could not cross both diameters pp1 and pr1, since
those are on two different sides of pq1. This contradiction shows that if the diameter graph is a
tree, it has to be a caterpillar. (This result also follows from a slightly more general theorem of
Woodall [11] on linear thrackleations.)

Let S = p1p2 . . . pk be a longest path of the caterpillar diameter graph of an n-gon P (n � 5)
with the additional property that the first and last angles of the path are maximal. In Fig. 4, this
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Fig. 3. Why the tree must be a caterpillar.

Fig. 4. Increment of the area when the diameter graph is a tree.

would be p1p2p3p4p5p6 or its reverse. The maximality of the first and last angles guarantees
that any diameter of P that is not in S will lie in an acute angle between two diameters of S. Thus
any angle θi = � pipi+1pi+2 of S will contain an additional ji � 0 diameters piqi,1, . . . , piqi,ji

,
where

∑k−2
i=1 ji � n − k.

We now show that P cannot have maximal area. By Graham’s connectedness result, we need
to consider only those P with

∑k−2
i=1 ji = n − k. The area of P is equal to the area of the convex

hull of S plus the sum of the areas of polygons with vertices piqi,1qi,2 . . . qi,ji
pi+2, shown shaded

in Fig. 4. These polygons have maximal area only if the ji extra diameters divide the angle θi

into ji + 1 equal parts, and that area is one half of (ji + 1) sin θi

ji+1 − sin θi .
We now perturb the angles of S, as in Section 2, to form the function

hi(t) = (ji + 1) sin

(
θi + (−1)i+1t

ji + 1

)
− sin

(
θi + (−1)i+1t

)
,

representing twice the shaded area. Then

h′′
i (t) = − 1

ji + 1
sin

(
θi + (−1)i+1t

ji + 1

)
+ sin

(
θi + (−1)i+1t

)
� 0,

for t sufficiently small, with strict inequality for ji > 0. This shows that hi(t) is a convex function
near t = 0 (strictly convex if ji > 0). The area of P after perturbation is then half of fk(t) +
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∑k−2
i=1 hi(t). If k � 5, this sum is strictly convex by Lemma 1, so P could not have maximum

area.
If k = 4 then f4(t) = sin(θ1 + θ2) and f ′′

k (t) = 0, while there is at least one ji � 1, since P

has at least five vertices. So in this case also, the sum is strictly convex, and again the area of P

cannot be maximal.
If k = 3, it is no longer true that f ′′

3 (t) � 0, but in this case our diameter graph is a star and
we can clearly increase the area of P by increasing the only angle θ1. As a summary we can
conclude:

Theorem 2. For n � 5, the diameter graph of an n-gon with unit diameter and maximal area
cannot be a tree, and hence must contain a cycle.

4. An isodiametric theorem for polygons whose diameter graphs have cycles

Any cycle in the diameter graph of a planar set must be of odd length (because of the intersec-
tion property of the diameters), and it is not hard to see that there can be at most one cycle in the
graph (see Woodall [11] for details). In this section we will establish a bound on the area based
on the length of this cycle. As a corollary we will get a bound on the areas of polygons with a
cycle of length less than 2m − 1 in their diameter graphs.

The key ingredient in the proof of Theorem 3 below is the isodiametric theorem for Reuleaux
polygons. A Reuleaux polygon is a convex figure of constant width bounded by k (necessarily
odd) arcs of equal radius d which is then the diameter of the figure. Reuleaux polygons corre-
spond to cycles in the diameter graphs of ordinary polygons, as illustrated in Fig. 5(a), which
shows an 8-gon with a 5-cycle in its diameter graph, and the enclosing Reuleaux 5-gon.

Isodiametric Theorem for Reuleaux Polygons. (See Firey [4].) If a Reuleaux polygon R has k

sides and diameter d , then its area A satisfies

A � d2

2

(
k cos

π

k
tan

π

2k
+ π − k sin

π

k

)
,

with equality if and only if R is regular.

Theorem 3. If a polygon P has n sides, diameter d and a k-cycle in its diameter graph, then its
area A satisfies

A � d2

2

(
k cos

π

k
tan

π

2k
− k sin

π

k
+ n sin

π

n

)
.

Equality holds if and only if k divides n, the polygon is equilateral and every vertex is the end-
point of at least one diameter.

Proof. Consider the Reuleaux k-gon R that contains P and whose vertices match our cycle. If
some of the vertices of P are not on the boundary of R, we could increase the area of P by
pulling them out to the boundary, as in Fig. 5(a). Thus we get the following bound:

A � area(R) − area(n shaded circular segments).

These circular segments may not be equal, but their total area is smallest when they are. This
can be demonstrated by putting the segments next to each other around a semicircle of radius d ,
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(a) (b)

Fig. 5. Placing the n segments around a semicircle.

which is possible since the central angles of the segments must sum to π , and the largest (n+ 1)-
gon inscribed in the semicircle of radius one must have n equal sides (see Fig. 5(b)). Applying
Firey’s theorem, we get

A(P ) � area(regular R) − area(n equal circular segments)

= d2

2

(
k cos

π

k
tan

π

2k
+ π − k sin

π

k

)
− d2

2

(
π − n sin

π

n

)

= d2

2

(
k cos

π

k
tan

π

2k
− k sin

π

k
+ n sin

π

n

)
.

For equality to hold we need both that the Reuleaux k-gon be regular and that the n circular
segments be equal. �

The bound of Theorem 3 is an increasing function of k. This implies that Theorem 3 is a sharp-
ening, for polygons with cycles in their diameter graphs, of the standard isodiametric inequality
for polygons, 2A � d2n cos(π/n) tan(π/2n) (Mossinghoff [8]). It also leads immediately to the
following corollary.

Corollary 1. For m � 3, if a 2m-gon of unit diameter has a cycle in its diameter graph of length
at most 2m − 3, then its area A satisfies

A � 2m − 3

2
cos

π

2m − 3
tan

π

2(2m − 3)
− 2m − 3

2
sin

π

2m − 3
+ m sin

π

2m
.

5. The diameter graphs of polygons with maximum area

In this section we complete the proof of our main result, the conjecture of Graham:

Theorem 4. If, for m � 3, a 2m-gon has unit diameter and maximum area, then its diameter
graph must be a cycle of length 2m − 1 with an additional edge attached to a vertex of the cycle.

In view of Theorem 2, Theorem 4 will be proved if we can find a 2m-gon of unit diameter
whose area exceeds the bound of Corollary 1. We construct such a polygon as follows.
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(a) (b)

Fig. 6. Construction of P and P ′ .

Start with a polygon P = p1p2 . . . p2m−1 with vertices on a circle of radius r , such that the
angles of the associated star polygon all have value α = π/(2m − 1/2), except that the angles
at p1 and p2m−1 are β = 9α/8 and the angle at pm is then γ = π − (2m − 4)α − 2β = 5α/4.
(Figure 6(a) illustrates the case m = 5.) Then P has area

area(P ) = r2
[
(m − 2) sin 2α + sin 2β + 1

2
sin 2γ

]
and diameter 2r cosα/2, which follows from the facts that α is less than both β and γ and that
2β = α +γ , causing the minor arcs subtended by any two chords forming an angle α to be equal.
Specifying the radius of the circle to be r = (1/2) secα/2 makes the diameter of P equal to 1.

Next, modify P by replacing pm with a point p′
m located radially outward from pm at a

distance 1 − 2r cosγ /2 from it. Finally, place an additional vertex p2m at distance 1 from p′
m

and on the opposite side of pm from p′
m. The 2m-gon P ′ constructed this way is illustrated in

Fig. 6(b). By the triangle inequality, p′
mp1 < p′

mpm +pmp1 = (1−2r cosγ /2)+2r cosγ /2 = 1,
so P ′ still has diameter 1. Notice that the diameter graph of P ′ has no cycle and is not even
connected, so it cannot have maximal area. However, its area will turn out to be larger than that
of any 2m-gon with a cycle of length at most 2m − 3 in its diameter graph. (By pulling p′

m

out slightly further we could get a polygon with a (2m − 1)-cycle in its diameter graph, but the
formula for its area would be much more difficult to analyze.)

The area of P ′ is equal to that of P increased by the areas of three triangles, �pm−1p
′
mpm,

�pm+1p
′
mpm, and �p2m−1p2mp1. The first two triangles each have area 1

2 (1 − 2r cosγ /2)r ×
sin 2β = 1

2 r2(1/r − 2 cosγ /2) sin 2β , and the third has area r2(2 cosγ /2 − cosγ − 1) sinγ .
Adding these to the area of P we get

area(P ′) = r2
[
(m − 2) sin 2α + sin 2β − sinγ

+
(

2 cos
α

2
− 2 cos

γ

2

)
sin 2β + 2 cos

γ

2
sinγ

]
.

Substituting r = (1/2) secα/2, m = π/2α + 1/4, β = 9α/8 and γ = 5α/4 gives the area of P ′
as a function of α:

A(α) = 1

4
sec2 α

2

[
π

sin 2α

2α
− 7

4
sin 2α + sin

9

4
α − sin

5

4
α

+
(

2 cos
α − 2 cos

5
α

)
sin

9
α + 2 cos

5
α sin

5
α

]
.

2 8 4 8 4
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Our goal is now to show that A(α) is larger than the bound of Corollary 1 with m = π/2α +
1/4,

B(α) = π

2
· sin 2πα

2π+α

2πα
2π+α

− π

4
· tan πα

2π−5α
πα

2π−5α

.

Thus we need to prove that the function E(α) = A(α) − B(α) satisfies E(α) > 0 for all values
of α corresponding to m � 3. At this point we mention that the Maclaurin series of E(α) is
α3/192 +O(α4). This observation shows already that Theorem 4 is true for m sufficiently large.
But to prove it for all m � 3 we have to work a little harder. The technique we will use is to
bound E(α) from below by a polynomial.

Lemma 2. For 0 < α < π ,

A(α) >
(4 + α2)(983040π − 655360πα2 − 61440α3 − 2185661α5)

15728640
.

Proof. First rewrite A(α) using the identity 2 cosx siny = sin(x + y) − sin(x − y) as

A(α) = 1

4
sec2 α

2

(
π

sin 2α

2α
− 7

4
sin 2α + sin

9

4
α − sin

5

4
α + sin

11

4
α

+ sin
7

4
α − sin

23

8
α − sin

13

8
α + sin

15

8
α + sin

5

8
α

)
.

Next apply to the terms of A(α) the following inequalities, which come from the truncated
Maclaurin series of sec2 θ and sin θ :

sec2 θ > 1 + θ2,

sin θ > θ − θ3

3! ,

− sin θ > −
(

θ − θ3

3! + θ5

5!
)

.

The first inequality holds for −π/2 < θ < π/2 and the remaining two for θ > 0. After simplify-
ing (we used a computer algebra system), we get the inequality of the lemma. �
Lemma 3. For 0 < α < 2π/7,

B(α) <
240π3 − 100π3α2 − 20π2α3 − (435π − 2π3)α4 + (40 − 8π2)α5 + 10πα6

960π2
.

Proof. From the third inequality in the proof of Lemma 2,

sin 2πα
2π+α

2πα
2π+α

< 1 − α2

3!
(

1 + α

2π

)−2

+ α4

5!
(

1 + α

2π

)−4

which requires only α > 0. Then the inequalities(
1 + α

2π

)−2

> 1 − α

π
+ 3α2

4π2
− α3

2π3
,

(
1 + α

)−4

< 1 − 2α + 5α2

2
,

2π π 2π
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which require 0 < α < 2π , imply

sin 2πα
2π+α

2πα
2π+α

< 1 − α2

3!
(

1 − α

π
+ 3α2

4π2
− α3

2π3

)
+ α4

5!
(

1 − 2α

π
+ 5α2

2π2

)
.

For the second term of B(α), observe that (tanx)/x has a Maclaurin series with positive coeffi-
cients, and so does x = πα/(2π − 5α), so their composition also has this property, and thus can
be bounded from below by the first few terms:

tan πα
2π−5α
πα

2π−5α

> 1 + α2

12
+ 5α3

12π
+

(
1

120
+ 25

16π2

)
α4.

For this inequality we need α > 0 and πα/(2π − 5α) < π/2, that is 0 < α < 2π/7. Putting
these inequalities into the formula for B(α) and simplifying, we arrive at the inequality of
Lemma 3. �

We now continue with the proof of Theorem 4. Lemmas 2 and 3 imply, after a little algebra,
that

E(α) >
α3

15728640π2
p(α)

for 0 < α < 2π/7, where

p(α) = 81920π2 + 49152π
(
145 − 14π2)α

− 4
(
163840 + 2168253π2)α2 − 163840πα3 − 2185661π2α4.

The polynomial p(α) has exactly one positive zero, α = 0.10294 . . . . Since p(0) > 0, it must be
true that p(α) > 0, and hence E(α) > 0, for 0 < α < 0.10294. These values of α correspond to
m � 16. Table 1 takes care of the remaining values of m, finishing the proof of Theorem 4.

We conclude with two open questions. Is there, for all m � 3, a unique 2m-gon of unit diam-
eter and maximal area? If so, is it symmetric about the diameter that is not in the cycle of the
diameter graph? The answer to both questions is known to be affirmative for m = 3 and m = 4
(see [1,5]).

Table 1
E(α) is positive for small m

m A(α) B(α) E(α) = A(α) − B(α)

3 0.67472 0.63397 0.04075
4 0.72666 0.71843 0.00823
5 0.74901 0.74623 0.00278
6 0.76065 0.75944 0.00121
7 0.76748 0.76687 0.00061
8 0.77183 0.77148 0.00035
9 0.77476 0.77455 0.00021

10 0.77684 0.77670 0.00014
11 0.77836 0.77827 0.00009
12 0.77951 0.77945 0.00007
13 0.78040 0.78036 0.00005
14 0.78110 0.78107 0.00004
15 0.78167 0.78164 0.00003
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