
JOURNAL OF ALGEBRA 63, 444-458 (1980) 

Maximal Duo Algebras of Matrices 

R. C. COURTER 

300 West 107th Street APT 5 B New York, N.Y. 10025 

Communicated by N. Jacobson 

Received October 5, 1978 

1. INTRODUCTION 

Schur proved in 1905 [9] that the maximum number of linearly independent 
commuting F.Z by n complex matrices is g(n) = [na/4] + 1, where [ ] is the 
greatest integer function. This result was generalized to an arbitrary field by 
Jacobson [8]. We prove in this paper that g(n) is the maximum of the dimensions 
of duo subalgebras of the full matrix algebra K, , where K is an arbitrary field. 
We prove that the duo subalgebras of K,, having dimensiong(n) are commutative, 
so that they form the known class of commutative subalgebras with that dimen- 
sion (see [8] and [5]). Another result states that each g(n)-dimensional com- 
mutative subalgebra of K,, is a maximal right duo and maximal left duo subring 
of the endomorphism ring of the group K” of n-tuples. Indeed, these maximality 
properties are enjoyed by a class A,, of local commutative subalgebras of K,, 
whose maximal commutativity was proved in [l]. A local commutative sub- 
algebra of K, belongs to A, if, and only if, its radical consists of all the K-linear 
transformations of N into N’, where N and N’ are any nonzero complementary 
subspaces of Kn; each g(n)-dimensional commutative subalgebra belongs to A, , 
when n > 3. 

We present examples of noncommutative maximal duo subalgebras arising 
from the following theorems: If a ring R possesses a faithful cyclic right module 
M, R has no proper right duo overring contained in the endomorphism ring of M 
A dual theorem, concerning uniform representations, is proved for rings R _C K,, . 

A detailed account of our results and of the mentioned classes of subalgebras 
is forthcoming, but first some general notation is introduced. K is an arbitrary 
field. The space of n-tuples over K is denoted by Kn. Dim S denotes the K- 
dimension of a K-space S. K, is the full algebra of n by n matrices over K; 
I, is the identity matrix. Eij is the matrix with 1 in the (i, j) position and zeros 
elsewhere. The notation (0: V), denotes {ru E W 1 VW = 0 for all w E V}, 
assuming a function on V x W with zero in the range. 

Rings have a unity element; modules are unital, and are right modules unless 
the contrary is stated. The Jacobson radical of a ring R is denoted by rad R 
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or by P. For a commutative group M, End M denotes its ring of endomorphisms. 
A ring is a local ring if, and only if, its nonunits form an ideal. A ring is a duo ring 
[right duo ring] if, and only if, it has no strictly one-sided [strictly right-sided] 
ideals. 

Some preliminary theorems on duo subalgebras make the opening of section 2: 
(i) g(n) is an upper bound of the dimensions of duo subalgebras of K,, , provided 
it is so for those duo subalgebras which are represented indecomposably on Kn 
and, when tl > 3, only the latter can have dimension g(n). (ii) If R is a duo ring 
which has a faithful indecomposable module satisfying the ascending and 
descending chain conditions,then R is a local ring with nilpotent radical. The 
theorem establishing g(n) as an upper bound for the dimensions of duo sub- 
algebras R of K, is theorem 3 in section 2, which also states that for rr > 3, 
R can beg(n)-dimensional only when R/(rad R) is isomorphic to K. A supporting 
theorem, theorem 2, states that for n < 3 each maximal duo subalgebra of K,, is 
commutative with dimension 71 = g(n). 

DEFINITION. Let n > 1. For n* E { l,..., (n - I)), let P(n*) = P(n*, 11, K) C 
K,, be the zero algebra generated over K by 

A@*) = A@*, n, K) denotes the algebra KI, + P(n*). 

DEFINITION. Let 12 > 1. A, = A,(K) denotes the class of all subalgebras R 
of K, which are similar to A(@*, n, K) for one n* E {I,..., (n - 1)). 

DEFINITION. Let 12 > 1. jn = Jn(K) denotes the class of all subalgebras 
of K, which are similar to 

A(n/2, n, K) when n is even; 

A(@ - 1)/Z n, K) or A((n + 1)/2, n, K) when it is odd. 

For 71 > 3, Jacobson proved that, with one possible minor exception, J,, is the 
set of all maximal commutative subalgebras of K,, with dimensiong(n) [8, p. 4361. 
Proof that the exception does not occur was made by Gustafson [5, p. 5601. 

In section 3, theorem 6, we complete the proof that, for all n, a duo subalgebra 
of K,, having dimension g(a) is commutative. This involves proving that, for 
71 > 3, R is a duo subalgebra with dimension g(n) if and only if R E Jn ; for 
it < 3, theorem 2 is quoted. A consequence of theorem 6 is that a noncommuta- 
tive duo subalgebra of K, with dimension [n2/4] is a maximal duo subalgebra. 

Theorem 11 in section 4 states that duo subalgebras of K, having dimension 
g(n) are maximal right duo subalgebras and maximal left duo subalgebras of 
End Kn, n = 1, 2 ,.... This theorem depends heavily on theorem 10 which 
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establishes these maximal duo-ness properties for the class A, (and thus for 
its subclass I,), of commutative algebras, 12 = 2, 3,.... The effectiveness of 
“maximality in the endomorphism ring of K”” is illustrated by analysis of one 
subalgebra R E A,(K), where K is a finite dimensional extension of its prime 
field F. R, considered as a ring of linear transformations on Fj”, where j = 
(K :F), is maximal right duo and maximal left duo in Fin = End K”. It is 
evident from the F-dimension of R in our example that these maximality proper- 
ties are not provable by direct application to the F-linear situation of any theorem 
known to us. 

Also in Section 4 (Theorem 7) we show that, when M is a faithful cyclic right 
R-module, no proper overring of R contained in End M can be a right duo ring. 
A dual theorem, concerning uniform representations, is shown to hold when 
R C K, (Theorem 8). Essentiality of the finiteness condition in theorem 8 is 
shown by a uniform R-module M which has infinite K-dimension, such that R is 
commutative but not maximal commutative in End,M. In Section 5 non- 
commutative examples of maximal duo rings are presented, arising from 
Theorems 7 and 8. There is an example of a subalgebra of K12 which is not 
right duo and which has no right duo overring in End K12. Section 6 is a list of 
open questions. 

2. THE UPPER BOUND THEOREM 

For a ring R with unity element every right ideal is an ideal if, and only if, 
Rt C tR for every t E R. 

DEFINITION. A ring is called a right duo ring if, and only if, every right ideal 
is an ideal. It is a duo ring if, and only if, it is a right duo ring and a left duo ring. 

Evidently R is a duo ring if, and only if, tR = Rt for every t E R, since we 
consider only rings with unity element. 

We prove some preliminary theorems which reduce the investigation of upper 
bounds to indecomposable representations and thus to local rings. The following 
lemma is proved in [S, p. 4341: 

LEMMA. For positiwe integers q Qnd n, , g(n, + n,) > g(3) + g(%). Equulity 
hbtds only when n, + n2 = 2 or 3. 

THEOREM Pl. For n = I,2 ,..., dim R < g(n) for all duo &a&bras R of K,, 
if and only ;f the inequality holds when Kn is an indecomposable R-module for the 
duo ring R. For n > 3, equulity can hold only if Kn is indecomposable. 

Proof. If e = e2 E End, Kn, eR = {er j r E R} is a duo ring. When the duo 
ring R is a maximal duo subalgebra of K, , e E R can be deduced, since the 
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direct sum of duo rings is a duo ring. Let K* have a nontrivial direct decomposi- 
tion: Kn = MI @M, , where MI and M, are R-modules. Let e be the cor- 
responding projection on MI ; then e E R. MI is a faithful (eR)-module and M, 
is a faithful (1, - e) R-module. eR and (1, - e)R are duo rings. Let lzi = 
dim Mi , i = 1,2. After applying an inner automorphism to K,, R assumes a 
diagonal block form with components in Kn, and Kn,, one of them similar 
to eR, the other to (1, - e)R. The lemma, applied to tlr and n2, proves both 
statements of the theorem. 

THEOREM P2. Let M be an indecomposable right R-module satisfying the 
ascending and descending chain conditions. Let S be a duo ring such that M is an 
S-module and R C S. Then, for each f E S, f is an automorphism of the additive 
group of M, or f is nilpotent module (0: M)s . 

See, for example, the proof in [2, p. 1381 of Fitting’s Lemma. The lemma is 
concerned with R-endomorphisms but the proof is adaptable to theorem P2. 
One needs only to verify that the kernel and image of the group endomorphism f 
are R-submodules. Thus: If m is in the kernel off, mrf E mfS = 0 for each r E R; 
Sf C fS has been used to prove that the kernel is an R-submodule. Proof can 
be made that the image is an R-submodule, using the left duo property, fS C Sf. 

THEOREM P3. Let R be a duo ring which is represehted faithfully on an in- 
decomposable module M satisfying the ascending and descending chain conditions. 
Then the set P of nilpotent elements is the radical of R, P is nilpotent, and RIP is 
a division ring. 

Proof. Let x, y E P. Let m > 0 be such that x’~ = yng = 0. Since R is a right 
duo ring, (x + Y)~” E xmR + y”R = 0, and (xR)” C xmR = 0. Thus P is a nil 
ideal. By Theorem P2, P is the unique maximal ideal of R and RIP is a division 
ring. Nakayama’s Lemma [2, p. 1691, applied to MPi, yields MPi = 0 or 
MPi # MPi+l for each positive integer i. Evidently, MPi = 0 for some j, 
whence Pi = 0. 

NOTATION. We denote by c(N) the composition length of an R-module N. 

THEOREM 1. Let R be a right duo local ring and let MR be a faithful right 
R-module having composition length n. Then the composition length of R does not 
exceed g(n). 

Proof. Let d = c(M/MP), where P is the radical of R. Let {xr + MP,..., 
X, + MP} be an (R/P)-basis of M/MP. Then by Nakayama’s Lemma 
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Let s E R be an annihilator of xI . Since R is a right duo ring, xiRs C xisR = 0. 
We have (0: xi) = (0: xiR), i = l,..., OL, whence 

(0: M) = n(0: qR) = n(0: xi). 

Let ,!I = n - o! denote c(MZ’). Assume, if possible, that for some positive 
integer u, c(P) = u + +I. Since R is a local ring, 

(0: x,.) c P i = I,..., (Y. 

Thus c(P) = ~((0: xl)) + c(xlP), whence ~((0: xr)) 2 u + (o, - l)j3, since 
c(xlP) < j3. If, for any positive integerj < 01, 

c(fj(O:xi))>u+(a-j)P 

is assumed, then 

and c(xj+r(fij (0: xi))) < c(MP) = /3, imply that 

Thus we can obtain ~((0: M)) = c(n (0: xi)) > u > 0, contrary to hypothesis. 
We have c(P) < c@; c(M) = n = OL + ,!3. It has been observed [5, p. 5581 and 
is easily proved that the maximum of UP is n2/4, occurring when (Y = /3 = n/2. 
Since c(P) is an integer, c(P) < [n2/4]; c(R) < g(n). 

Remark. The obvious bijection proves that the dimension of a faithful 
cyclic module over a commutative K-algebra R equals that of R. This traditional 
result extends to right duo K-algebras: If M = xR, then for any annihilators of X, 
xRs C xsR = 0, whence s = 0; r + XT, I E R, is an injection of R onto M. 

THEOREM 2. For n = 1,2,3, each maximal duo subalgebra R of K,, is com- 
mutative and has dimension n = g(n). Either the R-module Kn is cyclic, or R is 
similar to the subalgebra R, of K3 which is generated over K by I3 , E,, and E, . 

Proof. Dim R = n is implied by the second assertion of the theorem and 
the remark above. If Kn is directly decomposable, the pertinent projections 
belong to R. The module is cyclic and the ring is commutative if these properties 
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hold for the direct summands. Thus we assume the indecomposability of K”. 
By Theorem P3, RIP is a division ring, where P is the radical of R. 

When RIP is not isomorphic to K and n = 2 or 3, the dimension of the simple 
module RIP divides n whence dim (R/P) = n. Since RIP has dimension less 
than 4 over its center, it is a field. Kn is a simple, therefore cyclic, module. 
We have g(c(Kn)) = g(l) = 1. By Th eorem 1, c(R) = 1, so that P = 0 and R 
is the field RIP. 

Let R/P g K. We ignore the case n = 1. No maximal duo subalgebra of K, . 
exists such that P2 # 0, since in that case dim R 3 3 > g(2) = 2, contrary to 
Theorem I. Pjo maximal duo subalgebra of KS exists such that P3 # 0 or that 
P? # 0 and dim (P/P”) > 1, since in these cases c(R) = dim R 3 4 >g(3). 
Three cases remain: (i) n = 2 and P* = 0. By Theorem 1, dim R < 2. Since 
each matrix in Kz commutes with the identity, maximal duo-ness implies that 
P # 0. R = KI, + P is commutative. Since dim R = 2, K2 = xR, if x is 
chosen so that .rP # 0. (ii) n = 3 and P” = 0. Clearly, R = KI, + P is 
commutative. By Theorem 1, dim R < 3. KI, is not a maximal duo subalgebra 
of K3, whence P # 0. If M = K3 is cyclic, dim R = 3. If M is not cyclic, 
we see from P # 0 that MP is one-dimensional and there are two generators, 
x1 and x2 . w,P and x,P are nonzero, since M is indecomposable. If P were one- 
dimensional we would have (from x,P = x,P = MP) that R is similar to the 
algebra generated by 1a and ES1 + E3i which is contained properly in the 
commutative subalgebra R, mentioned in the theorem. Thus dim P = 2 and R 
is similar to RI . (iii). n = 3, P* # 0, P3 = 0 and dim (P/P*) = 1. Taking a 
nilpotent element p $ P2 we have p3 = 0, p* # 0. Since dim R <g(3) = 3, 
R equals its 3-dimensional commutative subalgebra generated by I3 , p and p2. 
If x is chosen so that xp* # 0, K3 = xR. 

THEOREM 3. Let R be a duo subalgebra of K,, . Then dim R < g(n). For n > 3, 
equality holds only when R/(rad R) E K. 

Proof. Considering Theorem 2, we may assume n > 3. According to 
Theorem Pl we prove the inequality if we prove it when Kn is indecomposable 
and equality is possible only under this assumption. By Theorem P3, RIP is a 
division ring, where P = (rad R). Let /3 denote dim (R/P); let m = c(K”). 
Then n = /3m. By Theorem 1 c(R) <g(m), which is the required conclusion if 
@ = 1. When m = 1, c(R) = 1, so that R (g K”) has dimension n < g(rz), 
as n > 3. 

Finally we have /3 > 2, m 3 2. From 

[n*/4] = [(@z)2/4] > /3”[m2/4] > fl + P[m2/41 = Mm) 2 bc(R)* 

we have g(n) > PC(R), as required. When fi # 1 strict inequality has been 
obtained, proving the second assertion. 
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3. Duo SUBALGEBRAS WITH DIMENSION g(n) 

We prove now that duo subalgebras of K,withdimensiong(n)are commutative. 

For i = l,..., n let zli be the n-tuple with 1 as the i-th entry and zeros else- 

where, so that M = Kn has the basis {zyr ,..., v,>. v,Eij = S,,“j [Eijv, = Si,oi], 
1 < u, i, j < n, suffice to make K” a right [left] R-module for R C K, . It is 
helpful to consider an abstract background: Let M be a K-space with basis 

@I I..., un}. The dual space M* = Hom,(M, K) has the basis {UT ,..., u;) dual to 
that of M. To each Y E R C End M, we define a linear transformation Y* on M* 
by (r*t*)(m) = t*(mr), for all m EM, all t* E M*. The set R* of linear trans- 

formations so obtained is a ring (the opposite of the ring of linear adjoints 
associated with R) isomorphic to R. Thus its radical, P*, is the set of elements 
obtained from rad R = P. M* is a left R*-module. Our main interest is the 
equality 

(0: (0: P)&* = P*M* 

[3, p. 1901, which shows that {UT ,..., uz-s} is a basis of P*M*, if {U,-B+l ,..., u,) is 
a basis of (0: P),Ll . Then, by Nakayama’s Lemma, M* = R*u$+~+~ + ... + 
R*u* . To justify dropping asterisks in theorems to follow, we mention that 
(J!?~~)‘$ = S,juT, if (eij} is the set of matrix units with respect to {ur ,..., u,}. 
We have proved the following proposition, except for the statement on bounds: 

PROPOSITION 4. Let R be a duo subalgebra of K,, with RIP g K. Let {ul , . . . . u,) 
be a basis of K” such that {u~+~ ,..., u,} is a basis of MP and {u,-~+~ ,..., u,} is a 

basis of (0: P),, . Then Kn is generated minimally by {ul ,..., u,> as a right R- 
module and bJ1 {u,-~+~ ,..., u,} as a left R-module. cu(n - a) and fi(n - ,tl) are 
upper bounds of the dimension of P. 

Proof. We have M = Kvi = x:f uiR. N = xf Kui is a vector space comple- 

ment of MP in M. We claim for any nonzero r E P that the action of r on N is a 
nonzero linear transformation r of N into MP. For some element m = x uisi , 
si E R, mr + 0. Since R is a right duo ring, we have for i = I,..., in 

sir = rt, tiER. 

0 # mr = x uisir = x u,rt, proves that for at least one generator ui , uiy # 0. 
The injection r--f 7 is K-linear from P into the space of linear transformations 
of N into MP, whence dim P .< cy(n - a). Since the left R-module K* is 
minimally generated by fi elements and R is a left duo ring, dim P < /3(n - /3). 

The procedure above involving induced linear transformations was introduced 
into upper bound investigations by Gustafson [5, p. 5581. 

PROPOSITION 5. Let n = 2a + 1, 01 3 2. K, contains no duo subaZgebra R 
achiewing dimension g(n) and satisfying 

dim(M/MP) = oi = dim((O: P),+,) M = K”. 
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Proof. We assume the existence of such a subalgebra R: Dim R = g(2a+ 1) = 
(11~ + OL + 1. By Theorems PI and 3 M is indecomposable and R/P g K. 
Proposition 4 is applicable and its notation is adopted. For P to have [n2/4] = 
or(ar + 1) dimensions, P must provide the full space of linear transformations of 
N = xy Kui into MP. Since M is indecomposable, MP > (0: P). Thus P 
contains the subspace with basis of (Y~ elements 

{Eij 1 1 < i < a, (a + 2) <j < n). 

With the help of these Eij we may choose the remaining basis elements (pi ,...,p,} 
of P so that 

%Pi = sijua+1 1 < i, j < a. 

For some i, ua+,pi # 0, since ~,+r 4 (0: P). Then for j # i 

contradicts ujpi = 0, completing the proof that no such algebra R can exist. 
Recall that the class Jn(K) was defined in the introduction as consisting of all 

subalgebras R of K,, which are similar to A(n*, n, K), where 7t* = [n/2] or 
r(n + 1)Pl. A@*, n, K) = KI, + P(n*, n, K), where P(n*, n, K) is the K- 
space generated by {Eij 1 1 < i < n*, (n* + 1) <j < n}. When n > 3, Jn is the 
class of all commutative subalgebras of K, with dimension g(n) [S] and [5, 
p. 5601. 

THEOREM 6. Let R be a duo subalgebra of K, , where K is an arbitrary field, 
and let dim R = g(n). Then (i) for n > 3, R E J,, ; (ii) for all n, R is commutative. 
Thus for each positive integer n R is a maximal duo subalgebra of K,, having dimen- 
sion g(n) if, and only zf, R is a maximal commutative subalgebra of K,, having 
dimension g(n). 

Proof. For n = 1,2,3, commutativity was proved in theorem 2, so that only 
(i) needs proof. Let n > 3. K* is indecomposable and R/P G K by theorems Pl, 
P3 and 3. Invoking proposition 4 and its notation, 01 = /3 = n/2 when n is even, 
since a(n - a) and /3(n - j3) are upper bounds of the (n2/4)-dimensional algebra 
P. To achieve the dimension, (n2 - 1)/4, of P when n is odd, we must have 
01 = (n -- 1)/2, /3 = (n + I)/2 or the reverse choice, since, by Proposition 5, 
01 = /3 = (n - 1)/Z is impossible. Thus R is similar to A(n*), where n* = n/2 
[(n - 1)/2 or (n + 1)/2], if n is even [odd]. For n > 3, R E Jn(K) has been 
proved. 

COROLLARY. If R is a noncommutative duo subalgebra of K, such that dim R = 
[n4/4], then R is a maximal duo subalgebra of K, . 
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4. MAXIMALITY IN THE ENDOMORPHISM RING OF Kn 

THEOREM 7. Let M be a faithful cyclic right R-module for an arbitrary ring R. 
Let S be a right duo ring which contains R and is contained in End M. Then S = R. 

Proof. For some zc E 111, M = xR. If f  s S, xf = XY for some Y E R. Let 
OL E R. Then a(f - I) E (f - r)S, so that xa(f - Y) E x(f - r)S = 0. Since 
M(f - Y) = 0 and M is a faithful S-module, f  = r; S = R. 

DEFINITION. An R-module M is called uniform, if MI n Ma # 0 for all 
choices of nonzero submodules MI and M, of M. Eviedntly, when the descending 
chain condition holds on submodules of M, M is uniform if, and only if, M has a 
unique minimal submodule. 

In Section 3 we denoted by M* the dual of the n-dimensional K-space M. 
Recall that M* is a faithful left module for a ring R* z R, if M is a faithful 
right R-module. If V is a subspace of M [of M*], the annihilators (0: V) of V 
in M* [in M] form a subspace with dimension n - dim T’. Thus the function 
N + (0: N)Me is a strictly order reversing mapping from the set {N} of subspaces 
of M onto the set of subspaces of M*. 

We note that the set of annihilators in M* [M] of a submodule of M [M*] is a 
submodule, and conclude that M* has a unique maximal submodule if, and 
only if, M has a unique minimal submodule. In the application to follow asterisks 
are avoided. 

THEORE~I 8. Let a subalgebra R of K, be such that K’” is a uniform right 
R-module. Let T be a left duo ring which contains R and is contained in End K”. 
Then T = R. 

Proof. Since the right R-module Kn has a unique minimal submodule, the 
left R-module Kn has a unique maximal submodule N. Thus Kn = Ry for 
every y $ N. Since the left module K’& is cyclic, T = R by Theorem 7. 

Remark. Let the K-space M have countably infinite dimension; let {wi , . . . . 
oj ,...} be a basis of M. If R is the subalgebra of End,M generated over K by 
the identity, E,, ,..., Ej, ,..., M is a uniform right R-module with o,R = Kwl 
as its unique minimal submodule. R is commutative, and is not a maximal 
commutative subalgebra of End,M, since the linear transformation g = 
4’21 + . . . + Ej, + . . . commutes with every element of R. This example 
demonstrates the essentiality of finiteness conditions in Theorem 8. 

DEFINITION. Let sr ,..., x,, , yr ,..., ys be elements of an R-module M and 
let rii E R, 1 < i < m, 1 < j < k. We say that (yij> is dense for the pair 
((x1 ,..., x,), (rl ,...,A) if 
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THEOREM 9. Let R be a commutative ring and let M be a faithful right R- 
module generated by {x1 , . . . , x,,,}. Let Y be a proper submodule of M generated by 
(Yl ,**-, yR}. Let R have mk elements rii , 1 < i < m, 1 <j < k, such that {rij} is 
dense for the pair ((x1 ,..., x,), (yl ,..., yk)). Assume that 

(0: Y)R C (Y: M)R . 

Then, if W is a right duo subring of End M such that R C Wand YW C Y, W = R. 

Proof. Let f E W. We fix elements tij E R such that 

Xif = C Xjtij i = l,..., m. 
i 

Let i #j. Since W is a right duo ring , xifrjor E xirj,W = 0. Thus, when i fj, 
we have for a: = I,..., k 

0 = xifrj, = C xatiPrja = C xgr&, = xjrjatij = yatij . 
* P 

We have proved that 

tij E (0: Y)R C (Y: M)R i#j (4 

Let /3 E {l,..., k}. An element g, E W exists such that 

f 1 ri6 = C rid6 - 
z 1 

For a E {I,..., m}, yf$& = x,raBg8 = X,(Z:i r&B = XmfEi rid = L.j xAiri8 = 

ys(x:i tar). But by assertion (A) YtEi = 0, when i # a, so that we have obtained 

Y&3 = Y&o: I <a<m. 

Thus for each 01 and for each generator ya of Y, yB(tll - t,J = 0. Since R is 
commutative, 

tll - t, E (0: Y)R C (Y: M), a = l,..., m. P) 

Let S, denote the complement of {a} in { I,..., m}. From assertions (A) and (B), 

X,(f - t,,) = 1 4taj + X&x, - t,,) E y 1 <a<m. 
% 

Letf* =f - tll. ForeachsER,xsf*ExJ*WCYWCY,l <a,(m.Thus 
we have 

Mf”CY, f”=f-tll. 

481/63/2-12 
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For i = I,..., m, let xif* = Cjyjcij, Cii E R. Then xif * = x:i xirijcij - Let 
p = xisi rijcij . Since x& riicij) = 0, when OL f i, we have 

xif* = xip i=l ,..., m. 

For i = l,..., m, xiR(f* - p) C xi(f* - p)W = 0. Since M = C x,R is faithful 
for W, f * = p. We have proved that f = t,, + p E R; W = R. 

In the introduction the class A,(K) was defmed as the union of similarity 
classes determined by {A(n*, n, K) 1 n* = l,..., (n - 1)}, where A(n*, 12, K) = 
A(n*) is the subalgebra KI, + P(n*) of K, , where P(n*) is the subalgebra 
generated over K by 

(Eij 1 1 < i < n*, (n* + 1) <j < n}. 

It was proved in [1, p. 441 that subalgebras in this form are maximal commutative 
subalgebras of K, . 

THEOREM 10. Let R E A, , n = 2, 3 ,.... Then the commutative algebra R is a 
maximal right duo and maximal left duo subalgebra of End K”. 

Proof. Let R = A(n*), n* ~{l,..., (n - 1)). Let P = (rad R). In terms of 
the canonical basis {v, ,..., v,} of M = Kn, let Y = MP = Kv~*+~ + .*. + 
Kv, = (0: P)M. We note that M = CT* viR, and that {Eii ] 1 < i < n*, 
(n* 7 1) <j < n} is dense for the pair ((vl ,..., v~,), (vn*+i ,..., v,)). The 
hypotheses of Theorem 9 are satisfied, if we show that YWC Y for each right 
duo ring W which contains R and is contained in End K”. Given such a ring W, 
we suppose that f E W satisfies 

d=yf$Y 

for somey E Y. For some integer h < n*, the h-th entry, dh , of the n-tuple d is 
nonzero, then. Since W is a right duo ring, fE,,,, = Ehnw for some w E W. Since 
Y = (0: P),,f, yEnnw = 0. But this contradicts yfEhla = dE,, = (O,..., 0, dh), 
a nonzero n-tuple. We have YW C Y. By Theorem 9, R is a maximal right duo 
subalgebra of End K”. 

For the subalgebra R which is similar to A(n*), the algebra formed by taking 
transposes of the matrices, in R is similar to A(n - n*) and a maximal right duo 
subalgebra of End Kn, whence R is a maximal left duo subalgebra of End Kn. 

Remark. In order to illustrate the effectiveness of theorems which imply that 
a subalgebra of K,, is a maximal duo subalgebra of End Kn, we make an example. 
Let K be an extension of its prime field F such that (K: F) = j < co. Then 
End K = Fj and End K” = Fin. In our example n = 6 and K is a cubic 
extension field of its prime field F. Let R = A(2,6, K). The K-dimension of R 
is 9. R, considered as a ring of operators on FIB, is a commutative subalgebra 
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of Frs having F-dimension 27. By Theorem 10, R is a maximal right duo and 
a maximal left duo subalgebra of F18 . One can verify that the F-dimension of S 
is either 18 or exceeds 32, when S E A,,(F). Thus our example is not an illustra- 
tion of applying any of our results directly to the F-linear situation. Theorem 7, 
however, will not produce additional examples by this sort of indirect application, 
for the algebra would again be represented cyclically on Fin. A similar comment 
holds for uniform representations. 

THEOREM 11. If R is a duo subalgebra of K, and dim R = g(n), R is a maximal 
right duo and a maximal left duo subring of End Kn. 

Proof. It is sufficient to prove that R is a maximal right duo subring, since 
the algebra formed by taking transposes of the matrices in R also satisfies the 
hypothesis. When n < 3, either R is similar to 42, 3, K) or the representation 
is cyclic by Theorem 2. When n > 3, R E A,(K) by Theorem 6. Theorems 7 
and 10 imply that R is a maximal right duo subring of End Kn. 

5. EXAMPLES 

Noncommutative maximal duo subalgebras of K, will be presented. These, 
of course, have dimension less than g(n). The third example has dimension 
greater than n. 

The canonical basis of the n-tuple space will be denoted by {e(l)..., ZJ,}. 

EXAMPLE A. Both cyclic and uniform representation are illustrated by the 
division ring Q of real quaternions imbedded in K4 , where K is the field of real 
numbers. Thus Q is a maximal right duo and a maximal left duo subring of 
End K”. The following imbedding appears in [7, p. 81: 

-b -c -d 
b a d -c 

a, b, c, d E K 

EXAMPLE B. A noncommutative subalgebra of K12 which is not a right duo 
ring and is not contained in a right duo subring of End K12. Let K be the field 
of real numbers. Let R be the tensor product, Q @ S, of the algebraQ of example 
A and the following subalgebra of K3 : S = KI, + KElz + KE13 . Since K4 .= 
(1, 0, 0,O)Q and KS = (1, 0, O)S, K12 = oR, where w = (1, 0, 0,O) @ (1, 0,O). 
By Theorem 7 a proper overring of R contained in End K12 can not be a right 
duo ring. We show that R is not a right duo ring. For t E Q, let tI denote t @ I3 , 
let t denote t @ El2 , and let t* denote t @ El3 . Clearly, rad R = {tl + tg ) 
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li E Q} and (rad R)s = 0. Let e be the unity element of Q. Choose noncommuting 
elements f and g in Q. Suppose that w exists in R such that 

CM+ e*) = (d) + g* = (7+ e*)w. 

Then w must have the form (f-l gf)l + wr , where w, E rad R. Since 
(f + e*)wr = 0, (j + e*)w) = (2) + (f-l gj)*. But by our assumption, 
f-‘gf # g. We have proved that R is not a right duo ring. 

PROPOSITION. Let R be a K-algebra with identity I such that R is the direct 
sum as a K-space of KI and the radical P of R. Assume that P is anticommutative. 
Then R is a duo ring. 

Proof. For k E K and w, v E P, we have 

(kI+v)w=kw+vw=w(kI-v)EwR; 

w(kI+v) = kw-vw =(kI-v)wERw. 

Since-vR = R = Ry, when y is an invertible element of R, the proof is complete. 

EXAMPLE C. A noncommutative duo ring R which is a 7-dimensional 
maximal right duo subalgebra of K, . Let K be a field whose characteristic 
is not two. We claim that the algebra R defined below satisfies the hypothesis of 
the proposition above: 

/la b c d e O\ 1 \ 

R: 

0 a o-co 0 
OOabOO = 
OOOaOO a, b, c, 4 e, P, q E K 

OOOOaO 
\ \O 0 0 P 4 a/ 1 

We claim that, when a = 0, the radical P is obtained, that P is anticommutative 
and that Pa = 0. Let a = 0, b, c, d, e, p and q define a matrix T E R and let 
a = 0, b’, c’, d’, e’, p’ and q’ define a matrix T’ E R. Then TT’ = (-bc’ + cb’) 
El4 = - T’T. The product of three such matrices is zero, then. By the proposi- 
tion, R is a duo ring. 

Let M’ be the subspace of IP generated over K by {vr ,..., v5}. M’ is the R- 
submodule qR of IP. Thus, by Theorem 7, R/(0: M’)s is a maximal right duo 
subring of End M’. Suppose, if possible, that R is properly contained in a right 
duo ring S, 5’ C Ks . Let u E S, (T 6 R. Since U’S restriction to M’ belongs to R, 
we are interested in an element 

u = c kirEii 
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where the summation is taken over the eleven pairs (i, j) such that i or j equals 6. 
Since EB4 and Ea5~ S, we stipulate k,, = k,, = 0. We proceed to prove that 
u = 0. Let b denote the matrix in the definition of R which is obtained by 
setting b = 1, while the remaining parameters vanish. Let similar definitions 
hold for C, a, C, p and 4. The vanishing of k,, , k,, , and k,, is proved by the 
following steps in sequence: et,a;E = k,,v, E v&3 = 0; v,ut = - k,,v, E 
v&S == 0; v& = k,,v, E v,$S = 0. We have proved that u = xi k,,E,, . 

For i = l,..., 5, v,oE,, = Kiev, E v,E,,S = 0. Thus ki, vanishes, 1 < i < 5, 
and we have proved that u = keBE,, . 

v6E61(kB,Je - U) = k,,v, E v,(k,,I, - o)S = 0 proves that ke6 = 0. (r = 0 has 
been proved, whence S = R. R is a duo, maximal right duo subalgebra of KG . 
We mention that maximal left duoness is also provable. In proving this it is 
helpful that a quotient module of Ks, K6/(v,R), is uniform. 

6. OPEN QUESTION 

(a) Does a maximal commutative subalgebra of K, exist which is not a 
maximal duo subalgebra of K, ? 

(b) When Kn is a faithful cyclic right R-module, can R have a proper 
overring S _C End Kn which is a left duo ring I 

(c) Section 3 establishes [7z2/4] as an upper bound for dimensions of 
noncommutative duo subalgebras of K,, . For n > 4, is [n2/4] the maximum? 
For 71 = 4, see example A. 

(d) We conjecture that maximal duo subalgebras of K, exist with dimension 
less than 71. In case they exist, find a lower bound of the dimensions of these 
subalgebras. In the case of maximal commutative subalgebras a lower bound, 
n2j3, has been proved [5, p. 5611. 

(e) Assuming that conjecture (d) is true, is zero the greatest lower bound 
of the ratios {(dim R)/n 1 R a maximal duo subalgebra of K,}? For maximal 
commutative subalgebras, this greatest lower bound property has been established 
[4, p. 91. 
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