POSTER SESSION 2: HISTOCOMPATIBILITY/ALTERNATIVE STEM CELL SOURCES

465

A Novel State Funded Program to Increase Cord Blood Collections for Public Banking
Geralyn Annett. Stem Cell Program, UC Davis Medical Center, Sacramento, CA

The Umbilical Cord Blood Collection Program (UCBCP), administered by UC Davis Health System, is a new statewide public program designed to capture the genetic diversity of Californians through collection of cord blood units (CBUs) for unrelated transplantation. This program is funded with revenue from California state birth certificate fees. The vision for the implementation of the mission by UCBCP is to expand access to cord blood stem cells by targeting current inventory deficiencies to provide greater probabilities that people of any race or ethnicity will find an appropriately matched CBU in the National Cord Blood Inventory (NCBI). In support of these goals, the UCBCP plans to promote targeted education programs for health professionals and to utilize best practices for cord blood collections. Through this process UCBCP will facilitate the provision of high quality CBUs for transplantation, as well as promote research and development of effective treatments utilizing cord blood stem cells by making the CBUs collected that do not meet the criteria for banking available to researchers.

Much progress has been made toward developing a sustainable cord blood collection program for the state over the first year. The UCBCP leadership team has been developed and we have identified cord blood banks through an RFP bidding process that will be partnered with hospitals in various parts of the state. The UCBCP is in varying stages of contract negotiations with three of the public banks who responded to the RFP. To date negotiations are in place for California collections in Southern California to occur at five Scripps hospitals, funded in part by the UCBCP; and by collections set to begin at 13 Kaiser Hospitals, also with support from the UCBCP. In the Central Valley, a collection site is being developed in Fresno, at the Community Regional Medical Center. In the Bay area the UCBCP is in negotiations with several hospitals, including California Pacific Medical Center and Alta Bates. In the Sacramento area, the UCBCP has commitments from 2 hospitals and are seeking the same from two additional birthing centers. At UCSD, we have received IRB approval for the program, and have now initiated cord blood collections for purposes of collector training and process validation.

466

Immunophenotypic, Proteomic and Genomic Characterization of Human Cord Blood (CB) vs Peripheral Blood (PB) CD56dim NK Cells: A More Pro NK Phenotype in CB
Aradhana Awasthi 1, Nancy S. Day 2,3, Evan Shereck 2, Janet Ayello 1, Anthony Sabulski 1, Catherine McCaullum 1, Carmella van de Ven 1, Megan Lim 2, Mitchell S. Cairo 1,6,7,8,9.
1 Pediatrics, New York Medical College, Valhalla, NY; 2 Pediatrics, Columbia University Medical Center, New York, NY; 3 Oregon Health and Science University, Portland, OR; 4 Pediatrics, Well Cornell Medical College, New York, NY; 5 Pathology, University of Michigan, Ann Arbor, MI; 6 Microbiology and Immunology, New York Medical College, Valhalla, NY; 7 Pathology, New York Medical College, Valhalla, NY; 8 Cell Biology and Anatomy, New York Medical College, Valhalla, NY; 9 Medicine, New York Medical College, Valhalla, NY

CB is a viable alternative source of allogeneic HSC for the treatment of malignant and non-malignant disease (Cairo et al BBMT 2008, Szabolcs/Cairo et al Sem in Hem 2010). NK cells play a role in innate and adaptive immunity and are characterized as CD56+ cell population. Cytotoxic CD56dim cells make up 95% of PB NK populations (Shereck/Cairo BBMT 2007). We previously ex-vivo expanded CB MNC into various phenotypes of CD56+dim and +bright NK cells (Ayello/Cairo BBMT 2006; Exp. Hematology 2009). NK cell anti- leukemic and anti-rejection activities may be essential to the interplay between GVT effects and GVHD after haploidentical HSCT (Dunbar et al, Haematologica, 2008).

Objective: To determine differential expression, immunophenotype and genomic and proteomic signatures in CB vs PB CD56dim NK cells.

Methods: CB NK CD56 cells (94% enrichment) isolated using a standard kit (Miltenyi Biotec) and sorted into CD3-/CD56bright and CD3+CD56dim subsets. NKR expression was measured by flow-cytometry. Isolated RNA from CB and PB CD56dim cells underwent microarray studies (Affymetrix, U133A_2). (Agilent GeneSpring and Ingenuity pathway analyses, IPA). Proteomic performed by LC MS/MS with iTRAQ labeling and analyzed with SEQUEST, ProteinProphet, and INTERACT.

Results: There was no difference in NKR expression of CD16, KIR2DL1, KIR2DS1, KIR2DL2, CD161, NK2G2C, NKp44, and NKp46 in CB vs. PB CD56dim. There was a significant difference in CB vs. PB CD56+dim NK cells in gene expression including: pro-apoptotic genes: CASP10 (3.1F), TNFSF11 (4.7F), CD2C (3.0F), BCL2L1 (4.3F), NOTCH2 (1.5F); and cell development: PBX1 (7.6F), IL1RN (5.1F), CD24 (5.3F), CD34 (3.5F), CD55 (2.1F), CCL13 (2.2F). Further, there was a significant change in protein expression, CB vs PB CD56dim cells over 35 proteins, including CELSR1 (25.0F), BLM (25.0F), BDNF (20.0F), PKD1 (16.7F), NOTCH2 (16.7F), BIRC2 (12.5F), AIFM1 (12.5F), EP400 (3.2F), SIRT2 (2.9F), LETM1 (2.9F), and ESR2 (2.4F), qRT-PCR and Western blot analysis validated the genomic and proteomic results, respectively.

Conclusion: These results suggest that CB vs PB CD56+dim NK cells are more prone to undergo programmed cell death (apoptosis), over expression of numerous pro-apoptotic genes, and may be earlier in development (pro-NK) with significant over expression of CD34.

467

Double-Unit Cord Blood Transplantation (DCBT) for Acute Leukemia: High Disease-Free Survival in Adults and Children with Comparable Survival in European and Minority Patients
Juliet N. Barker 1, Doris Ponce 1, Sean Devlin 2, Marissa Lubin 1, Katherine Evans 1, Anne Marie Gonzalez 1, Hugo Castro-Malaspina 1, Sergio A. Giralt 1, Jenna Goldberg 1, Ann A. Jakubowski 1, Guenther Koehne 1, Esperanza Papadopoulos 1, Miguel-Angel Perales 1, Craig Steven Sauter 1, Marcel R.M. van den Brink 3, James Young 1, Farid Boulad 4, Rachel Kobos 4, Richard O’Reilly 4, Susan Prockop 4, Trudy Small 4, Nancy Kernan 4, Andromachi Scaradavou 4.
1 Department of Medicine, Adult

---

* Considered equal co-primary first authors