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1. INTRODUCTION

For the benefit of a better environment, it is important to understand
the evolution of passive tracers such as pollutants, temperature, and
salinity, in geophysical systems. Tracers are called passive when they do
not dynamically affect the background fluid velocity field.

The Eulerian approach to studying passive tracer dispersion attempts to
understand the evolution of the tracer concentration profile as a continu-

w xous field quantity 4, 17 .
Ž .We consider two-dimensional passive tracer dispersion in a bounded

Ž Ž . .shear flow u y , 0 such as in a river or in an oceanic jet. The passive
Ž .tracer concentration profile C x, y, t then satisfies the advection]diffu-

w xsion equation 4

C q u y C s k C q C q f x , y , t , 1Ž . Ž . Ž .Ž .t x x x y y

Ž .where k ) 0 is the diffusivity constant and the source or sink term
Ž . w xf x, y, t accounts for effects of chemical reactions 4 , external injections

w xof pollutants, or heating and cooling 17, 13 . The source is generally
dependent on time or even random in time, such as a random discharge of
pollutants into a river or an oceanic jet.

There has been considerable research on the advection]diffusion equa-
w xtion without source; see, for example, 4, 15, 16, 19, 20 .

In this paper, we study the impact of the external sources on the pattern
formation of the concentration profile. We assume that the concentration
profile satisfies the double-periodic boundary conditions,

C , C , C are double-periodic in x and y with period 1 2Ž .x y

and the appropriate initial condition

C x , y , 0 s C x , y . 3Ž . Ž . Ž .0

˙2 2� Ž .We use the standard abbreviations L s u g L D , u is D-periodicper
˙1 ˙1 1 ˙24 Ž . � Ž . 4 ² :and H u s 0 ; H s H D s u g H D , u, =u g L , with ? , ?D per per per

5 5 2and ? denoting the usual scalar product and norm, respectively, in L .
We need the following properties and estimates:

w xThe Poincare Inequality 10 .´

< < < <D D2 2 225 5 < < 5 5g s g x , y dx dy F =g dx dy s =g 4Ž . Ž .H H
p pD D

˙1for g g H .per
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w xYoung ’s Inequality 10 .

e 1
2 2AB F A q B , 5Ž .

2 2e

where A, B are non-negative real numbers and e ) 0.

In this paper, we prove the following main result.

˙2Ž . Ž .THEOREM 1. Assume that C x, y g L and that f x, y, t is tempo-0 per
2Ž .rally almost periodic with its L D -norm bounded uniformly in time t g R.

Ž . Ž .Then the model for passï e tracer dispersion 1 ] 3 has a unique temporally
almost periodic solution that exists for all time t g R.

2. DISSIPATION AND CONTRACTION

In this section we consider the dissipation and contraction properties of
the advection]diffusion equation with a temporally almost periodic source
Ž .1 . These properties are crucial in the proof of Theorem 1 in the next
section.

Ž .By integrating both sides of 1 with respect to x, y on the domain
w x w xD s 0, 1 = 0, 1 , we get

d
C dx dy q u y C dx dyŽ .HH HH xdt

s k C q C dx dy q f x , y , t dx dy. 6Ž . Ž .Ž .HH HHx x y y

Note that

u y C dx dy s 0Ž .HH x

and

C q C dx dy s 0Ž .HH x x y y

Ž .due to the double-periodic boundary conditions 2 . We thus have

d
C dx dy s f x , y , t dx dy. 7Ž . Ž .HH HHdt

Here and hereafter, all integrals are with respect to x, y over D. Thus,
when there is no source, the spatial average or mean of the concentration
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Ž .C x, y, t does not change with time. When there is a source, the time-
Ž .evolution of the spatial average of C x, y, t is determined only by the

source term. In order to understand the more delicate impact of the
Ž .source on the evolution of C x, y, t it is appropriate to assume that

the source has a zero spatial average or mean:

f x , y , t dx dy s 0. 8Ž . Ž .HH

Ž .With such a source, the mean of C x, y, t is a constant. Without loss of
generality or after removing the non-zero constant by a translation, we

Ž .may assume that C x, y, t has zero mean. So we study the dynamical
Ž .behavior of C x, y, t in zero-mean spaces.

Ž . Ž . wNote that the linear operator yk  q  q u y  is sectorial 12, p.x x y y x
˙2x Ž . Ž .19 in L D . Thus if f x, y, t has a continuous derivative in time t theper

Ž . Ž . Ž .linear system 1 ] 3 has a unique strong solution for every C x, y in0
˙2 Ž . w xL D 12, p. 52 .per

2 2 Ž .Define the solution operator S : L ª L by S v [ v t for t G t ,t, t t, t 0 00 0
Ž . 2 2where v t is the solution of the QG equations in L starting at v g L0

Ž . Ž .at time t . Since the dissipative system 1 ] 3 is strictly parabolic, the0
solution operators S exist and are compact for all t ) t ; see, fort, t 00w x kexample, 12 . In fact, the S are compact in H for all k G 0 and so, int, t 00

particular, S B is a compact subset of L2 for each t ) t and everyt, t 00

closed and bounded subset B of L2.
w xWe now show that this system is a dissipative system in the sense 11

˙2Ž . Ž .that all solutions C x, y, t approach a bounded set in L D as timeper
Ž . Ž .goes to infinity. Multiplying 1 by C x, y, t and integrating over D, we get

1 d 25 5C q u y C C dx dyŽ .HH x2 dt

< < 2s yk =C dx dy q f x , y , t C dx dy. 9Ž . Ž .HH HH

Ž .Note that, using the double-periodic boundary conditions 2 ,

u y C C dx dy s 0. 10Ž . Ž .HH x

Ž .We further assume that the square-integral of f x, y, t with respect to
5 5 Žx, y is bounded in time, i.e., f F M M ) 0 is a constant independent of
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.t . Then, by the Young inequality,

1 e2 2< < < <f x , y , t C dx dy F f x , y , t dx dy q C dx dyŽ . Ž .HH HH HH2e 2

M e 2< <F q C dx dy , 11Ž .HH2e 2

where e ) 0 is an arbitrary positive number.
w xSince C has a zero mean, we can use the Poincare inequality 10, p. 164´

to obtain

22 25 5 5 5C F =C . 12Ž .
p

Ž . Ž . Ž . Ž .Putting 10 , 11 , and 12 into 9 , we obtain

1 d e kp M2 25 5 5 5C F y C q 13Ž .ž /2 dt 2 2 2e

or

d M2 25 5 5 5C F e y pk C q . 14Ž . Ž .
dt e

We now fix e ) 0 so small that e y krp - 0. By the Gronwall inequality
w x12 we finally get

M M2 2 Žeyk rp . t5 5 5 5C F C q e q . 15Ž .0ž /e e y krp e krp y eŽ . Ž .

˙2Ž .Hence all of the solutions C x, y, t enter a bounded set in L ,per

M
5 5BB s C : C F ,(½ 5e krp y eŽ .

Ž .as time goes to infinity. The system 1 is therefore a dissipative system.
We now consider the strong contraction property. Assume that C Ž i. are

two trajectories corresponding to initial values C Ž i. g BB, i s 1 and 2. Note0
that these trajectories remain inside BB. Their difference d C s C Ž1. y C Ž2.

satisfies the equation

d C q u y d C s k d C q d C .Ž . Ž .t x x x y y
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Similarly to the proof above it can be shown from this equation that

1 d 2 25 5 5 5d C q u y d C d C dx dy s yk =d C . 16Ž . Ž .H x2 dt D

Ž . Ž . Ž .By 4 and H u y d C d C dx dy s 0, Eq. 16 can be written asD x

1 d 2 25 5 5 5d C q kp d C F 0.
2 dt

This gives

5 5 2 5 5 2 y2 kp td C F d C e ª 0, as t ª `.0

This is the strong contraction condition.

3. ALMOST PERIODIC DYNAMICS

Ž .A function w : R ª X, where X, d is a metric space, is called almostX
w xperiodic 1 if for every « ) 0 there exists a relatively dense subset M of R«

such that

d w t q t , w t - «Ž . Ž .Ž .X

for all t g R and t g M . A subset M : R is called relatï ely dense in R if«

there exists a positive number l g R such that for every a g R the interval
w x w xa, a q l l R of length l contains an element of M, i.e., M l a, a q l
/ B for every a g R.

In order to study the temporally almost periodic solutions for the passive
Ž .tracer convection]diffusion equation 1 , we need some results from the

theory of nonautonomous dynamical systems. Consider first an au-
tonomous dynamical system on a metric space P described by a group

� 4u s u of mappings of P into itself.t t g R

Let X be a complete metric space and consider a continuous mapping

F : Rq= P = X ª X

satisfying the properties

F 0, p , ? s id , F t q t , p , x s F t , u p , F t , p , xŽ . Ž . Ž .Ž .X t

for all t, t g Rq, p g P, and x g X. The mapping F is called a cocycle on
X with respect to u on P.

The appropriate concept of an attractor for a nonautonomous cocycle
system is the pullback attractor. In contrast to autonomous attractors it
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consists of a family of subsets of the original state space X that are
indexed by the cocycle parameter set.

ˆ � 4A family A s A of nonempty compact sets of X is called ap pg P
pullback attractor of the cocycle F on X with respect to u on P if it ist
F-invariant, i.e.,

F t , p , A s A p for all t g Rq, p g P ,Ž .p u t

and pullback attracting, i.e.,

lim HU F t , u p , D , A s 0 for all D g K X , p g P ,Ž . Ž .Ž .X yt p
tª`

Ž .where K X is the space of all nonempty compact subsets of the metric
Ž .space X, d that are semi-metric between nonempty compact subsets ofX

U Ž . Ž . Ž .X, i.e., H A, B [ max dist a, B s max min d A, b forX ag A ag A bg B X
Ž .A, B g K X .

The following theorem combines several known results. See Crauel and
w x w x w x w xFlandoli 6 , Flandoli and Schmalfuß 9 , and Cheban 2 , as well as 3, 14 ,

for this and various related proofs.

THEOREM 2. Let F be a continuous cocycle on a metric space X with
respect to a group u of continuous mappings on a metric space P. In addition,
suppose that there is a nonempty compact subset B of X and that for e¨ery D

Ž . qthere exists a T D g R which is independent of p g P such that

F t , p , D ; B for all t ) T D . 17Ž . Ž . Ž .

ˆ � 4Then there exists a unique pullback attractor A s A of the cocycle Fp pg P
on X, where

A s F t , u p , B . 18Ž . Ž .F Dp yt
q t)ttgR

qtgR

Moreo¨er, if the cocycle F is strongly contracting inside the absorbing set B
then the pullback attractor consists of a singleton ¨alued component, i.e.,

� Ž .4 Ž .A s a* p , and the mapping p ¬ a* p is continuous.p

Ž .The solution operators S for 1 form a cocycle mapping on X st, t0

parameter set P s R, where p s t , the initial time, and u t s t q t, the0 t 0 0
left shift by time t. However, the space P s R is not compact here.
Although more complicated, it is more useful to consider P to be the

� 4closure of the subset u f , t g R , i.e., the hull of f , in the metric spacet
2 ˙2 2 ˙2Ž Ž .. Ž . Ž .L R, L D of the locally L R -functions f : R ª L D with theloc per per
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metric

`
N 2yN 5 5d f , g [ 2 min 1, f t y g t dt ,Ž . Ž . Ž .Ý H(P ½ 5yNNs1

Ž . Ž .with u defined to be the left shift operator, i.e., u f ? [ f ?q t . By at t
w xclassical result 1, 18 , a function f in the above metric space is almost

periodic if and only if the hull of f is compact and minimal. Here minimal
means nonempty, closed, and invariant with respect to the autonomous
dynamical system generated by the shift operators u such that no propert
subset has these properties. The cocycle mapping is defined to be the

Ž . Ž .solution C t of 1 starting at C at time t s 0 for a given forcing0 0

F t , f , v [ S f v ,Ž .0 t , 0 0

where we have included a superscript f on S to denote its dependence on
Ž .the forcing term f. This dependence is in fact continuous. The cocycle

f u t f ˙2
0property here follows S v s S v for all t G t , t g R, C g L ,t, t 0 tyt , 0 0 0 0 0 per0 0

and f g P.
Following Theorem 2 and the dissipativity and contractivity results

which we have obtained in the last section, we conclude that the passive
Ž . Ž .tracer convection]diffusion model 1 ] 3 has the unique pullback attrac-

� Ž .4tor that consists of the singleton-valued component a* p , and that the
Ž . w xmapping p ¬ a* p is continuous on P. As in Duan and Kloeden 7 , we

Ž .now show that this singleton attractor a* p defines an almost periodic
solution.

Ž .In fact, the mapping p ¬ a* p is uniformly continuous on P because
2 Ž 2Ž ..P is a compact subset of L R, L D due to the assumed almostloc

Ž .periodicity. That is, for every « ) 0 there exists a d « ) 0 such that
5 Ž . Ž .5 Ž . Ža* p y a* q - « whenever d p, q - d . Now let the point p s f ,P

. Ž .the given temporal forcing function be almost periodic and for d s d «
) 0 denote by M the relatively dense subset of R such thatd

Ž .d u p, u p - d for all t g M and t g R. From this and the uniformP tqt t d

continuity we have

5 5a* u p y a* u p - «Ž . Ž .tqt t

Ž . Ž .for all t g R and t g M . Hence t ¬ C* t [ a* u p is almost peri-d Ž« . t
odic, and it is a solution of the passive tracer convection]diffusion model.
It is unique as the single-trajectory pullback attractor is the only trajectory
that exists and is bounded for the entire time line. Therefore, the conclu-
sion in Theorem 1 follows.
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