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1. INTRODUCTION 

C.-K. LI, I. SPITKOVSKY, AND S. SHUKLA 

Let M, be the algebra of all n x n complex matrices. For 1 ~< k ~< n, 
the k th  numerical range of A ~ M, is defined by 

W k ( A )  = --~ E x~Axj:  { x 1 . . . . .  7Ck} is  an orthonormal s e t  i n  C" . 
j= l  

When k = 1, Wk(A)  reduces to the classical numerical range of A, which 
has been studied extensively (e.g., see [6]). The k th numerical range is very 
useful in studying matrices and operators (e.g., see [5, 13]), and many 
interesting properties of it have been obtained. We list some of them in the 
following: 

(a) Wk(A)  is compact. 
(b) Wk(A) is convex [1]. 
(c) Wk(U*AU) = W k ( A )  for any unitary U. 
(d) Wk(aA + bI)  = aWk( A)  + b for any a, b ~ C. 
(e) k W k ( A )  = t r A  - (n - k)Wn_k(A) .  
(f) Let H and K be Hermitian matrices. Suppose A = H + iK and 

z{ = a H  + ibK for some nonzero real numbers a and b. Then x + iy 
Wk(A) if and only if ax + iby ~ Wk( 2{). 

(g) {tr A / n }  = Wn(A)  c W n _ I ( A )  c ... c WI(A) [4]. 

The purpose of this paper is to study the condition on A so that 
WIn(A) = W k ( A )  for some given 1 ~< m < k ~< n. It turns out that this study 
is related to a conjecture of Kippenhahn on Hermitian pencils. As a by-prod- 
uct of our study, we obtain a new class of 6 × 6 counterexamples to the 
conjecture of Kippenhahn (cf. Theorem 3.2). 

2. CHARACTERIZATIONS AND A SUFFICIENT CONDITION 

THEOREM 2.1. Let 1 < k <~ n, and let A = H + iK ~ M n with H = H* 
and K = K*. The following conditions are equivalent: 

(a) There exists m with 1 <~ m < k such that WIn(A) = Wk( A). 
(b) Wr(A)  = Ws(A)  for  all 1 <~ r < s <~ k. 
(c) The largest eigenvalue of  uH + vK has multiplicity at least k for  all 

u , v ~ R .  
(d) The largest eigenvalue of  cos 0 H + sin 0 K has multiplicity at least k 

for  all 0 ~ [0, 2at). 
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Proof. Let AI(0)~> ... ~> An(0) be the eigenvalues of Re(ei°A)= 
cos/9 H - sin 0 K. Then 

L ( r , O )  = z ~ C : R e z  = - -  Aj(0) 
r j = l  

is the right support line of the convex set W~(ei°A) = ei°Wr(A) (e.g., see 
[13]). As a result, Wr(A) = W~(A) if and only if L(r, O) = L(s, O) for all 
0 E [0, 2~r). 

Suppose (a) holds. By the arguments in the preceding paragraph, we have 
L(m, O)= L(k, O) for all 0 ~ [0,27r). It is clear that (1 /m)EjmlAj (O)= 
(1/k)E~=IAj(O) if and only if AI(0) . . . . .  Ak(0). Thus, condition (d) 
holds. 

Suppose (d) holds. Then for all 0 ~ [0, 2 ~ )  and 1 <<. r < s <~ k, L(r, O) 
= L(s, 0). Hence, (d) =~ (b). The implications (b) =0 (a), (c) ~ (d) are 
trivial, and (d) =~ (c) because the multiplicity of the largest eigenvalue is 
invariant under multiplication with positive scalars. • 

By Theorem 2.1, we can focus our study on those matrices A for which 
WI(A) = Wk(A) for a given k > 1. In some sense, a complete description of 
such matrices is already given by this theorem, but we are interested in more 
straightforward characterizations. A very simple one is available if n < 2k. 

THEOREM 2.2. Suppose n < 2k and A ~ M,. Then WI(A) = Wk( A) i f  
and only i f  A = Al for some A ~ C. 

Proof. The ~ direction is clear. To prove the converse, we let A = H 
+ i K  with H = H *  and K = K * . L e t  ~1>/ "'" >/ /z, be the eigenvalues of 
H. By condition (c) of Theorem 2.1, the largest eigenvalue of H has 
multiplicity k, and the largest eigenvalue of - H  has multiplicity k. Thus 
/~1 = /£k and - / x  n = - /zn_k+ 1. Since n < 2k, it follows that /z I = / x  n, and 
hence H is a scalar matrix. Similarly, K is a scalar matrix, and so is A. • 

For general n (> /k )  the following sufficiency result holds. 

THEOREM 2.3. Suppose A ~ M,, is unitarily similar to A 1 • "" • A k 
such that WI( A j) are the same for all 1 <~ j <<. k. Then WI( A) = Wk( A). 
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Proof. By the hypothesis, the largest eigenvalue of Re(ei°Aj) are all 
equal to the largest eigenvalue of Re(ei°A) for any 0 ~ [0, 27r). Thus condi- 
tion Theorem 2.1(c) holds, and the result follows. • 

Analogous to the situation when A ~ M n has a multiple eigenvalue, we 
say that the numerical range of a matrix A has multiplicity k if A is unitarily 
similar to A 1 • ... • A k such that WI(A,) are the same for all 1 ~<j ~< k. 
With this definition, Theorem 2.3 can be restated as follows: 

I f  the numerical range of A ~ M, has multiplicity k, then WI(A) = 
Wk(A). 
We are interested in the converse of this statement, namely, 

if A ~ Mn satisfies Wl(A) = Wk(A), then the numerical 
range of A has multiplicity k. 

(2.1) 

If n < 2k, then (2.1) follows from Theorem 2.2. Indeed, in this case 
A = AI,, and one may set A l . . . . .  Ak_ 1 = A, A k = )tin_k+ 1. 

The situation is more complicated when 2k ~< n. We shall consider this 
problem in the next few sections. As will be seen, the study is closely related 
to a conjecture of Kippenhahn on Hermitian pencils. 

3. KIPPENHAHN'S CONJECTURE AND 
NEW COUNTEREXAMPLES 

Let A = H + iK ~ M n with H = (A + A*) /2 .  Consider the homoge- 
neous polynomial 

LA(U,V,W ) = de t (uH + vK + w I ) .  

Every homogeneous polynomial f in three variables defines an algebraic 
curve Ff in the following sense: a line ux + vy + w = 0 is tangent to Ff if 
and only if f (u ,  v, w) = 0. The latter equation is called a line equation of Ff. 
In particular, there exists a curve defined in such a way by the polynomial 
LA; we will denote it by C(A) and call it, as in [11], the associated curve of 
A. It is well known (see [10, 16]) that the numerical range of A coincides 
with the convex hull of C(A): WI(A) = Co C(A). 

According to Theorem 2.1, WI(A) = Wk(A)  if and only if for all fixed 
u, v ~ R the largest root w of L A has multiplicity at least k. In its turn, the 
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conclusion of (2.1) means in particular that A is unitarily reducible, that is, 
unitarily similar to an orthogonal sum of matrices of lower orders. It is 
interesting to compare (2.1) with Kippenhahn's conjecture [10] 

l_~t A ~ M n and L A = f *  g, where f ,  g are polynomials 
in u, v, w and s > 1. Then A is unitarily reducible. (3.1) 

Since f in (3.1) does not necessarily determine the largest eigenvalue of 
u H  + vK,  the hypothesis in (3.1) is weaker than that of (2.1). Obviously, the 
conclusion of (3.1) is also weaker than that of (2.1). Nevertheless, we will see 
in this section that the two statements are closely related. 

Kippenhahn himself showed in [10] that (3.1) holds when the minimal 
polynomial re(u,  v, w )  of u H  + v K  has degree at most 2. Later, H. Shapiro 
proved it in the cases d e g f  = 1, s > n / 3  [18] and deg m ~< 3 [17]. Combin- 
ing the latter two cases, she observed in [17] the following 

THEOREM 3.1. Kippenhahn's  conjecture (3.1) holds i f  n <~ 5. 

However, statement (3.1) is not true in general; counterexamples were 
first constructed by T. Laffey [12] and W. Waterhouse [20]. In the following, 
we describe those counterexamples and discuss their relations with the 
statement (2.1). 

[P x] 01 where EXAMPLE 1112]. Let B = _ X  r Q , C  = 0 ' 

p = 

0 - 1  3 - 6 1  

21 1 0 - 6  - 

- 3  6 0 ' 
6 3 - 1  

p = 

0 - 2  - 2  6 
2 0 6 2 
2 - 6  0 2 

- 6  - 2  - 2  0 

X = 

- 1  - 1  5 - 7 1  
- 1  1 - 7  - 5  J and 
- 1  13 1 - 1  ' 
13 1 - 1  - 1  

U = 2 0 0 
0 0 0 - " 
0 0 2 

Set H = B ~ and K = BC + CB. Then (see [12]) A = H + iK is unitarily 
irreducible and L A is of the form f2 ,  so that all the eigenvalues of u H  + vK 
have even multiplicities. 
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Due  to Theorem 2.1, we have WI(A)  = W2(A). In other  words, the 
statement (2.1) fails for this matrix A ~ M s. 

EXAMPLE 2 [20]. Let S, T be r × r positive definite Hermitian matrices 
with no nontrivial common  invariant subspaee (such matrices exist for all 
r > 1; see [20, Lemma]).  Then  for 

H =  0 , K =  0 , 
S 0 

the matrix A = H + iK is unitarily irreducible, though LA(U , v, w) contains 
a multiple w r. 

Choosing r = 2, we see that the upper  bound  for n in Theorem 3.1 is 
sha W. However, nonzero eigenvalues of  uH + vK in this case equal + 1 
times the singular values of  u2S 2 + vZT e, and are therefore simple for all but  
finitely many directions (u, v). Hence,  [20] does not lead to an example of  a 
6 x 6 unitarily irreducible matrix A with WI(A)  = W2(A). 

In the following, we present such a class of  matrices. They  constitute 
counterexamples to (2.1) and, o f  course, are at the same time (new) coun- 
terexamples to (3.1). 

THEOREM 3.2. Let 

A = 

"0 x 0 cy 0 

0 0 y 0 0 

0 0 0 0 0 

0 0 - c x  0 ~-c2~ 
0 0 0 0 0 

0 0 0 0 0 

0 

0 

0 

0 

r/ 

0 

(3.2) 

where 

x, y, ~, r/, c > 0, x e + y 2 =  ~2 + ~72 = 4, c < 1. (3.3) 

Then A is unitarily irreducible such that WI( A) = W2( A) is the unit circular 
disk ~ centered at the origin. Furthermore, matrices of the form (3.2) 
obtained by different choices of positive vectors (x,  y, ~, ~7, c) are not unitar- 
ily similar. 
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Proof.  L e t  A = H + iK  with H = ( A  + A * ) / 2 .  One can easily check 
(by hand calculation or symbolic software such as Maple or Mathematica) 
that det{(cos t ) H  + (sin t ) K  - z I}  = ( z  2 - c2~q'a/4)(z 2 - 1) 2, and hence 
W I ( A )  = W z ( A )  = ~ by Theorem 2.1. 

We claim that A is unitarily irreducible. To prove our claim, note that A 
is a rank 4 nilpotent matrix such that A 3 ~ 0 = A 4. Thus, A is similar to a 
direct sum of  a 2 × 2 and a 4 × 4 Jordan block. In particular, if A is unitarily 
reducible, then it is unitarily similar to A = AI  • A2,  where 

for some singular value a of  A. Suppose A 1 = H 1 + iK  1 with H 1 = (A  1 + 
AT) /2 .  Then det{(cos t ) H  1 + (sin t ) K  1 - z I }  = z z -  a 2 / 4  is a factor o f  
det{(cos t ) H  + (sin t ) K  - zI} .  Thus a 2 = c2r/2 or 4. 

First, we show that a 2 cannot be 4. Since 

- 0  

0 

0 
A * A  = 

0 

0 

0 

0 0 0 0 0 
x 2 0 cxy 0 0 

0 y2 + c2x 2 0 - c V ~ -  c 2x~ 0 

cxy 0 c2 y z 0 0 

0 -c~/-f - c2x~ 0 ( 1  - c ~ ) ~  2 0 

0 0 0 0 ~7 2 

the eigenvalues of  A * A  are 0, 0, ~z,  x 2 + c~y2 ,  At , and )t 2, where A t and Az 
are the eigenvalues of  the matrix 

y2 + c2x 2 - c ¢ ~ -  c 2x~] 

A° = -c~/1 - c2x~ ( 1  - cZ)~ 2 ]" 

By the fact that 4 --- x 2 + y2 = ~2 + ~72, we see that de t (4I  - A 0) = (1 - 
c2)xerl  2 > O, and hence 4 I  - A 0 is positive definite. So both roots o f  A 0 are 
strictly less than 4. Obviously, r/~ < 4 and x 2 + cZy  2 < x 2 + y~ = 4 as well. 
Hence,  all the singular values of  A are strictly less than 2. 

Now suppose a 2 = c e r / 2 .  I f  A z = H  e + i K  2 with H z = ( A  2 + A ~ ) / 2 ,  
then both H 2 and K 2 have eigenvalues 1, 1, - 1, - 1, and hence  H~ 2 + K~ 
= 21. Thus the eigenvalues of  H 2 + K 2 are the same as those of  (H~ + 

K~) • (H~  + K~), and equal c2~72/2, c2T/2/2, 2, 2, 2, 2. On the other hand, 
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a direct computation shows that (AA* + A * A ) / 2  = H 2 + K 2 is an orthogo- 
nal sum of a matrix in M 5 and the 1 × 1 matrix [r/2/2]. So r /2/2 is an 
eigenvalue of H z + K 2 that is neither cZ02/2  nor 2, which is a contradic- 
tion. Thus A is unitarily irreducible. 

Note that unitarily similar matrices of  the form (3.2) have the same value 
of tr(A*A) = 4(2 + c 2) - c ~  z and have the same set of eigenvalues for 
Re A: 1, 1, - 1 ,  - 1 ,  crl /2,  - c ~ ! / 2 .  By the fact that c, ~, ~ are positive 
numbers satisfying ~2 + r/2 = 4, we see that these three values are uniquely 

determined. Also observe that the only nonzero entry of A 3 is c~/1 - c 2 ~TY, 
in the (1, 5) position. Since x and y are positive numbers satisfying x 2 + 
y2 = 4, we see that x and y are also uniquely determined. Hence, unitarily 
similar matrices of the form (3.2) have to coincide. • 

We remark that the proof of the above theorem can be simplified using 
the result in [10] or the results in the next two sections. Our proof is 
elementary and self-contained. 

4. MATRICES W I T H  MULTIPLE NUMERICAL RANGES 

Although the statement (2.1) is false in general, there are several nontriv- 
ial (different from n < 2k)  situations in which it holds. They are discussed in 
this section. 

Note that if A is Hermitian, then (2.1) follows from Theorem 2.1. In fact, 
one can extend this result to convex matrices (also known as convexoids), i.e., 
those matrices A for which the boundary of W ( A )  is a convex polygon. It is 
well known (e.g., see [6] and [13]) that normal matrices are convex matrices. 
We first establish the following lemma. 

LEMMn4.1. Let  l <~ k <~ n and let A ~ M n. I f  z is a corner o f  Wl(  A)  
and W k ( A ) ,  then A is unitarily similar to zI m • A 2 with m >1 k and z 
w~(A~). 

Proof. Since z is a comer  of W I ( A ) ,  A is unitarily similar to zI,n • A z 
such that z ~ o-(A 2) (e.g., see [2]). We may assume that z = 0 and the 
spectrum of A 2 is in the right open half plane of C; otherwise replace A by 
/xA + r/I for some suitable tz, r / ~  C. Since z = 0 is a comer  of Wk(A) ,  z 
must be the sum of k eigenvalues of A (see [14]). Clearly, none of the 
eigenvalues of A 2 can be included; otherwise the resulting sum will have 
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positive real part. Thus all the k eigenvalues must be chosen from Zlm, and 
hence m >/k. Finally, if z ~ WI(A2), then it is a comer  point of it, and 
therefore z ~ o-(A2), which is false. • 

We are now ready to prove the result on convex matrices. 

THEOREM 4.2. I f  A ~ M ,  is a convex matrix, then the statement (2.1) 
holds. 

Proof. Suppose the boundary of W I ( A )  = W k ( A )  has vertices 
z 1 . . . . .  z m. By Lemma 4.1, A is unitarily similar to ZlI  k q~ "" ZmI k ~ B for 
some B ~ Mn_km. Let Aj = diag(z 1 . . . . .  z m) for j = 1 . . . . .  k - 1, and 
A k = A 1 • B. Then W I ( A  1) . . . . .  W I ( A  k) = W I ( A ) .  • 

In the proof of the above theorem, we see that if A satisfies WI(A) = 
Wk(A) and can be reduced to an orthogonal sum of matrices of lower orders, 
one may be able to arrange the summands into k groups to form A l . . . . .  A k, 
so that the conclusion of statement (2.1) holds. In fact, we have the following 
theorem. 

THEOREM 4.3. Let A be unitarily similar to B 1 • ... ~9 B m so that o f  all 
the blocks B i f o r  which W~( B i) and WI(A) have common extreme points, at 
most k are in M 4 or M 5, and all others are o f  the size 3 x 3 or smaller. Then 
(2.1) holds. 

Proof. If some of the blocks B, are unitarily reducible, we may replace 
./ 

them with orthogonal sums of unitarily irreducible blocks of lower orders. 
Since this procedure does not increase the number of 4 × 4 and 5 × 5 blocks 
having common extreme points of the numerical range with A, we may 
without loss of generality suppose that the Bj themselves are unitarily 
irreducible. 

Hermitian matrices Re(ei°Bj)  depend analytically on 0 ~ ~. Hence [9], 
their eigenvalues Ajk(O) can be numbered in such a way that each of them is 
an analytic function of 0 ~ ~. Being analytic, any two of the functions Ajk are 
either identical or coincide only on an isolated subset of R. The former 
possibility does not occur for Ajk corresponding to the same block Bj due to 
Theorem 3.1. In fact, for low (~< 3) dimensions a stronger result holds and 
can be established by elementary methods. Namely, suppose that for a 
certain O 0 two of the eigenvalues Ajk(00) coincide. If  Bj E Mz, that means 
that Re(e '%Bj)  is a scalar matrix, so that e'°°Bj (and therefore Bj itself) is 
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normal, which contradicts our assumption of unitary irreducibility. So for 
2 × 2 blocks the corresponding eigenvalue functions are different every- 
where, and therefore one of them is bigger than the other everywhere on R. 
Let us agree to denote the bigger one by A, 1. 

For Bj ~ M3, the point 00 can indeec~ exist. Of  course, all the points 
00 + zrT/then have the same property. Suppose now that there are points 0 
different from those found above for which we also get a multiple eigenvalue. 
Then we have two linear combinations H k = c k Re Bj + d k Im Bj, k = 1, 2, 
with noncollinear tuples (c k, d k) of coefficients, each of which has a two 
dimensional invariant subspace. In a three dimensional space, these invariant 
subspaces have a nontrivial intersection, and this intersection is invariant 
under both H 1 and H 2. Therefore, it is invariant under Re Bj and Im B:, 
which again contradicts the unitary irreducibility of Bj. Hence, the multiple 
eigenvalues, if any, occur only on the grid 00 + 7r2~. This allows us for each 
3 × 3 block Bj to choose an interval Ij of length 27r such that max k Ajk(0) 
coincides with one of the analytic functions hjk for 0 ~ Ij. Relabeling them if 
necessary, we may always assume that this branch is hi1. 

Let now Ij = [0, 27r) for all the blocks Bj of sizes different from 3 × 3, 
and 

-~jl = { eiO: Af t (0)  = maxRe(e '°A) ,  0 ~ Ij}. 

Of course, the sets Tjz coincide if the corresponding functions l~jl coincide; 
otherwise they have only finitely many points in common. Some of these sets 
may be empty [in particular, if WI(B, )  and W I ( A )  have disjoint boundaries, 
or Bj ~ M 2 and l = 2] or consist o~ finitely many points (in particular, if 
Bj ~ M 3 and l = 2, 3); others are unions of finitely many closed arcs. Denote 
by f~l . . . . .  ~N all different sets ~l  of positive measure, and by ~q~" (~q~') the 
set of all blocks Bj ~ M r for which r ~< 3 (respectively, r = 4, 5) and 
l~s = ~t for some l. According to our previous discussion, the only possibility 
for ~q~" is 1 = 1, and therefore the sets ,~' ,  s = 1 . . . . .  N, are mutually 
disjoint. 

Now recall that W I ( A )  = Wk(A) .  By Theorem 2.1, the union ~ "  U ~ '  
contains at least k matrices for each s. We construct matrices A 1 . . . . .  A k by 
combining the blocks B t as follows. 

1. Suppose Bj~ . . . . .  Bjr, r <~ k, are all the 4 × 4 or 5 × 5 blocks that have 
common extreme points of the numerical range with A. Assign them to 
A 1 . . . . .  A r . 

2. For each s = 1 . . . . .  N, assign a block from ~q~" to each of those A i that 
has not been assigned a block in ~ "  by step 1. 

3. If there are blocks B t left "after steps 1 and 2 are done, assign them to 
AI,. 
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Step 1 can be performed because the total number  of  the specified 4 x 4 and 
5 × 5 blocks does not exceed k. Step 2 can be performed because I~"1 + 
I~'1 >/k. 

For every A i constructed in such a manner, the maximal eigenvalues of 
Re(e~°Ai) and Re(e~°A) coincide for all e i ° ~  13 ~' s= 112~ = ~-. Thus, all the 
W~( A i) are the same as WI(A). • 

Theorem 3.2 shows the size restriction in Theorem 4.3 is sha W . To show 
that the number  of 4 × 4 and 5 X 5 blocks cannot be increased either, we 
need the following results. 

LEMMA4.4. L e t H =  _12 , K =  cP 

M =  and P =  2 1 1 ' m2 

where  0 < m  2 < l < m  1, ml 2 + m ~  = 2 ,  a n d c = m  l + m  2 . T h e n A  = H +  
iK is a 4 × 4 unitarily irreducible matrix  wi th  WI(  A)  equal to the convex 

hull o f  two circles: T and qF + ic. 

Proof. Direct computations show that 

L A ( u , v , w  ) = ( u  2 + v 2 - w 2 ) { u  2 + v 2 -- ( w  -- cv)2}. 

Therefore, the associated curve C ( A )  is the union of two curves, the line 
equations of  which are u 2 + v z - w 2 = 0 and u 2 + v z - (w - cv) 2 = 0. 
The first of  them is obviously T, and the second is obtained from the first by 
adding ic to it. Hence, WI(A) = Co C(A)  = Co(T, ic + T). 

To prove the unitary irreducibility of  A, consider a subspace ~ ( ~  {0}) 
invariant simultaneously under H and K. Then it is also invariant under 
Q1 = 1(1  + H) ,  Q2 = I - Q1, 

i0 [0 01 X1 = 0 = Q1KQ2, x z  = M = Q2KQ1, 



334 C.-K. LI, I. SPITKOVSKY, AND S. SHUKLA 

and, finally, 

Z l =  0 o ]=X Xl 
For  an arbitrary (0 ~ )  x ~ ~ ,  vectors xj = Qj x lie in ~ ( j  = 1, 2), and at 
least one of  them differs from 0. I f  x 1 ~ 0, then x 1, Z lx  I form a basis for 
hnQ1,  and X2x 1, Z2X2x 1 form a basis for Im Q2, so that dim ~ = 4. The  
case x 2 v~ 0 can be  dealt  with similarly, and we conclude that  ~ is the whole 
space. • 

LEMMA 4.5. I f  a matrix A is unitarily similar to an orthogonal sum 
A~ • ... ~ A m of unitarily irreducible blocks Ai, then the sizes of  these blocks 
(up to their order) and the number m are defined by A uniquely. 

This s ta tement  is well known (see [19, Section 8]), and is in fact (as was 
pointed out to us by the referee)  a special case of  the Krull-Schmidt theorem 
(e.g., see [7]). A simple direct p roof  for the matrix case can be found in [15]. 

F rom proper ty  (d) o f  numerical  ranges (Section 1) it follows that for any 
#1, #2 ~ C and r > 0 the matrix #11 + {(#2 - #1/ic} A, where  A is as in 
L e m m a  4.4 and c = 1#2 - #11/r, has as its numerical  range the convex hull 
o f  two circles with radii r, centered  at #1 and #2- We  will denote  such a 
matrix by A~,~, ~ ,  r- 

EXAMPLE 3. Let  #1, #2, #3 be three  distinct points in C, r > 0. Con- 
sider a matrix A unitarily similar to the orthogonal sum of  k - 1 copies of  
A~,I, ~2, r, one matrix Am, ~3, r, one matrix A~,~, ~,3, r, and k - 2 copies of  

[o #3 

Then  WI(A)  coincides with the convex hull of  the numerical  ranges of  its 
blocks, and is therefore  equal  to Co(F  1, F 2, F3), where  Fj is a circle of  radius 
r centered  at #j: Fj = #j + rT .  Every support  line to W l ( A )  is a support  line 
to one of  these three  circles, and at the same t ime a support  line to exactly k 
of  the 2k  - 1 diagonal blocks of  A. According to Theo rem 2.3, Wk(A)  = 
WI(A),  If, however,  we try to unitarily reduce A to an orthogonal sum of  k 
summands  with the same numerical  range WI(A) ,  the associated curve of  

3 t h e s e  summands  should be  13j=IFj. The  line equation of this union has 
degree  6, and therefore  the size of  each summand  is at least 6. On the other  
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hand, the size of A itself is 4(k + 1) + 2(k - 2) = 6k, so that each sum- 
mand has to be from M s. If  A is unitarily similar to the orthogonal sum of k 
6 × 6 matrices, A cannot have k + 1 4 × 4 unitarily irreducible blocks, by 
Lemma 4.5. The contradiction obtained shows that (2.1) is not true for our 
matrix A. 

In some cases, one may apply Theorem 4.3 when reducibility of A is not 
given a priori  as shown in the following results. 

THEOREM 4.6. Let  A ~ M , .  Then the s tatement  (2.1) holds i f  WI(  A)  
have m >1 (n  - 1 ) / k  - 2 vertices. 

Proof. Let WI(A) = W k ( A )  have m >i 0 vertices z l , . . . ,  z m. By Lemma 
4.1, A is unitarily similar to z l I  k • ... ZmI k ~ B for some B ~ Mn-km" 

We may suppose that WI(A) is not a polygon (otherwise, Theorem 4.2 
applies), and therefore that the boundary of WI(B) contains a nonflat arc T 
of an algebraic curve. For a support line of WI(B) passing through a point on 
Y and forming an angle a with the positive x-axis, the largest eigenvalue of 
Re(e  i ~ / 2 -  ~)B) has multiplicity at least k. Since such support lines exist for 
infinitely many values of or, the latter is possible only when L B can be 
factored as L B = f k g ,  and T lies on an algebraic curve with a line equation 
f = 0. This implies that deg f >_- 2 (otherwise T would have been a point). 
Note that the inequality deg L B = k d e g f  + deg g = n - m k  ~< 2k + 1 can 
only hold when deg f = 2 and deg g ~< 1. The minimal polynomial f g  of the 
matrix u Re B + v Im B then has degree at most 3, and the result in [17] 
implies that B is unitarily reducible to an orthogonal sum of blocks having 
sizes 3 × 3 and smaller. But then A itself has the same kind of representa- 
tion, and the result follows from Theorem 4.3. • 

In the following result, we show that statement (2.1) holds if n = 2k or 
n = 2k + 1. Moreover, we determine all the possible shapes of the numeri- 
cal ranges of such matrices (see Theorem 2.2). 

COROLLARY 4.7. Suppose A ~ M~ satisfies WI(A) = Wk(  A),  where  n = 

2 k  or  2 k  + 1. 

Ao 

(a) I f  n = 2k ,  then A is unitarily s imilar to A 1 ® I k, where  A x ~ M 2. 
(b) I f  n = 2 k  + 1, then A is unitarily s imilar to A o ~9 A 1 ® Ik_ 1, where  

M 3 and A l ~ M~ have the same numerical  range. 
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In both cases, WI( A) = Wk( A) is an elliptical disk, that can degenerate to a 
line segment or a point. 

Proof. I f  WI (A)  is a singleton, then (e.g., see [6]) A is a scalar matrix, 
and the result holds. 

I f  the boundary  of  W I ( A )  is a convex polygon, then the result follows 
from Theo rem 4.2 (and its proof). 

I f  the boundary  of  WI (A)  contains a nonflat arc, one can use arguments  
in the proof  of  T h e o r e m  4.6 to show that  L a = f k g  with deg f = 2 and 
d e g g  = 0  or 1 depending  on whether  n = 2 k  or 2k + 1. One  can then 
apply Theo rem 4.3 to conclude that A is unitarily similar to B 1 @ "" @ B k 
such that WI(A)  = WI(B ~) is an elliptical disk for all i. We  may assume that 
B 2 . . . . .  B k ~ Me, and B 1 belongs to M e (if n = 2 k )  or M 3 (if n = 2k + 1). 
Since 2 × 2 matrices with coinciding numerical  ranges are unitarily similar, 
we may also assume that all 2 × 2 blocks B i are the same. • 

The  next result gives us the largest possible n so that s ta tement  (2.1) 
holds for a given k. 

CoRoLkaaV 4.8. Let  k > 1. Then n = 2k + 1 is the maximum integer n 
such that the property (2.1) holds for  all A ~ M, .  

Proof. I f  n ~< 2k + 1, then  s ta tement  (2.1) is valid by Theo rem 2.2 and 
Corollary 4.7. 

Suppose n > 2k + 1. One  can consider A = B  I ~ B  2 ~ ' "  ~9Bk_ t 
0 ,_2k_2,  where  B 1 ~ M~ is a matrix of  type (3.2), and 

Then  W I ( A )  = W k ( A )  = D. If, on the other  hand, (2.1) holds, then every 
matrix A i contains an unitarily irreducible block of  dimension at least 2. This 
contradicts L e m m a  4.5. • 

5. E Q U A L I T Y  OF H I G H E R  N U M E R I C A L  R A N G E S  F O R  A ~ M 6 

By Theo rem 2.2 and Corollary 4.7, if 1 < k ~< n ~< 5, the structure of  
those A ~ M,  satisfying WI (A)  = W~(A) is well understood.  In this section, 
we focus on the case when  n = 6. I f  k >t 3, T h e o r e m  2.2 and Corollary 4.7 
are applicable. So we assume that k = 2. 
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Suppose A ~ M 6 satisfies 

WI(A) = W~(A).  (5.1) 

If  A is unitarily reducible, then one can apply Theorem 4.3 to conclude that 
the numerical range of A has multiplicity 2. We may assume that A 1 ~ M m 
with m ~< 3. Therefore, if WI(A) = W2(A), then WI(A) is the same as the 
numerical range of a certain compression of A on a subspace of dimension 
not greater than 3. On the other hand, for any 3 × 3 matrix A 0 we can find a 
6 × 6 matrix A such that Wt(A) = W2(A)  = WI(Ao),  simply by choosing 
A = A 0 @ A 0. Therefore, the collection of shapes of numerical ranges of all 
6 × 6 unitarily reducible matrices A with the property (5.1) is the same as 
that of the shapes of numerical ranges of all 3 × 3 matrices, the description 
of which can be found in [10] (see also [11]). Thus the structure of those 
reducible A ~ M 6 satisfying WI(A) = We(A) is also quite well understood. 

The next theorem describes all unitarily irreducible matrices A ~ M 6 
satisfying (5.1), and it shows, among other things, that there is only one 
possible shape for the numerical range of such matrices, namely, an elliptical 
disk. 

THEOREM 5.1. Let B ~ M 6 be unitarily irreducible. Then W t ( B ) =  
We(B)  i f  and only if  

B = a I +  [ 3 H + i T K ,  (5.2) 

where a, [3, T E C, T/[3 > 0, and Hermitian matrices H, K are such that 
A = H + iK is a unitarily irreducible matrix satisfying WI(A) = W2(A) = D. 
I f  these conditions are satisfied, then WI(B) is an ellipse centered at a and 
having axes 21 [3 I, 21T I. 

Proof. If B is of the form (5.2), then its numerical range is obtained 
from W I ( A ) =  D by dilation along the y-axis with the coefficient 7/[3, 
multiplication of the resulting ellipse by [3, and shifting by a. The resulting 
set is, of course, the ellipse described in the statement, and the coincidence 
of the first and second numerical ranges is preserved at each step. 

To prove the converse, suppose that Wl(B)  = W2(B). Since B is unitar- 
ily irreducible, the boundary of WI(B) contains nonlinear portions. Hence, 
for infinitely many values ~" ~ q]- the minimal polynomial of Re(ffA) has a 
multiple eigenvalue. In other words, the polynomial Ls can be factored as 

f2g ,  where deg f >~ 2. If deg f > 2, then deg f = 3 and g is a constant. By 
the result in [17], B is unitarily reducible. Hence, we may assume that 
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d e g f  = deg g = 2, and the associated curve C(B)  consists of an ellipse E 1 
(counted twice) defined by f ,  and an ellipse (possibly degenerating to a pair 
of points) E 2 defined by g. I f  E 2 does not lie inside E l, then B is either 
unitarily reducible (in case of pair of points) or property WI(B) = W2(B)  
fails. Therefore, E 2 lies inside El, and WI(B) is bounded by E 1. For any 
a , /3  ~ C, 13 4= 0, the matrix B = / 3 - 1 ( B  - oH) still has the property that 
WI(/~) = Wz(/~) is an ellipse. By a proper choice of a,  13 we can center 
WI(B)  at zero, make its axes lie on R and i~, and adjust the length of the 
former one to be 2. The same features are inherited by all matrices Re/~ + 
i • Im/~,  • > 0, and an appropriate choice of • allows us to transform the 
ellipse W1(/3) into the unit disk D. It remains only to denote the correspond- 
ing matrix Re/~ + i • Im/~ by A. • 

As follows from Theorem 5.1, to study unitarily irreducible matrices 
A ~ M 6 satisfying WI(A) = W2(A), one can focus on those A ~ M 6 for 
which 

WI(A)  = W2(A) = ID. (5.3) 

The following theorem gives a complete description of all (unitarily reducible 
or not) 6 × 6 matrices A having the property (5.3). In what follows, we 
denote by ~,~ the set of all n × n matrices Z such that WI(Z)  = D. 

THEOREM 5.2. Let A ~ M 6. Then WI(A) = W2(A) = D i f  and only i fA  
is unitarily similar to a matrix of  the form 

Ao Aol ] 

Alo A1 ] 

belonging to one of the following classes: 

[ 0 

(2) A 0 =  0 y , A01 = c  
0 A 

Alo = ~ 0 , and 
0 

= 0, A10 = O, and A 1 ~-~4, or 

- 1  0 , 
- X / y  o 
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)  zD-  ag/ ,00 

c) 
with D = diag 1 iz12 , 1, 1 , Z ~ a ,  

w h e r e  xy5 = - A ( I N I  2 + Izl 2) ~ 0, Ixl 2 + lyl 2 + Izl 2 = 4, IAI ~ 1, 0 ~ c < 
Izl, o r  [!xl] 

(3) A o = 0 A01 = 0 , At0 = 0 , 
0 0 0 

and 

A, = DZD, with D = d i a g ( ~ - c  2 , 1 , 1 ) ,  Z ~ . ~ 3 ,  

wherex,  y > O, Ixl z + lyl z = 4, 0 ~< c < 1. 

Proof. Necessity: According to T h e o r e m  2.1, the condition (5.3) implies 
that for every ~ ~ T the largest eigenvalue of  Re(~-XA) equals 1 and has 
multiplicity at least 2. For  all the corresponding__unit eigenvectors w, 
Re(~-XAw, w) = 1. Since W I ( ~ - I A ) =  ~-IWI(A)  = D, this implies that in 
fact (Aw,  w) = ~. 

Choosing four different values of  ~ (say, ffl . . . . .  if4), we may therefore  
produce  at least eight corresponding eigenvectors u j, vj such that  ( Aw, w) = 

for all unit vectors w ~ span{u j, vj}, and each pair {u2, vj} is or thonormal  
( j  = 1 . . . . .  4). The  set {uj, vj}4= 1 of eight vectors in C o has to be  linearly 
dependent .  Relabeling these vectors if necessary, we may suppose that u 4 is a 
linear combinat ion of {uj, vj}j3= 1: u 4 = ~}=l(otjuj + [3jl)j). Put 

ajuj + ¢ijvj if c~juj + fljvj 4~ O, 
= { l l ~ - ~  + ~jv~ll ( j  -- 1 , 2 , 3 ) ,  wj 

! ~uj otherwise.  

and let ~ = span{w 1, w 2, w 3} have dimension m. Let, further,  V be  a unitary 
transformation of  C 6 mapping  the first m e lements  of  the standard basis into 
~.  Then  

X]v 
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where the block A 0 is a compression of  A onto 52. Since 52 contains 
Wl, W 2 , w  3 and u4, the numerical range of  A 0 contains (Aowj ,  w j)  = 
( A w ,  w,) = L ( j  = 1 2 3) and (Aou  4 u 4) = ( A u  4 u 4) = if4. On the other 
hand, W~( A 0) _ WI(A)  = D. Being contained in D , a n d  containing 4 ( >  m) 
of  its boundary points, WI( A 0) has to coincide with D (e.g., see [3, Theorem 
5.81). 

By a proper  choice o f  an orthonormal basis in 52 (in other words, the first 
m rows of  V)  we may put A 0 in the form 

o r  

where 

z 1 0 y , 

0 A 
(5.4) 

xy~  = - ~ ( l y l  2 + Iz12), Ixl 2 + lyl  2 + IzJ 2 = 4,  IAI ~ 1, ( 5 . 5 )  

depending on whether  m = 2 or m = 3 (for m = 2 this is well known; for 
m = 3 see [11, Corollary 2.5]). 

Consider now the matrix 

unitarily similar to A. I f  A 0 ~ M 2, the condition WI(A 0) = WI(A)  = 
implies that X = 0, Y = 0 [8]. From here and W2(A) = D it follows that 
WI(B)  = D. Hence,  we are in class (1) o f  the theorem. 

The same reasoning applies if A 0 ~ M 3 is unitarily reducible. Indeed, it 
can then be put in the form 

and we may consider a 2 × 2 subblock 

[0 
of A 0 as a new matrix A 0. 
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It remains to cover the case of a unitarily irreducible matI'ix A 0 of the 
form (5.4). Since Wl( A 0) = ~3, two eigenvalues of the matrix Re( ffA o) for all 

~ 7]- equal i and - 1; the third one is therefore Re(ffA). Denote by U0( ~ ) a 
3 × 3 unitary matrix which reduces Re( ~'A 0) to its diagonal form: 

Uo* (,~) Re(~'Ao) Uo(~') = diag(1, - 1 ,  Re(A~')).  

Then 

= [ Vo(~) Re( ~'A) [ 0 

! o o 
~] 1 o 

0 Re( Aft ) 
/~*(~) 

~(~) 

Re(~'B) 

X[ U°*(0 ~') 0]i ' (5.6) 

where K(~') = ½U~(~X~X + ;~-ly,). 
The condition (5.3) implies that 1 and - 1  are the largest and smallest 

eigenvalues of Re(ffA), the first two rows of the block K( ~" ) must vanish, i.e., 

0 0 0 1 0 0 0 . U~(~)(~Xnt-~-mY*)~--tl(~ ) t 2 (~ )  t3 (~)  
(5.7) 

it rol,ow~ tha~ ~e(~a,,s ~nit~n,, similar to [~ 01 ]*~ (~  where 

N ( ~ )  = 

Re( A~ ) 

1 ~tl(C) 
1 ~t2(C) 
1 ~t~(~) 

½tl( ; ) C ) ) ~t2( 1 ~t~( 

Re(~n) 
(5.s) 

and 

{--1,1} co'(N(~)) c[-1,1] forall ~ ' E T .  (5.9) 
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To t~md the blocks X, Y, rewrite (5.7) in the form 

~X-I-~-IY * = t t3 ( ( ) [ t l (~ ) , t 2 (~ ) , t 3 (~ ) ] ,  (5.10) 

where u 3 is the third column of U 0, in other words, the unit eigenvector of 
Re( ~'A 0) corresponding to the eigenvalue Re(A~" ). 

We now consider cases A = 0 and A ¢ 0 separately. 

Case 1. A v~ 0. From (5.5) it follows that either xyz ~ 0 or y = z = 0. 
We do not have to consider the latter possibility, since it corresponds to the 
unitarily reducible matrix A 0. If  xyz ~ O, the direct computation shows that 
for all the values of ff (except ~ = + A-1 when [A[ = 1, but a finite number 
of exceptions do not change the following reasoning) 

u 3 ( ~ )  = ~ b ( ~  z ' - l ' - -  + ~- -2  . 
Y 

Here ~b is a scalar function of ~ with the absolute value 

I ~ ( f f ) l  = ÷ 1 +tAI 2 1 + izl4] - ~ R e ( A 2 f f  2) 

-1//2 

= IzA(1 _ {Re(A~-)}z) -1/2. 
2 

(5.11) 

From this and (5.10), 

~'X + ~--Iy.  ( = ~ ,  - 1 , - - -  
Z 

y + i~l~-xC-2 (¢~t~, 4,t~, eta) .  (5.12) 

Comparing the second rows of the obtained equality, we see that 

¢ ( { ) t j ( { ) = c i ~ + d ~ - ~  (cj, dj E C, j = 1 ,2 ,3) .  

Looking at the third rows, we then conclude that dj = 0, that is, 

t j ( f f )  = cjff~b-l(ff) ( j  = 1 ,2 ,3 ) .  (5.13) 
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I f  c 1 = c  a = c  a = 0 ,  then (5.10) implies that  X = Y = 0 .  The  matrix A is 
then unitarily similar to A 0 • B. Due  to proper ty  (e) in Section 1, W2(A 0) 

1 = I [ A -  WI(A0)]  is a disk of  the radius i .  Hence ,  it has at most  one 
common  boundary  point with WI(A o) = D, and the condition (5.3) holds if 
and only if WI(B) = D. This corresponds to the situation (2) with c = 0. I f  
at least one of  the constants cj differs from 0, put  c = (Ic112 + Ic2t2 + 
Ic3F2) 1/2, and introduce a unitary 3 × 3 matrix U 1 with the first column 
c-1(cl, ca, ca)*. The matrix A is unitarily similar to 

0 X I 0 Ao XU1 

where,  due to (5.12) and (5.13), 

X G ~ ' +  Y * G ¢  -~ = ~" 

= 5  

~ /~  

- 1  
A [c,0,0]. 

Hence,  

°il X U  1 = C - -  0 , 

- , X / y  o 

i 0 Ay/IzlZ 1 ~ * Y  = ~ o o . ( 5 . 1 4 )  

0 0 

The  unitary similarity 

[o o], where  ~(~) ~1~(~)1 
~(~) 
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transforms the matrix (5.8) into 

-Re(AS) 

0 
0 

O(S) o o], 

Re(SA1) 

A1 = U~BU1, ~ ( S )  = lc / l~b(S)l  = ( c / I z l ) V / 1  - {Re(AS)}  2. The prop- 
erty (5.9) is equivalent to 

_ R e ! A S !  _ - 1  g,(S) o o 

Re(SA~)  - I 

being nonpositive and singular for all S ~ 7]-. The  latter matrix is congruent  
via 

(1- Re(XS)} -1/2 0] 
{1 -- R e ( ) t S ) } - l o ( s )  1 

to the orthogonal sum of [ - 1] with 

Re( AI  00)}  ag(1 11)  515, 
Therefore ,  (5.9) holds if and only if the matrix (5.15) is nonpositive and 
singular for all S ~ -I[. Considering the (1, 1) entry of  (5.15), we see that it 
means in particular that  1 - c2/Iz l  2 >1 O, which allows us to introduce a 
nonnegative matrix 

D = diag 1 iz12 , 1, 1 . 

We have now to distinguish be tween  the cases c = I zl and c < [zl. 
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Case 1-1. c < [z]. In this situation D is invertible, and the matrix (5.15) is, 
in turn, congruent  to 

Re (~ 'Z )  - I ,  (5.16) 

where 

For  the matrix (5.16) to be nonpositi__ve and singular for all ~ e-0- it is 
necessary and sufficient that WI(Z)  = # .  Hence,  we are in situation (2). 
Case 1-2. c = Iz[. In this case nonpositivity of(5 .15)  implies that 

Re(~ '{A 1 + diag( A, O, O)}) = [0] • [ *  • * * ]  for all ~ ' ~ T .  

In other words, A 1 = [ - A ]  ~9 Z0, Z 0 e M e. From here and (5.14) it follows 
that A is unitarily similar to an orthogonal sum of  Z 0 with a 4 × 4 matrix 

Z 1 

0 x z c~/~ ] 

0 0 y - c  

1 0 0 A - c A / y  " 

0 0 cAy/ Iz l  2 - h  

_The condition (5.3) implies that either WI(Z o) = WI(Z 1) = ~ ,  or WI(Z o) c 
D, WI(Z 1) = W2(Z 1) = D. In the first case, we already are in situation (1) 
(with A 0 = Zo, A 1 = Z1). In the second case, the matrix Z 1 is unitarily 
similar to an orthogonal sum Z 2 (9 Z 3 of  two 2 × 2 matrices with WI(Z 2) = 
W~(Z 3) = D due to Corollary 4.7. The matrix A is again in class (1), with 
A 0 = Z  2 and A 1 = Z  0 ~ Z  z. 

Case 2. h = 0. According to (5.5), xyz = 0 as well. We do not have to 
consider the cases x = 0 or y = 0, in which A o becomes unitarily reducible. 
Therefore,  we are left with the only possibility z = 0. Applying an additional 
unitary similarity if necessary, we may suppose that x, y > 0. Direct compu- 
tations show that ua(~')  can be chosen in the form 

u3(C) = l [ c y , 0 ,  - C - i x ]  T 
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From this and (5.10), we have 

[ ~t~(~) y ~t~(~) y ~t~(~) y ] 
~X + ~-ly* = 0 0 0 ]. 

-~-ltl(~)x -V%(~)x -~-%(~)~ 

The  entr ies  in the  left hand  side of  the  la t ter  equat ion are l inear combinat ions  
of  ff and ff- l .  Therefore ,  the  entr ies in the  right hand  side have to be  of  the  
same form. Obviously, this is possible if  and  only if all the  functions tj( ~ ) are 
in fact constant:  t j (~)  = 2cj ,  cj ~ C ( j  = 1 ,2 ,3) .  Then  

~X + ~ - l y ,  = 

?; ycl ~ yc2 ~ yc3 ] 

0 0 0 ] , 
-- ~-Ixc l - -~- lxc  2 - -~-Ixc  3 

that is, 

i C2 C 3 ] 
X = y  0 0 , 

0 0 

[: -] 0 0 c 1 

Y = - x  0 c 2 . 

0 c 3 

Similarly to case 1, e i ther  c 1 = c 2 = c 3 = 0, which means that  X = Y = 0 
and A is unitarily similar to A 0 • B, B ~-~3 ,  or addi t ional  unitary transfor- 
mat ion puts  A in the  form 

= 
- 0  

0 

0 

0 
0 

0 

x 0 cy 0 

0 y 0 0 

0 0 0 0 

0 -c'x 
0 0 A 1 

0 0 

0 

0 

0 
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The  matrix (5.8), in tuna, takes the form 

c 0 0 

(5.17) 
Re(CA1)  

and the condition (5.9) is now equivalent to 

- 1  c 0 0 ] 

] C 

0 Re ( f fA l )  - l 
0 

being nonpositive and singular for all ff ~ ]1-. Rewriting the latter matrix as 

we see that  the latter condition is satisfied if and only if 

R e ( f f a l )  - diag(1 - c 2, 1, 1) (5.18) 

is a nonpositive singular matrix for all ~" ~ q]-. Considering the (1, 1) entry of  

(5.18), we conclude that  c < 1. After we choose D = diag(yrl - c z , 1, 1), 
the rest of  the reasoning goes exactly as in ease 1. Namely,  if c < 1, then 
(5,18) can be  rewrit ten as 

D { R e ( f f Z )  - I}D, Z = D-1A1 D- l ,  

and its nonpositiveness and singularity for all ~" ~ ~ mean exactly that 
WI(Z) = D. In other  words, A is in class (3). I f  c = 1, then  A 1 = [0] ~ Z0,  
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Z 0 ~ M 2. Hence, A is unitarily similar to Z 0 @ Z1, where 

Z1 [  x 0  

= 0 y , 

0 0  
0 --cx 

and therefore A belongs to class (1). 

Sufficiency: In all the cases considered above, Re(~'A) is unitarily similar 
to the orthogonal sum of diag(1, - 1 )  with the matrix N(~') given by (5.8), 
and the latter matrix satisfies (5.9). In other words, 1 and - 1 are eigenvalues 
of Re(~A) with multiplicities at least 2, and remaining eigenvalues also lie in 
[ - 1, 1]. From this and Theorem 2.1, (5.3) follows. • 

Obviously, matrices in class (1) are unitarily reducible (into orthogonal 
sums of 2 x 2 and 4 x 4 blocks), as are matrices in classes (2), (3) with c = 0 
(into sums of two 3 x 3 blocks). In fact, by the result in [8], a matrix A ~ M 6 
satisfying the condition (5.3) is in class (1) if and only if the spectral norm of 
A equals 2. It would be nice to have a simple condition to determine when 
the matrices in classes (2) and (3) are irreducible. Note that all the (unitafily 
irreducible) matrices described by Theorem 3.2 are in class (3) and corre- 
spond to the choice 

Z =  0 • 

0 

Actually, it was Theorem 5.2 that led to the discovery of our counterexamples 
(3.2) to the statement (2.1). 

This research was motivated by a question raised by Dr. G. A. ~Vatson to 
the first author at the third ILAS meeting at Rotterdam. Thanks are due to 
Drs. C. R. Johnson, T. J. Laffey, Y. T. Poon, and H. Shapiro for some 
correspondence and discussion. 
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