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The index theory of Rybakowski for isolated invariant sets and attractor-repeller 
pairs in the setting of a semiflow on a not necessarily locally compact metric space 
is extended to include a connection matrix theory for Morse decompositions. Par- 
tially ordered Morse decompositions and attractor semifiltrations of invariant sets 
are defined and shown to be equivalent. The definition and proof of existence of 
index filtrations for an ordered Morse decomposition is provided. Via the index 
filtration, the homology index braid and the connection matrices of the Morse 
decomposition are defined. 0 1988 Academic PESS, hc. 

INTRODUCTION 

In a series of papers the Conley index theory for locally compact local 
(semi)flows in a flow on a Hausdorff space is developed. Conley [l] 
defines the index for an isolated invariant set. The index is defined via the 
index pair, a pair of compact sets which act, roughly, as an isolating 
neighborhood of the invariant set and an exit set for the isolating 
neighborhood. Conley [l] and Kurland [7,8 J extend the theory to 
include an index sequence for attractor-repeller pairs in an isolated 
invariant set. The index sequence is defined via index triples for the 
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attractor-repeller pair. Conley and Zehnder [2] generalize the index triple 
to an index filtration for a totally ordered Morse decomposition of an 
isolated invariant set, and using the index filtration develop Morse 
inequalities for such Morse decompositions. The first author in [4-61 
further develops the index theory for Morse decompositions. The 
homology index braid of a Morse decomposition of an isolated invariant 
set is introduced in [4]. The homology index braid is defined via index 
filtrations for partially ordered Morse decompositions. The connection 
matrix theory for Morse decompositions is developed in [S]. The collec- 
tion of connection matrices is an algebraic invariant of the homology index 
braid. 

Rybakowski [IO, 113 and Rybakowski and Zehnder [12] develop a 
corresponding index theory for the setting of a local semiflow on a (not 
necessarily locally compact) metric space. In this setting the compactness 
condition on the index pair (and therefore index triple and filtration) is 
weakened to a condition called admissibility. The index of an isolated (by 
an admissible neighborhood) invariant set and the index sequence of an 
attractor-repeller pair in such an invariant set are developed in [lo] and 
[ 111, respectively. Morse inequalities for Morse decompositions are 
established in [12]. In this paper we further develop this index theory to 
include a connection matrix theory. It is via index filtrations for partially 
ordered Morse decompositions that the connection matrices are ultimately 
defined, so it is the main intent of this paper to establish the existence of 
index filtrations. 

The paper begins in Section 1 with basic background definitions. In 
Section 2 we define ordered Morse decompositions and attractor 
(semi)liltrations and establish the relationship between them. In Section 3 
we define and prove the existence of index filtrations for partially ordered 
Morse decompositions. Finally, in Section 4 the homology index braid and 
the connection matrices of a Morse decomposition are studied. 

1. DEFINITIONS 

Throughout this paper P denotes a finite indexing set with p elements. A 
partial order on P is a relation, <, on the elements of P satisfying 

(1) rc<n never holds for nEP, 

(2) rc < n’ and 7~’ < rc” imply rc < rc”. 

A total order on P also satisfies 

(3) for every rc, 7~’ E P either 7t < rr’ or 7t’ < rc. 

Assume throughout that ( is a partial order on P. 
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An extension of < is a partial order < * on for which n < rc’ implies 
x < * IC’. If < * is a total order, then it is called a linear extension of <. 

An interval in < is a subset ZC P for which n, rc’ E I and 7c < rr” < rr’ 
imply rr” E Z. The set of intervals in < is denoted I( < ). ZE I( < ) is called an 
attracting interval if n E Z and n’ < 7c imply rr’ E I. The set of attracting inter- 
vals in < is denoted A( < ). Theorem 2.4 provides the justification for the 
use of the term “attracting.” It should be noted that 4 E A( < ). 

An adjacent n-tuple of intervals in < is an ordered collection (I,, . . . . Z,,) of 
mutually disjoint intervals of < satisfying 

(1) u;=* ZiEZ(<), 
(2) nil,, rr’EZk, j<k imply rc’ k 7~. 

The collection of adjacent n-tuples in < is denoted I,( < ). Note that 
I( < ) = I,( < ). If (I, J) is an adjacent pair (i.e., 2-tuple) of intervals, then we 
set ZJ= Zu J. If (I,, . . . . I,) E I,,( < ) and U;=, Ii = Z, then (I,, . . . . I,,) is called 
a decomposition of I. If (Z, J), (J, I) E Z,( < ), then Z and J are said to be non- 
comparable. If ( rc, z’} E I( < ), then 7c and n’ are said to be adjacent in the 
partial order. 

See [4] for more details on partial orders. 
The dynamics in which we are interested lie in a metric space X with 

metric d( ., .). Specifically, let D be an open subset of [0, co) x X and 
$: D + X be continuous. Set x. t = IC/(t, x). $ is called a local semiflow if the 
following properties are satisfied: 

(1) For every XEX there exists o,, O<W,~< co, such that (t, X)ED 
if and only if O<t<o,, 

(2) x.0=x, 

(3) if (t,x), (s,x.t)~D, then (t+s,x)~D and x.(t+s)=(x.t).s. 
Throughout the remainder of the paper assume that a local semiflow $ is 
fixed. 

If YcXand QC [0, co), then we define Y.Q= {x.tlx~ Y, tee}. 
If Y c X is such that o, = cc for each XE Y, then we define the o-limit 

set of Y to be the set o(Y) = fir>,, d{ Y. [t, co)}. 
If x E X, then a solution through x is a continuous map 

where a E [ - co, 0) and G.~ satisfies 

(1) fJx(O)=x, 
(2) for t E (a, w,) and s > 0 with s + t < o,, it follows that s < w,,(,) 

and crJ t) . s = rrX( t + s). 
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If a = - co, then ox is called a full left solution through x. If, in addition, 
o, = co, then ox is called a full solution through x. 

If (T,~ is a full left solution through x, then we define the w*-limit set of err 
to be the set o*(c,) = flraO cl{a,(( - co, -t])}. Note that since 0x is not 
uniquely determined for x, o*(o,) is dependent on the full left solution 
chosen, not just on x. 

For Y c X we set 

A+(Y)=(xEXlx.[O,w,)c Y> 

A ~ ( Y) = {x E XI there is a full left solution c.~ 

through x such that a,(( - GO, 0] c Y}. 

A set S c X is called invariant if S = A +(S) = A I. It is implicit in this 
definition that there is a full left solution through each point in an invariant 
set. 

2. MORSE DECOMPOSITIONS AND ATTRACTOR SEMIFILTRATIONS 

Assume throughout the remainder of the paper that S is a compact 
invariant set and w,~ = co for each x E S. Therefore there is a full solution 
through each x E S. 

A subset A c S is called an attructor in S if there exists a neighborhood 
U of A such that w( Un S) = A. If A is an attractor in S, then A* := 
{x~SIco(x)nA=#} is called the repeller dual to A in S. The pair (A, A*) 
is called an attractor-repeller pair in S. 

One is often interested in decomposing the invariant set S into liner 
invariant subsets. One way to do this is to consider sets of attractors in S. 
More specifically, 

DEFINITION 2.1. An attractor filtration of S is a finite collection, 1;4, of 
attractors in S satisfying 

(2) ifAl,A,Ed, then AlnA2, AluAz~d. 

Another refinement can be obtained by considering mutually disjoint 
compact invariant subsets of S. Specifically, 

DEFINITION 2.2. A (<-ordered) Morse decomposition of S is a collec- 
tion M(S)= {M(~z)),,~ of mutually disjoint compact invariant subsets of 
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S such that if x E S and c,: Iw -+ S is a full solution through x, then one of 
the following holds: 

(1) there exists TCEP such that a,(lR)cM(rr), 

(2) there exist rc, rr’~ P such that rr < rc’, w*(o,)c M(rc’), and 
o(x) c M(n). 

We usually write M for M(S); however, it is important to note that the 
definitions below do not depend only on the collection of sets M, but also 
on the invariant set S of which M is a Morse decomposition. 

If S, and S, are compact invariant subsets of S, then we set 

C(S,,S,)={x~Slo(x)cS,ando*(a,)cS,for 

some full solution (T, : [w + S>. 

Throughout the remainder of the paper assume M= {M(X)},, P is a 
Morse decomposition of S. Note that C(M(rc), M(rc)) = M(X) for each 
n E P. Furthermore note that if x E S\lJneP M(X), then there exists n < 7~’ 
such that x E C(M(rr’), M(rc)); however, because of the nonuniqueness of 
full solutions through x, there does not necessarily exist a unique rr’ E P 
such that x E C(M(rc’), M(rc)). 

The partial order < on P induces an obvious partial order < on M, 
called an admissible ordering of M. M may have many admissible 
orderings, but there is an “extremal” admissible ordering on M, called the 
flow ordering of M and denoted < F, which is such that TL cF 7~’ if and only 
if there exists a sequence of distinct elements of P: ?I = q,, . . . . TT,, = TT’, such 
that C(M(rrj), M(nj- i)) #d for eachj= 1, . . . . n. It is not difficult to see that 
every admissible ordering of A4 is an extension of the flow ordering of M. 

Conley [l] and Franzosa [3] show the equivalence of attractor 
filtrations and ordered Morse decompositions for the setting of a flow on a 
locally compact space. In the setting that we consider here Rybakowski 
and Zehnder [ 121 show the equivalence holds if the admissible ordering of 
the Morse decomposition is a total order. In this section we consider the 
case where the admissible ordering is a partial order. We need a broader 
type of filtration of attractors to establish the desired equivalence. 

DEFINITION 2.3. An attractor semifiltration of S is a finite collection G’ 
of attractors in S satisfying 

(1) 4,SEd9, 
(2) if A,, A,E&, then A,uA,E&’ and o(A, nA,)Ed. 

If A is an attractor, then w(A) =A, hence an attractor filtration is an 
attractor semililtration. We show that given an ordered Morse decom- 
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position of S, there is a corresponding attractor semifiltration, and vice 
versa. The admissible ordering plays an important role in the correspon- 
dence. 

For ZE Z( < ) define 

M(I)=(~,M(n))u(~~~,C(M(n),M(n.))) 

The sets M(Z) are called the Morse Sets of the admissible ordering of the 
Morse decomposition and the collection {M(Z)},.,,,) is denoted MS( < ). 
If < is the flow ordering of the Morse decomposition then we call MS( < ) 
the Morse sets of the Morse decomposition and denote it by MS(M). It is 
easy to see that MS( < ) c MS(M) for each admissible ordering < of M. 

The Morse sets that correspond to attracting intervals in < form an 
attractor semililtration of S (Theorem 2.4 below), but not necessarily an 
attractor filtration (Fig. 2.1). 

THEOREM 2.4. The collection d := {M(Z) IZEA( < )} is an attractor 
semifiltration of S. 

Before proving Theorem 2.4 we need 

LEMMA 2.5 (cf. [ 11, Corollary 3.11). Zf (A, A*) is an attractor-repeller 
pair in S, and C is compact and such that A c C and A* n C = I+$ then 
o(C) = A. 

Proof: We prove that for each E > 0 there is a t, such that d(C . t, A) < E 
for all t > t,. From this the lemma easily follows. 

Assume that the claim is not true, i.e., that there exists E > 0 and sequen- 
ces {z,}cC, t,+co such that d(z,.t,, A)>&. Set B= (xESId(x, A)aE}. 
Thus z, . t, E B for all n. Let E’ be such that if d(z, A*) < E’ then z $ C, and 
set B’ = {x E S 1 d(x, A*) < E’}. B is closed and disjoint from A; therefore by 
[ll, Lemma 3.11 it follows that for sufficiently large n, Z,E B’. But 
B’ n C = 4 and z, E C; contradiction. 1 

Proof of Theorem 2.4. We begin by showing that M(Z) is an attractor 
for each ZE A( < ). If ZE A( < ), then it is easy to see that there exists a 
linear extension < * of < such that ZE A( < *). M is a Morse decom- 

M(2) M(3) 

Y  
M(1) 

FIG. 2.1. The attracting Morse sets do not form an attractor filtration since 
M(12)nM(13)#M(l). 
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position of S with total admissible ordering < *. By Rybakowski and 
Zehnder’s definition of Morse decompositions in terms of nested attractor 
filtrations, along with their propositions 2.3, 4 [ 123, it follows that M(Z) is 
an attractor in S. 

4=M(b) and S=M(P); th ereore 4, SE&. If Z, .ZEA(<), then f 
ZUJE A( <); therefore M(ZuJ) is an attractor. We claim that M(Z) u 
M(J) = M(Zu .Z), and therefore M(Z) u M(J) E d. Clearly M(Z) u 
M(.Z)c M(ZuJ). Let XE M(ZuJ); we show that XEM(Z) u M(J). If 
0.x: [w -+ S is a full solution through x, then there exists rr’, rt E Zu J such 
that x 6 rr’, ~*(a,~) c M(x’), and o(x) c M(z). If n’ E Z, then rc E Z, therefore 
since x E C(M(rc’), M(rr)), it follows that x E M(Z) c M(Z) u M(J). 
Similarly, if rc’ E J, then x E M(Z) u M(J). Thus M(Zu J) = M(Z) u M(J). 

If Z, JEA( <), then In JEA( <); thus M(Zn J) is an attractor in S. We 
claim that w(M(Z) n M(J)) = M(Zn J), and therefore u(M(Z) n M(J)) E&. 
Clearly M(Z) n M(J) is compact and contains the attractor M(Zn J). It is 
easy to see that if XEM(Z) n M(J), then u(x)c M(Zn J); therefore 
M(Z) n M(J) is disjoint from the repeller complementary to M(Zn J). 
Lemma 2.5 then implies that u(M(Z) n M(J)) = M(Zn J). 1 

Thus an admissible ordering of a Morse decomposition determines an 
attractor semililtration; we call this the attractor semz@tration defined by 
the admissible ordering < of M. The converse is proved in Theorem 2.6. 

In the proof of Theorem 2.4 it is shown that if Z is an attracting interval 
then M(Z) is an attractor in S. It is not difficult to see that M(P\Z) is the 
complementary repeller, and, more generally, if (Z, J) E Z2( < ) then 
(M(Z), M(J)) is an attractor-repeller pair in M(ZJ). 

THEOREM 2.6. Zf & is an attractor semifi:ltration of S, then there exists a 
Morse decomposition M of S with an admissible ordering such that d is the 
attractor semifiltration defined by the admissible ordering. 

Proof: Order the attractors in d: A,, . . . . A,, so that Aic Aj implies 
that i<j. Let Ai= Ui=i A,; {Ai} is an increasing sequence of attractors in 
S, A, = 4, and A, = S. By Rybakowski-Zehnder [ 12, Definition 2.2 and 
Propositions 2.3, 43 the collection of Ais determines a Morse decom- 
position A4 = {M(i) } i = ,,,.,, k of S where M(i) = 2; n A,*_ 1 for each i = 1, . . . . k. 

We need to define an admissible ordering < * on M so that d is the 
attractor semifiltration defined by < *. First we claim that for each 
M(i) E A4 and A E zz’, if M(i) n A # 4 then M(i) c A. To see this, first note 
that M(i) c A,; therefore o(Ai n A) n M(i) # 0. Thus by the construction of 
the A;s and the definition of A4 it follows that w(A,n A) & A, for 
j=l 2 ...> i- 1. Therefore, since o(A;n A)E~ and o(A,n A)c Ai, it follows 
by the ordering of the attractors in & that o(Ain A) = A,. But 
o(AinA)cA; so M(i)cAj=w(AinA)cA. 
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Now define a partial order < .+ on (1, . . . . k} i < *j if there exits A E&! 
containing M(i) but not M(j) and if every A E d containing M(j) also 
contains M(i). It is easy to see that < * is a partial order; we claim that M 
is a <,-ordered Morse decomposition. We must show that if x E S and 
cry: R -+ S is a full solution through x then either U,(R) c M(i) for some i, 
or there exists i < * j such that u(x) c M(i) and o*(o.,) c M(j). Suppose 
the former does not hold; then since A4 is a <-ordered Morse decom- 
position where < is the usual order on the integers, it follows that there 
exists i < j such that o(x) c M(i) and w*((T,~) c M(j). We claim that i < * j. 
It is easy to see that A, E d contains M(i) but not M(j). We need to show 
that every A E & containing M(j) contains M(i). Thus assume 
M(j) c A E&; then since ~*(a,) c M(j) c A, it follows (by [12, 
Proposition 2.11 that o,~( R) c A. Therefore o(x) c A, and since 
o(x) c M(i), it follows that M(i) n A # 4, implying M(i) c A. 

It remains to prove that d is the attractor semifiltration defined by the 
admissible ordering < .+ of M. We need to show that if A E&’ then there 
exists ZE A( < *) such that A = M(Z), and furthermore, if ZE A( < *) then 
M(Z) E&‘. Define I, = { iI M(i) c A } for each A E d. We first show that 
A = M(Z,). By definition of I,, M(i) c A for each in I, ; Proposition 2.1 
[12] then implies that C(M(j), M(i)) c A for each i, je I,. Therefore 
M(Z,) c A. Consider the converse containment. Suppose x E A; there is a 
full solution G,: IR + S through x such that a,(R) c A. Now either 
a,(R) c M(i) for some i, or there exists i < .+ j such that u(x) c M(i) and 
a*(~,) c M(j). In the former case in I, and x E M(i) c M(Z,). In the latter 
case i, j E I, and x E C(M( j), M(i)) c M(Z, ). Therefore A c M(Z,), and we 
have shown that if A E & then A = M(Z) for some ZE A( < *). 

Now suppose ZE A( < ,); we show that MEW. Let A be a minimal 
element of d containing M(Z). By above A = M(Z,); we prove that 
M(Z) = M(Z,) (but not necessarily I= IA), and therefore M(Z) E&. We do 
this by showing that if i E Z,\Z then M(i) = 4, implying M(Z) = M(Z,). Sup- 
pose not; i.e., assume A is a minimal element of d containing M(Z), M(i) is 
nonempty and contained in A, and i $ I. Since i 4 Z, it follows that if j E Z 
then i k * j. Therefore either there exists an attractor B, E d such that B, 
contains M(j) but not M(i), or every A in z2 contains either both M(i) and 
M(j) or neither M(i) nor M(j). In the latter case because M(i) is nonempty 
it follows that M(j) = 4. Let B be the union of the Bis over all j for which 
the former case holds. BE d, and clearly M(i) n B = 4. Furthermore note 
that B contains each nonempty M(j) in M(Z); therefore M(Z) c B. Now 
o(B n A) is in d, contains M(Z), and is properly contained in A. The con- 
tainment in A is proper because o( B n A) does not contain M(i). Thus A is 
not a minimal attractor in & containing M(Z); contradiction. Thus 
M(Z) E &, and the proof of Theorem 2.5 is complete. 1 
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3. INDEX FILTRATIONS 

If S is the maximal invariant set in a closed neighborhood N of itself in 
X, then S is called an isolated invariant set and N is called an isolating 
neighborhood of S. Assume throughout the remainder of the paper that S is 
an isolated invariant set. 

A closed subset N c X is called admissible provided that 

(1) if {xn} cN and {t,} c [0, co) are sequences satisfying 
x, . [0, t,] c N and t, + co, then the sequence {x, tn} is precompact, 

(2) if x E N and o, < co, then x. [0, w,) & N. 

Clearly a closed subset of an admissible set is admissible. 
If N, c N, are closed sets in X, then N, is said to be positively invariant 

relative to N, if x E No, 0 < t < w, and x. [0, t] c N, imply x. [0, t] c N,. 

DEFINITION 3.1. If N, c N, are closed, then the pair (N,, N,) is called 
an index pair for S if 

(1) S c int(N,\ N,), and S is the maximal invariant set in cl(N,\ N,), 

(2) N, is positively invariant relative to N,, 

(3) if x E N,, 0 < t < o, and x. t $ N,, then there exists t’ < t such 
that x. [0, t’] c N, and x. t’ E N,,. 

The index pair is called admissible if N, (and therefore N,) is admissible. 
If (N, , N,) is an index pair for S, then we call the pointed quotient space 

N,/N, an index space for X. 
Rybakowski [lo] proves the existence of index pairs. Furthermore, he 

proves that if (N, , N,) and (N; , Nb) are admissible index pairs for S, then 
there is a flow-defined homotopy equivalence between the corresponding 
index spaces. Thus, associated to an invariant set S with an admissible 
isolating neighborhood there is a homotopy type of a pointed space, h(S), 
and if (N,, N,) is an admissible index pair for S, then h(S) equals the 
homotopy type of the index space N,/N,. We call h(S) the Conley index 
of s. 

Note that our definition of an index pair differs from that of Rybakowski 
because we do not require N, to be an isolating neighborhood of S. 
However, it can easily be seen that if (N,, N,) is an index pair for S (as in 
Definition 3.1 above) and N is an isolating neighborhood of S containing 
cl(N,\ N,), then (N n N,, N n No) is an index pair for S in the sense of 
Rybakowski. It follows that the index theory is unaffected by the difference 
in the definitions. 

Assume that (A, A*) is an attractor-repeller pair in S. 
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LEMMA 3.2 (cf. [4, Lemma 3.21). If N is an isolating neighborhood of S, 
and N’ is a closed neighborhood of A disjoint from A* and contained in N, 
then N’ is an isolating neighborhood of A. 

ProoJ: Let T be the maximal invariant set in IV’. We need to show that 
A = T. Clearly A c Tc S. If x E S\ A and 0,: [w + S is a full solution 
through x, then by [12, Proposition2.11 o*(crX) c A*. Therefore since 
A* n N’= 4, it follows that o*(o,) n N’= q5. Thus x# T, implying 
A=T. 1 

Note that the roles of A* and A can be reversed in Lemma 3.2, and 
therefore we have an analogous result for A*. Also note that such sets N 
can always be found, and thus A and A* are isolated invariant sets. 

The index pair for S is generalized to an index triple for (A, A*) via the 
following 

PROPOSITION 3.3 (cf. [4, Proposition 3.31). Assume N,c N, c N,. Zf 
(N, , N,) is an index pair for A, and (N,, NO) is an index pair for S, then 
(N2, N,) is an index pair for A*. 

We call such a triple (N2, N1, NO) an index tripZe for the attrac- 
tor-repeller pair (A, A*) in S. The index triple is called admissible if N, 
(and therefore each Ni) is admissible. Rybakowski [ 1 l] proves the 
existence of index triples for an attractor-repeller pair (A, A*) in S. 

The proof of Proposition 3.3 is almost exactly the proof of 
Proposition 3.3 in [4] with the only difference being that Lemma 3.2 
referred to therein must be replaced by Lemma 3.2 above. The details are 
left to the reader. 

Recall that M= (M(rc)},,p is a <-ordered Morse decomposition of S. 
The index triple for an attractor-repeller pair is generalized to the index 
filtration for an admissible ordering of a Morse decomposition in 
Definition 3.4 below. Specifically, 

DEFINITION 3.4. An index filtration for the admissible ordering < of A4 
is a collection of closed sets JV = {N(Z)},cA(<j satisfying 

(1) for each ZE A( < ), (N(Z), N(4)) is an index pair for M(Z), 

(2) for each I,, Z2 E A( < ), N(Z, n I,) = N(Z,) A N(Z,) and N(Z, n Z2) 
= N(Z,) u N(Z,). 

An index filtration is called admissible if N(P) (and therefore each N(Z)) 
is admissible. 

Now assume that JV = {N(Z)},..,, ) is an index filtration for the 
admissible ordering < of M. Property 1 in Definition 3.4 ensures that in 
JV” there is an index pair for M(Z) for each ZE A( < ), i.e., for every attractor 

JO5/71/2-6 
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in the attractor semililtration defined by <. It is easy to see that if 
JE Z( < ), then there exist Z, KE A( < ) such that (I, J) is a decomposition of 
K. It follows that (N(K), N(Z), N(4)) is an index triple for the attrac- 
tor-repeller pair (M(Z), M(J)) in M(K), and therefore (N(K), N(Z)) is an 
index pair for the Morse set M(J). Thus the index filtration associates an 
index pair to every Morse set of the admissible ordering. Now if 
(N(K,), N(Zj)), i= 1, 2, are index pairs in JV” for the Morse set M(J), then it 
is not difficult to see that Property 2 in Definition 3.4 implies that 
N( K, )\ N(Z, ) = N( K,)\ N(Z,), and therefore the pointed quotient spaces 
N(K,)/N(Z,) are homeomorphic. The importance of this is brought out in 
Section 4. 

The remainder of this section is devoted to the proof of the existence of 
an index filtration for the admissible ordering < of M. This is done by a 
sequence of steps constructing an index filtration. 

Let (N,, N,) be an index pair for S. Rybakowski [ 11, proof of 
Theorem 3.11 shows that for each ZE A( < ) there exists N, such that 
W,, N,, No) is an index triple for the attractor-repeller pair 
(MU), M(P\z)) in S. {Nl)ltAccj fails to be an index filtration only by (the 
crucial) property 2 in Definition 3.4. More work is needed to construct the 
desired index filtration. 

Now, note that if n E Z, then M(z) c int(N,\ N,), and if n$ Z, then 
M(n) c int(N,\N,). For each n E P let D, be the intersection of the sets 
int(N,\N,) for which rc~Z and the sets int(N,\N,) for which n$Z. Note 
that M(rc) c D, for each n E P. Further properties of the D, and the sets E, 
defined at the next stage are discussed in Propositions 3.7 and 3.8 below. 
We continue with the construction of the index filtration here. 

Define E, to be the set of all XE N, such that there exists t with 
x . [0, t] c N, and x t E D,. Now for each ZE A( < ) set 

W)=N,\ u En 
7E[E P\I 

The existence of index filtrations is established by 

THEOREM 3.5. N= (N(Z)},,At,, is an index filtration for the admissible 
ordering < of M. 

Before proving Theorem 3.5 we must establish some properties of the 
sets constructed above. The first proposition states that it is necessary to 
have z<rc’ to be able to flow from D,, to D, in Ni. 

PROPOSITION 3.6. Z~XED,,, x-[O,t]cN,, andx.tED,, then ~~dn’. 

Proof Suppose not. Then there exists ZE A( < ) such that 7~’ E Z and 
rc$Z. So D,. cint(N,\N,) and D,cint(N,\N,). Now XE D,,c N, and 
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x . [0, t] c Ni ; therefore by the positive invariance of N, relative to N,, it 
follows that x. [0, t] c N,. In particular, x . t E N,. However, x. t E D, and 
D, n N, = 4; contradiction. 1 

PROPOSITION 3.7. The E, have the following properties: 

(1) E, isopen in N,, 

(2) if R and 71’ are noncomparable, then E, n E,, = q5, 

(3) ifZ,, Z2eA( <), then 

Proof (1) Suppose XE E,; then there exists t so that x. [0, t] c N, and 
x . t E D,. Note that D, n N,, = d, and therefore by the positive invariance 
of No relative to N, it follows that x. [0, t] n N, = 4. D, is open; let V be 
an open neighborhood of x . t in D,. By the continuity of the flow, U:= 
{ y 1 y . t E k’} is open. Un N, is an open neighborhood of x in N, such that 
ifyEUnN, then y.tED,. We claim that there is an open neighborhood 
U’ of x in Un N, such that if y E u’ then y. [0, t] c N, (thus proving that 
E, is open in N,). Suppose not; then there exist sequences {y,,} c Un N, 
and {t,,} c [0, t] such that y, --t x and y, . t, 4 N, for each n. Since (N,, N,) 
is an index pair, there exists a sequence { ti> c [0, t] such that y, . t: E N, 
for each n. We may assume that tk + t’ E [0, t]. Therefore y, . ti -+ x , t’, 
implying that x . t’ E N,,. However, x . [0, t] n N, = 4; contradiction. 

(2) We prove the contrapositive. Thus assume x E E, n E,,; we show 
that either rr < 71’ or n’d n. There exists t, t’ such that x. [0, t] c N,, 
x.tEDR, x.[O, t’]CNl, and x.t’EDh. If t’< t, then it is easy to see that 
Proposition 3.6 implies that R < rc’. Similarly t < t’ implies rc’ < rc. 

(3) Clearly the containment 3 holds. Consider the reverse contain- 
ment. We need to show that if XE E,E P\Z,, i= 1, 2, then there exists rc’ E 
P\(Z, uZJ such that XE E,.. From (2) it follows that either rr, <rr, 
or rc2 d rti. If rri< 7cj, then since Zi is an attracting interval and rci$ Ii, 
it follows that rcj# Zi. Therefore rrj$ I, u Z,, and if we set rr’ = rtj, then 
~C’E P\(Z, uZ2) and XE E,.. 1 

PROPOSITION 3.8. For each ZE A( c ), N(Z) contains N, and is positively 
invariant relative to N,. 

ProojY Suppose XE N,\N(Z); then XE E, for some IIE P\Z. So there 
exists t such that x. [0, t] c N, and x. t E D, c int(N,\N,). By the positive 
invariance of N, relative to N, it then follows that x . [O, t] n N,= 4. 
Therefore x E N,\ N,; i.e., N, c N(Z). 
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Now suppose that x E N(Z) and x. [0, t] c N,. Furthermore assume 
x . [0, t] d N(Z); then there exist 71 E P\Z and t’ E [0, t] such that 
x. t’ E E,. It is easy to see that this implies XE E,, contradicting x E N(Z). 
Thus x. [0, t] c N(Z). implying that N(Z) is positively invariant relative 
to N,. 1 

Proof of Theorem 3.5. We begin by showing that (N(Z), N(d)) is an 
index pair for M(Z). It follows from Proposition 3.7( 1) that N(Z) and N(d) 
are closed. 

It is easy to see that M(Z) n N(d) = 4. M(Z) c int(N,) c int(N(Z)) where 
the first containment holds because (N,, N,) is an index pair for M(Z) and 
the second holds by Proposition 3.8. It follows that M(Z) c int(N(Z)\ N(d)). 

To see that cl(N(Z)\N(4)) is an isolating neighborhood of M(Z), first 
note that M(P\Z) c UneP,, E,. Now since M(Z) n N($) = 4, it then follows 
that cl(N(Z)\N(d)) is a closed neighborhood of M(Z) that is disjoint from 
M(P\Z) and contained in the isolating neighborhood cl(N,\ N,) of S. 
Lemma 3.2 implies that cl(N(Z)\N(d)) is an isolating neighborhood 
of M(Z). 

N(d)c N(Z) cN,, and by Proposition 3.8 N(gl) is positively invariant 
relative to N,; therefore N(d) is positively invariant relative to N(Z). 

Now suppose that x E N(Z), 0 < t < o, and x. t 4 N(Z). Then since N(Z) is 
positively invariant relative to N,, there exists t’ E (0, t] such that 
x . t’ $ N,. (N,, N,) is an index pair; therefore there exists t” E [0, t’] such 
that x. [0, t”] c N, and x. t” E No. By the positive invariance of N(Z) 
relative to N, and the fact that N, c N(d), it follows, respectively, that 
x . [IO, t”] c N(Z) and x. t” E N(4). Therefore (N(Z), N(4)) is an index pair 
for M(Z). 

Finally note that if Zr, I, E A( < ), then N(Z, r\ Z,) = N(Z,) n N(Z,) follows 
trivially using DeMorgan’s laws, and N(Z, u Z2) = N(N,) u N(Z,) follows by 
DeMorgan’s laws and Proposition 3.7(3). Therefore JV is an index 
filtration for the admissible ordering < of M. 1 

Note that if (N,, N,) is an admissible index pair for S, then JV is an 
admissible index filtration, thus establishing the existence of admissible 
index filtrations. Furthermore note that if N1 is positively invariant relative 
to some isolating neighborhood N of S (and therefore (N, , N,) is an “index 
pair in N” as in Rybakowski [lo]), then each N(Z) E M is also positively 
invariant relative to N. 

4. THE HOMOLOGY INDEX BRAID AND CONNECTION MATRICES 

In this section we outline the derivation of the homology index braid 
omitting details. The steps in the derivation here follow those in [4] exac- 
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tly, except that where Kurland’s results are used in [4], the corresponding 
result of Rybakowski [11] must be used here. We point out that, in most 
of the cases considered herein, Rybakowski’s result is exactly Kruland’s 
(i.e., in such cases Kurland does not explicitly use compactness of index 
pairs). Once the homology index braid is defined, the connection matrices, 
being an algebraic property of the homology index braid, follow 
immediately (see [ 51). 

For the discussion that follows assume a coefficient module G (over a 
PID) is fixed, and let C( .) and H,( .) denote the singular chain complex 
and the singular homology, respectively, with coefficients in G of the 
corresponding topological space. 

If S is an isolated invariant set and (N,, N,) is an admissible index pair 
for S, then the homotopy type of the pointed space N,/N,, is the Conley 
index of S and is denoted h(S). Define H(S), the homology index of S, to be 
equal to the homology of the Conley index of S; i.e., H(S) = H,(h(S)). 

Now let (N,, N,, N,,) be an index triple for an attractor-repeller pair 
(A, A*) in S. There exist inclusion induced maps on index spaces 

NJN, --& N,/N, p-* NJN, 

and induced chain maps 

CW,lN,) ---L CWJN,) p-r C(N,IN,) (4.1) 

i is clearly injective. Note that in (4.1) pi= 0; therefore p defines a chain 
map p: C(N,/N,, N,/N,,) + C(N,/N,). p induces an isomorphism on 
homology (see [4, Proposition 4.11). These are exactly the requirements 
that the sequence be weakly exact, and therefore there is an exact 
homology sequence (see [ 53) 

. ..- fWW&J~ K+dN,IW~ H,(N,/N,) 

A H,(N,/N,) - . . . 

This sequence is independent of the admissible index triple, and therefore 
there is defined an exact sequence of homology indices and maps 

. ..- H(A)& H(S)& H(A*+ H(A)- ... 

We call this the homology index sequence of the attractor-repeller pair. 
Note that this is basically the homology of Rybakowski’s connection index 
of the attractor-repeller pair. 
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Now let M= PW)IeA(<) be an admissible index filtration for the 
admissible ordering < of the Morse decomposition A4 = (M(n)}, E p of S. 
If ZE Z( < ), then we denote the homology index of M(Z) by H(Z). There 
exists at least one index pair in JV” for the Morse set M(Z). If (NI, Nh), 
i= 1,2, are two such index pairs, then the index spaces NI/Nh are 
homeomorphic and therefore the chain complexes C(N;/Nd) are 
isomorphic. It follows that a chain complex Cv4-(Z) is defined for each 
ZE Z( < ) and the homology of the chain complex is H(Z), the homology 
index of the Morse set M(Z). 

If (A 4 E I,( < 1, then (MU), M(J)) is an attractor-repeller pair in M(Z.Z) 
and there is defined a weakly exact sequence 

c”*-(z) r(‘JJ), Cb,“( IJ) p(‘JJ)+ Cu,?(J) (4.2) 

Passing to homology we obtain 

. . .-, H(Z) i(fJJ), ff(ZJ) p(‘JJ), H(J) %JJ)) N(Z) -, . . 

the homology index sequence of (M(Z), M(J)). 
The collection consisting of the chain complexes and chain maps as in 

sequence (4.2) is called the chain complex braid of the index filtration. It 
has the following properties: 

(1) for each ZE Z( < ) there is a chain complex C,,(Z), 

(2) for each (I, J) E Zz( < ) there are chain maps 

Cb,(Z) i(‘JJ)b C”,(ZJ) p(‘JJ)t C.,-(J) (4.3) 

satisfying 

(a) sequence (4.3) is weakly exact, 

(b) the homology sequence associated to sequence (4.3) is the 
homology index sequence of the attractor-repeller pair (M(Z), M(J)), 

(c) if Z and J are noncomparable, the p(JZ, I) i(Z, ZJ) = idIC.,-(I), 

(d) if (I, .Z, K)EZ~( <), then the following braid diagram com- 
mutes: 
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Passing to homology in the chain complex braid of the index filtration 
we obtain %( < ), the homology index braid of the admissible ordering of the 
Morse decomposition. 

&‘( < ) has the following properties: 

(1) for each ZE Z( < ) there is a homology index H(Z) = H(M(Z)), 
(2) for each (Z, J) E Z,( < ) there are maps between homology indices, 

i(Z, ZJ): H(Z) + H(Z.Z), p(Z.Z, J): H(Z.Z) -+ H(J), and a(.& I): H(J) + H(Z), 
satisfying 

(a) ... -H(i) +‘H(Z.Z) -“H(J) -+“H(Z)-+ . ..is exact, 

(b) if Z and J are noncomparable, then p(.ZZ, I) i(Z, ZJ) = id ) H(Z), 

(c) if (Z, .Z, K) E Z3( < ), then the following braid diagram com- 
mutes: 

P 

a 

.r -... 

X( < ) is independent of the index filtration for the admissible ordering. 
Since every admissible ordering of M is an extension of the flow ordering 
< it follows that %( < ) c X( < F). Therefore we refer to %‘( < F) as the 
hozology index braid of the Morse decomposition, and denote it by z(M). 

At this point the appropriate structures for a connection matrix theory 
are defined. The connection matrices are algebraic invariants of the 
algebraic structure s?( < ). We refer the reader to [S] for the appropriate 
definitions and theorems regarding the algebraic connection matrix theory. 

X( < ) is a chain complex generated graded module braid; therefore if 
c= w4e7d is a collection of free chain complexes such that the 
homology of Cd(n) is isomorphic to H(rc) for each n, then there exist 
upper triangular (with respect to < ) boundary maps 

A: @ CA(n)+ @ CA(z) 
?tEP 7tCZP 

that generate an isomorphic image of X’( < ) (see [S]). 
The map A is called a C-connection matrix of the admissible ordering <, 

and the (nonempty!) collection of such maps is denoted %YJ%‘( < ; C). The 
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collection %?A%‘( < F; C) is also denoted VA“(M; C), and each A in 
%?A(M; C) is called a C-connection matrix of the Morse decomposition. 
Since Z(M) contains X( < ), the collection %‘A’(M; C) is defined with 
more algebraic restrictions than %A( <; C), implying that gA’(M; C) c 
gk!( <; C). If each chain complex CA(n) in C is equal to the graded 
module H(n) with trivial boundary map, then the above collections are 
called the connection matrices of the admissible ordering and the connec- 
tion matrices of the Morse decomposition and are, respectively, denoted 
%‘A’( <) and @?A(M). Note that this case occurs when the homology 
indices H(n) are free for each 71 (e.g., when homology is computed using 
coefficients in a field). 

Note that all of the algebraic indices defined in this section are depen- 
dent on the coefficient module G chosen. Therefore reference to G should 
be made in the indices; e.g., H(S; G) = the homology index of S with coef- 
ficients in G, %?A(M; C, G) = the C-connection matrices of M with coef- 
ficients in G, etc. We have left out reference to G here for simplicity. 

To begin interpreting the information in the (C-)connection matrices we 
have the following proposition which is just proposition 5.3 in [ST]. 

PROPOSITION 5.1. If A E %‘M(M; C), 7t and 71’ are adjacent in the flow 
ordering, and A(rc’, n) #O (where A(Tc’, n) is the entry in the matrix A map- 
ping CA(YT’) to CA(z)), then C(M(n’), M(X)), the set of orbits connecting 
M(z’) to M(n) in S, is nonempty. 

Proposition 5.1 describes a situation where information about the set of 
connecting orbits between elements of a Morse decomposition can be 
obtained via the connection matrices of the Morse decomposition. This is 
only an initial interpretation result; as is indicated in [S], it is evident that 
the connection matrices do contain deeper information about the structure 
of the invariant set and the Morse decomposition. The problem of a 
general interpretation theory for the connection matrices needs further 
investigation. 
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