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Abstract

The following fact about (row) stochastic matrices is an easy consequence of well known
results: for each positive integer n � 1 there is a positive integer q = q(n) with the property
that if A is any n × n stochastic matrix then the sequence of matrices Aq,A2q , A3q , . . . con-
verges. We prove a generalization of this for sets of stochastic matrices under the Hausdorff
metric. Let d be any metric inducing the standard topology on the set of n × n real matrices.
For a matrix A and set of matrices B define d(A,B) to be the infimum of d(A,B) over all
B ∈ B. For two sets of matrices A and B, define d+(A,B) to be the supremum of d(A,B)

over all A ∈ A, and define d(A,B) to be the maximum of d+(A,B) and d+(B,A). This
is the Hausdorff metric on the set of subsets of n × n stochastic matrices. If A is a set of sto-
chastic matrices and k is a positive integer, define A(k) to be the set of all matrices expressible
as a product of a sequence of k matrices from A. We prove: For each positive integer n there is
a positive integer p = p(n) such that if A is any subset of n × n stochastic matrices then the
sequence of subsets A(p),A(2p),A(3p), . . . converges with respect to the Hausdorff metric.
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1. Introduction

A fundamental fact about (finite-state, discrete-time) Markov chains is that if all
transition probabilities are nonzero, then the chain has a limiting distribution. This
reflects the fact that the state transition matrix A associated to any Markov chain
belongs to the set Sn of (row)-stochastic matrices (nonnegative matrices with each
row sum equal to 1) and thus has largest eigenvalue 1. If all entries are nonzero the
eigenspace for 1 has a unique (row) eigenvector v with entries summing to 1, and
thus the sequence of powers A1, A2, . . . converges to the matrix whose rows are each
equal to v.

For arbitrary stochastic matrices, the powers A1, A2, . . . need not converge. How-
ever, it can be shown that there is a number p = p(n) such that for any A ∈ Sn, Ap

is a block diagonal matrix each of whose blocks has no zero entries. Thus by the
previous fact, the sequence {Ajp : j � 0} converges, i.e., the sequence {Aj : j � 1}
approaches a periodic limit with period dividing p(n).

We consider the more general situation of a discrete-time process on n states
whose possible behaviors are characterized by an arbitrary subset A of Sn. At each
step the process makes a state transition according to one of the matrices A in A.
The evolution of the system is thus described by a sequence A1, A2, . . . of matrices
each from A, and each such sequence corresponds to a possible behavior of the
system. For k � 1, let Ak denote the set of all sequences (A1, . . . , Ak) from A and
let A(k) denote the set of all products of the form A1 . . . Ak where Ai ∈ A. We view
the subsets of Sn as points of a metric space under the Hausdorff metric (see Section
2.1). Our main result is:

Theorem 1.1. For each natural number n there is a natural number p = p(n), such
that if A ⊆ Sn then the sequence of sets {A(pi) : i � 1} is convergent.

Sequences of the form A(1),A(2), . . . where A is a compact set of stochastic
matrices are called Markov set-chains. The explicit study of such sequences was
initiated by Hartfiel (see [4,5] and the references therein), though as explained in
[4] there are many related antecedents. Much of the previous research has been
concerned with identifying sufficient conditions on the set A that ensure that the
sequence {A(i) : i � 1} is convergent.

Theorem 1.1 arose in connection with a problem in theory of computation posed
by Dwork and Stockmeyer [2] concerning interactive finite automata: is it true that
every language that admits an interactive proof of membership with a finite state
verifier must be regular? (We only mention this problem in passing, and will not
give definitions here.) Theorem 1.1 implies an affirmative answer in the very special
case of unary languages where the verifier is restricted to one-way access to the
input. This special case was already known [1] (by an easier argument), however, we
think that Theorem 1.1 is of independent interest and also that there is a possibility
of extending the ideas of Theorem 1.1 to handle the as yet unsolved case of unary



A. Condon, M. Saks / Linear Algebra and its Applications 381 (2004) 61–76 63

languages where the verifier has two-way access to the input. We hope to explore
this in a future paper.

2. Preliminaries

This section reviews various notions from point-set topology, combinatorics and
the theory of stochastic matrices, and establishes various preliminary results.

2.1. Convergence with respect to the Hausdorff metric

We review basic definitions and results concerning the Hausdorff metric. In par-
ticular, Theorem 2.3(3) below will provide a useful sufficient condition for proving
convergence. The facts cited here are elementary and standard but we do not know
a reference that summarizes them in the form we need, so we provide proofs for
them.

Let M be a metric space with distance function d . For x ∈ M , ε > 0, we write
Bε(x) for the closed ball of radius ε around x. For X ⊆ M , Bε(X) = ∪x∈XBε(x).
For X ⊆ M we write X for the closure of X.

For subsets X and Y , define d+(X, Y ) to be the infimum of the set {ε|X ⊆ Bε(Y )}
(the limit is ∞ if the set is empty). For a point x, we write d+(x, Y ) for d+({x}, Y ).
Note that d+(X, Y ) = supx∈Xd+(x, Y ). It is easy to check: (i) d+(X, Z) � d+
(X, Y ) + d+(Y, Z) and (ii) d+(X, Y ) = 0 if and only if X ⊆ Y .

Define d(X, Y ) to be the maximum of d+(X, Y ) and d+(Y, X). Then d satisfies
(i) d(X, Z) � d(X, Y ) + d(Y, Z), (ii) d(X, Y ) = d(Y, X) and (iii) d(X, Y ) = 0 if
and only if X = Y . d is generally not a metric on the power set of M but it is a
metric when restricted to the set of compact subsets of M .

A set X is an upper limit for {Xi} if {d+(Xi, X) : i � 1} converges to 0 and is a
lower limit if {d+(X, Xi) : i � 1} converges to 0, and is a limit if it is both an upper
limit and a lower limit.

A point x is a strong limit point for {Xi} if every neighborhood of x intersects
all but finitely many of the Xi and is a weak limit point if every neighborhood of
x intersects infinitely many of the Xi . Write Xstrong and Xweak for the set of weak
and strong limit points. It is easy to see that both of these sets are closed. Trivi-
ally, Xstrong ⊆ Xweak and we will say that the sequence {Xi} is regular if Xweak =
Xstrong.

Proposition 2.1. Let {Xi} be a sequence of subsets of M.

1. If Y is a lower limit for {Xi} then Y ⊆ Xstrong.

2. If Y is an upper limit for {Xi} then Xweak ⊆ Y .
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Proof. If Y is a lower limit for {Xi}, then d+(Y, Xi) tends to 0, and so for any
y ∈ Y , d+(y, Xi) tends to 0, which implies that any neighborhood of y intersects all
but finitely many of the Xi ; i.e., y is a strong limit point.

Next suppose that Y is an upper limit for {Xi} and let y be a weak limit point. We
want to show that y is in the closure of Y , so we fix ε > 0 and show that d(y, Y ) � ε.
There is an i0 such that d+(Xi, Y ) � ε/2 for i � i0. Also the ε/2 neighborhood of
y intersects infinitely many Xi so it contains some point z ∈ Xj with j � i0. Then
d(y, Y ) � d(y, z) + d(z, Y ) � d(y, z) + d(Xj , Y ) � ε. �

We will say that {Xi} is lower convergent if Xstrong is a lower limit, upper con-
vergent if Xweak is an upper limit, and convergent if it has a limit.

Proposition 2.2. If {Xi} is convergent then it is regular and the set Xstrong = Xweak
is the unique closed set that is a limit for {Xi}.

Proof. Suppose {Xi} is convergent with limit Y , and assume without loss of general-
ity that Y is closed. By Proposition 2.1, Xweak ⊆ Y ⊆ Xstrong, since Xstrong ⊆ Xweak
we conclude Xweak = Y = Xstrong. �

A sequence {Xi} of subsets is forward Cauchy if for all ε > 0 there exists an
m0 = m0(ε) such that for m1, m2 satisfying m2 � m1 � m0, d+(Xm1 , Xm2) � ε. It
is backward Cauchy if for all ε > 0 there exists an m0 such that for m1, m2 satis-
fying m2 � m1 � m0, d+(Xm2 , Xm1) � ε and it is Cauchy if it is both forward and
backward Cauchy. It is easy to see that a convergent sequence {Xi} is Cauchy.

If we restrict to compact metric spaces, we get some nice implications.

Theorem 2.3. Let {Xi} be a sequence of sets in a compact metric space. Then

1. {Xi} is upper convergent.
2. {Xi} is lower convergent.
3. If {Xi} is either forward or backward Cauchy then it is convergent.

Proof. Suppose that {Xi} is not upper convergent. Then there is an ε > 0, a se-
quence of indices i1 < i2 < · · · , a sequence {xij ∈ Xij } such that xij �∈ Bε(Xweak).
By compactness, the sequence {xij } has an accumulation point z which by definition
belongs to Xweak. Then Bε(z) contains at least one (in fact, infinitely many) of the
xij contradicting that for all j , xij �∈ Bε(Xweak).

Suppose that {Xi} is not lower convergent. Then there is an ε > 0, an infinite
sequence of indices i1 < i2 < · · · , and a sequence {xij ∈ Xstrong} such that xij �∈
Bε(Xij ). By compactness, the sequence {xij } has an accumulation point z, which
is in Xstrong since Xstrong is closed. Then z ∈ Bε/2(Xij ) for all but finitely many
j (by the definition of Xstrong) and d(xij , z) � ε/2 for all but finitely many j so
xij ∈ Bε(Xij ) for all but finitely many j , a contradiction.
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Now suppose that {Xi} is forward Cauchy or backward Cauchy. To show that {Xi}
is convergent, suppose z ∈ Xweak, we show that z ∈ Xstrong. Fix ε > 0, we show that
Bε(z) intersects all but finitely many of the Xi , or equivalently z ∈ Bε(Xi) for all
but finitely many i. Since z ∈ Xweak there is an infinite sequence i1 < i2 < · · · such
that z ∈ Bε/2(Xij ) for all j . Since {Xi} is forward Cauchy or backward Cauchy, we
can choose an index m0 = m0(ε/2) as in the definition and we may assume that
m0 � i1. We claim that z ∈ Bε(Xi) for all i > m0 and hence z ∈ Xstrong. To see the
claim, let i > m0. If i = ij for some j the claim is trivial; otherwise we choose a j

so that ij < i < ij+1. If {Xi} is forward Cauchy then Bε(Xi) contains Bε/2(Xij ) and
if it is backward Cauchy Bε(Xi) contains Bε/2(Xij+1). In either case, z ∈ Bε(Xi), as
claimed. �

2.2. Intervals and interval chains

If x, y are real numbers between 0 and 1, interval notation has the usual meaning.
If x, y are nonnegative integers then interval notation is used to denote subsets of
integers, e.g. [x, y] is the set of integers {x, x + 1, . . . , y − 1, y}. (This means that
[0, 1] is potentially ambiguous, but the meaning will be clear from the context.)
We write [n] for [1, n]. For integers a, b, we write Int[a, b] for the set of (inte-
ger) intervals contained in [a, b], and Int[m] = Int[1, m]. An interval chain σ is a
sequence (σ1, σ2, . . . , σk) where each σi is an interval [li , ri] and li = ri−1 + 1 for
each i ∈ [2, k]. The number k is the length of the interval chain. We say that the
chain ends at rk and spans the interval [l1, rk]. For example ([2, 4], [5, 5], [6, 9]) is
an interval chain of length 3 that ends at 9 and spans [2, 9].

We will have need to consider functions mapping Int[m] to a finite set C; we call
such a map a C-coloring of Int[m]. The following lemma is essentially due to Erdös
and Szekeres [3]:

Lemma 2.4. Let C be a finite set and h a positive integer. If m � h|C| then given any
C-coloring of Int[m] there is an interval chain of length h that is monochromatic,
i.e. in which all parts get the same color.

Proof. For each integer j ∈ [m] we define a function fj on the set C of colors
where, for c ∈ C, fj (c) is the maximum number of parts of an interval chain ending
at j all of whose parts are color c. We claim that the functions fi and fj are different
for all i /= j . Assume i > j and let c be the color of [j + 1, i]. Then the interval
chain ending at [j ] of length fj (c) having all parts of color c can be augmented by
[j + 1, i] to get an interval chain ending at i of length fj (c) + 1 having all parts of
color c. Hence fi(c) > fj (c) and we conclude that the functions fi for i ∈ [0, m] are
distinct. Since there are (h − 1)|C| < m functions from C to [h − 1], the pigeonhole
principle implies that there is an index m′ � m and a color c such that fm′(c) � h.
Thus there is a monochromatic interval chain with h parts. �
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2.3. Partial partitions

If n is an integer, a partial partition is a family � of pairwise disjoint subsets of
[n]. For a partial partition � we write ∪� for ∪S∈�S, and Res(�), the residue of �,
is [n] − ∪�. For j ∈ ∪�, �[s] denotes the unique set in � that contains s.

2.4. Directed graphs

For our purposes a directed graph D on vertex set [n] is a subset of [n] × [n].
An element (a, b) of the graph is an arc with source a and target b. An arc of
the form (s, s) is a loop. Since our digraphs arise as state spaces for finite Markov
chains, we refer to vertices as states. If (s, t) ∈ D, we say that t is accessible from s.
A state s is self-accessible if (s, s) is an arc. D+(s) is the set of states accessible
from s.

A walk of length k � 1 in D from state s to state t is a sequence s = s0, s1, s2, . . . ,

sk−1, sk = t of (not necessarily distinct) states such that (s0, s1), (s1, s2), . . . ,

(sk−1, sk) ∈ D. We say that t is reachable from s provided that there is a walk from
s to t . We say s is self-reachable if there is a walk of length at least 1 from s to itself.

A subset S of states is absorbing with respect to D if there are no arcs from S

to [n] − S. The intersection of absorbing sets is absorbing and hence any two mini-
mal absorbing sets (under containment) are disjoint. The collection �D of minimal
absorbing sets is a partial partition of [n]. States belonging to ∪�D are said to be
recurrent and recurD is the set of recurrent states. States not in ∪�D are said to be
transient and transD is the set of transient states.

To each partial partition � of [n], we associate a digraph G(�) = (∪S∈�S ×
S) ∪ (Res(�) × [n]). G(�) is the unique maximum digraph (under containment)
for which �G(�) = �.

The Boolean product of two digraphs D1 and D2 is the digraph D1D2 = {(s, t) :
∃u, (s, u) ∈ D1, (u, t) ∈ D2}. The Boolean power of a digraph Dk is defined in the
obvious way. It is easy to see that (s, t) ∈ Dk if and only if there is a walk of length
k from s to t in D.

A digraph D is said to be

• admissible if each vertex is the source of some arc (possibly an arc to itself);
• S-avoiding for S ⊆ [n] if no state in S is the target of any arc;
• �-structured for a partial partition � if �D = �;
• �-absorbing for a partial partition � if each S ∈ � is absorbing, equivalently,

D ⊆ G(�);
• stable if D = D2.

Lemma 2.5. For any digraph D on vertex set [n], Dn! is stable.

Proof. First we show:
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Claim. Let F be a digraph on [n] having at least one self-reachable state and having
the property that every self-reachable state is self-accessible. Let i � n − 1. Then F i

is stable.

To prove the claim, let F be a digraph satisfying the hypothesis and i � n − 1.
Let (s, t) ∈ [n] × [n]. We need that (s, t) ∈ F i if and only if there is a u ∈ [n] with
(s, u), (u, t) ∈ F i .

If (s, t) ∈ F i there is a walk from s to t of length i in F . Since i � n − 1, either
this walk repeats some state or it contains all n states. In either case, the walk contains
at least one state u that is self-accessible in F (since F has at least one self-reachable
state and every self-reachable state is self-accessible). Then (s, u), (u, t) ∈ F i . Con-
versely, suppose there is a u ∈ [n] such that (s, u), (u, t) ∈ F i . Then there is a walk
W of length 2i from s to t , and as above, it contains a self-accessible state. Among
all walks from s to t that contain a self-accessible state, choose a shortest one. This
walk has no repeated state, since if s′ is repeated, we may shorten the walk, and the
shortened walk still contains s′, which is self-reachable and hence self-accessible.
Hence the length j of the walk is at most n − 1, and we may then lengthen the
walk to exactly i by inserting i − j occurences of some self-accessible state after its
occurence in the original walk. Thus (s, t) ∈ F i .

Using the claim, we prove the lemma. If D is acyclic (i.e., no vertex is self-
reachable) then Di is the empty graph for i � n, which is stable, so assume that
D has at least one cycle. If D contains a cycle through all of the states, then all
states in Dn are self-accessible, and setting F = Dn and i = (n − 1)! in the claim,
we conclude that Dn! is stable. Otherwise, for each self-reachable state s of D, the
length ls of the shortest cycle containing s is less than n and hence divides (n − 1)!
Thus every self-reachable state of D (and hence also of D(n−1)!) is self-accessible in
D(n−1)!. Now apply the claim with F = D(n−1)! and i = n. �

2.5. Matrices

For a matrix A, µ(A) denotes the least absolute value of any nonzero entry of A.
For two matrices A and B, A � B means A(s, t) � B(s, t) for all s, t ∈ [n] × [n].

The norm of a matrix, ‖A‖ is the maximum over s ∈ [n] of
∑

t∈[n] |A(s, t)|. The
distance between two matrices d(A, B) = ‖A − B‖. We recall an elementary prop-
erty of this norm:

Proposition 2.6. Let A1, A2, . . . , Am, B1, B2, . . . , Bm be matrices each of norm at
most 1. Then:

d(A1A2 · · ·Am, B1B2 · · ·Bm) �
m∑

i=1

d(Ai, Bi).

If (A1, A2, . . . , Am) is a sequence of matrices, and σ = [i, j ] is an interval con-
tained in [m] then Aσ denotes the product AiAi+1Ai+2 · · ·Aj . We call the sequence
(Ai, Ai+1, . . . , Aj ) a segment of (A1, . . . , Am).
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2.6. Stochastic matrices, and Markov chains

We identify a stochastic matrix A with the Markov chain it defines. If s ∈ [n],
T ⊆ [n] then A(s, T ) is defined to be

∑
t∈T A(s, t) and is equal to the conditional

probability that the chain enters a state in T at some step i + 1 given that it is at
s at step i. A sequence (A1, A2, . . . , Am) of stochastic matrices, corresponds to an
m-step Markov process, where the transition probabilities of the ith step are given
by Ai , and A[1,m] is the transition matrix for the entire process.

To each n × n stochastic matrix A is associated the directed graph D(A) on [n]
with arc set {(s, t) : A(s, t) > 0}. Note that D(AB) = D(A)D(B) where the product
on the right is Boolean multiplication. We call D(A) the pattern of A. Note that the
pattern of a stochastic matrix is necessarily an admissible digraph, as defined earlier.

We will be concerned with a number of properties of A that only depend on D(A).
We adapt the terminology for digraphs to matrices and Markov chains. Thus, the
terms accessible, reachable, �-absorbing, S-avoiding, stable, etc. are defined for
stochastic matrices A by referring to D(A). In particular, the partial partition �A

is defined to be �D(A). Note that the terms recurrent and transient as defined for
digraphs have the usual meaning for Markov chains: recurrent states are those that
are visited infinitely often with positive probability, and transient states are states that
are visited finitely often with probability 1.

As usual, a matrix A is idempotent if A2 = A. We say that A is quasi-idempotent
if the submatrix corresponding to the recurrent states is idempotent. The reader can
prove:

Proposition 2.7. A stochastic matrix A is quasi-idempotent if and only if for each
S ∈ �A the rows of A corresponding to S are identical.

Lemma 2.8 is critical to the main argument. It identifies some special conditions
which guarantee that the product ABC of three stochastic matrices is independent of
the middle matrix B.

Lemma 2.8. Let � be a partial partition of [n] and A, C ∈ Sn. If C is �-structured
and quasi-idempotent and A is Res(�)-avoiding, then for any �-absorbing B ∈ Sn

the matrix ABC satisfies:
ABC(s, t) =

{
0 t ∈ Res(�),

A(s, �[t])C(t, t) t ∈ ∪�.

In particular, the matrix ABC is independent of B.

Proof. We determine ABC(s, t) by analyzing the three step stochastic process asso-
ciated to (A, B, C). Suppose first that t ∈ Res(�). Starting from any state s, the first
step of the process moves to a state in ∪� with probability 1, since A is Res(�)-
avoiding, and the next two steps keep the process in ∪�. Hence ABC(s, t) = 0 as
required.



A. Condon, M. Saks / Linear Algebra and its Applications 381 (2004) 61–76 69

Next suppose t ∈ ∪�. Because C is �-absorbing, the process can end in t only if
it is in �[t] after the second step. Hence ABC(s, t) = ∑

u∈�[t] AB(s, u)C(u, t) =
AB(s, �[t])C(t, t) where the last equality comes from Proposition 2.7 and the fact
that C is quasi-idempotent. Since A is Res(�)-avoiding, the process is in ∪� after
the first step, and since B is �-absorbing, it stays in the same set of � after the second
step and hence AB(s, �[t]) = A(s, �[t]). Thus ABC(s, t) = A(s, �[t])C(t, t) as
required. �

2.7. Two operators on stochastic matrices

We will need two operators mapping Sn to Sn. The first is defined in terms of a
given digraph D, and maps A to a stochastic matrix Ã〈D〉 whose pattern is contained
in D, and such that Ã〈D〉 is close to A:

Ã〈D〉(s, t) =
{

A(s, t) + A(s,[n]−D+(s))
|D+(s)| (s, t) ∈ D,

0 (s, t) �∈ D.

From the definition that Ã〈D〉 has pattern contained in D and has the same row sums
as A (provided that D is admissible). To bound d(A, Ã〈D〉), we note that for each s,∑

t

|Ã〈D〉(s, t) − A(s, t)|=
∑

t∈D+(s)

|Ã〈D〉(s, t) − A(s, t)|

+
∑

t �∈D+(s)

|Ã〈D〉(s, t) − A(s, t)|

=2A(s, [n] − D+(s)).

Summarizing the above, we have:

Proposition 2.9. If A is a stochastic matrix and D is an admissible digraph then
Ã〈D〉 is a stochastic matrix with pattern D and d(A, Ã〈D〉) � 2 maxs∈[n] A(s, [n] −
D+(s)).

The second operator maps A to a quasi-idempotent matrix Â close to A, such that
�Â = �A. We define Â as follows: If s ∈ transA then row s of Â is equal to row s of
A. If s ∈ recurA then row s of Â is equal to the arithmetic average of the rows of A

corresponding to t ∈ �A[s]. Clearly Â is stochastic and �Â = �A. All of the rows of
Â corresponding to states in the same set of �A are identical so, by Proposition 2.7,
Â is quasi-idempotent.

Next we bound d(Â, A). For t ∈ recurA, define maxA(t) (resp. minA(t)) to be the
maximum (resp. minimum) of A(s, t) over s ∈ �A[t], and define �A(t) = maxA(t) −
minA(t). Let �A = max(�A(t) : t ∈ recurA). To upper bound d(Â, A) it suffices to
upper bound

∑
t |A(s, t) − Â(s, t)| for arbitrary s ∈ [n]. If s ∈ transA then this is 0.
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Otherwise the only nonzero terms in the sum are those corresponding to t ∈ �A[s]
and for those minA(t) � A(s, t), Â(s, t) � maxA(t), from which we conclude that
|A(s, t) − Â(s, t)| � �A(t). This implies that

∑
t |A(s, t) − Â(s, t)| � �An and we

have:

Proposition 2.10. Let A be a stochastic matrix. Then Â is stochastic, �A-struc-
tured, and quasi-idempotent and d(A, Â) � �An.

3. Proof of Theorem 1.1

Fix A ⊆ Sn. It suffices to prove the theorem in the case that A is closed. Also,
since Sn is compact, it suffices, by Theorem 2.3, to show that {A(pi) : i � 1} is
forward Cauchy. This is equivalent to showing:

Lemma 3.1. For each natural number n there is a natural number p = p(n) with
the following property: Let A be a closed subset of Sn. For each ε > 0, there is an
integer m0 = m0(A, ε) such that if m � m0 and A ∈ A(m), then for any positive
integer i there is a matrix Ci ∈ A(m+ip) such that ‖Ci − A‖ � ε.

Given ε, we will choose m0 = m0(A, ε) sufficiently large. We are then given an
arbitrary sequence (A1, A2, . . . , Am) from Am with m � m0 and must show that
for some p depending only on n, and for any i � 1 there is a sequence (B1, B2, . . . ,

Bm+ip) of matrices from Am+ip such that ‖B1B2 · · ·Bm+ip − A1A2�Am‖ � ε.
We will use Lemma 2.8. Lemma 3.2 below, asserts that we can partition any long

enough sequence of matrices into five segments so that, denoting by Pi the product
of the ith segment, we have that for some partial partition �, P2 is very close to a
Res(�)-avoiding matrix, P3 is very close to a �-absorbing matrix and P4 is very
close to a �-structured quasi-idempotent matrix. Now Lemma 2.8 will imply that if
we replace P3 by any matrix N whose product is close to some �-absorbing matrix,
then P1P2NP4P5 is close to P1P2P3P4P5. So it suffices to show that if k is the
length of the third segment, then for some p depending on n and for each i � 1, we
can find a matrix Ni ∈ A(k+ip) that is close to �-absorbing. This (or something like
it) will follow from Lemma 3.3.

We now formulate the two main lemmas, and show that they imply Lemma 3.1.

Lemma 3.2. Let n be a positive integer and ε′ > 0. There is an integer b = b(n, ε′)
such that if (B1, B2, . . . , Bb) is any sequence of n × n stochastic matrices then there
exists a partial partition � of [n] and an interval chain σ = (σ1, σ2, σ3, σ4, σ5) that
spans [b] satisfying:

1. There is a Res(�)-avoiding matrix L2 with d(L2, Bσ2) � ε′.
2. There is a �-absorbing matrix L3 with d(L3, Bσ3) � ε′.
3. There is a �-structured quasi-idempotent matrix L4 with d(L4, Bσ4) � ε′.
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Lemma 3.3. For each natural number n there is a natural number p = p(n)

and a natural number k0 = k0(n) with the following property: Let A be a
closed subset of Sn. There is an integer R = R(A) such that for any k � k0, if
M ∈ A(k), then for any positive integer i there is a matrix Ni ∈ A(k+ip) such that
Ni � RM .

The reader should note the similarity between Lemmas 3.1 and 3.3; the latter can
be viewed as a very weak form of the former.

3.1. Proof of Lemma 3.1 from Lemmas 3.3 and 3.2

The number p(n) in Lemma 3.1 is taken to be the number p(n) in Lemma 3.3.
In the hypothesis of Lemma 3.1 we are given A and ε. Choose R = R(A) and
k0 = k0(n) as in Lemma 3.3 and define ε′ = ε

8nR
. Choose b = b(n, ε′) as given by

Lemma 3.2 and define m0 = k0b. (Note that since ε′ and k0 are determined by A
and ε, m0 is also determined by A and ε.)

We are given m � m0, and (A1, A2, . . . , Am) ∈ Am and an integer i � 1 and
we want to find a matrix in A(m+ip) that is within ε of the product A[1,m]. Con-
sider the first m0 matrices A1, . . . , Am0 and group them into b blocks of size k0.
Define stochastic matrices B1, B2, . . . , Bb where Bi is the product of the k0 matrices
belonging to the ith block. Apply Lemma 3.2 to get an interval chain σ of length
5 spanning [b], and define L2, L3, L4 as in that lemma. Let k = |σ3|k0 and apply
Lemma 3.3 with M = Bσ3 . Hence for i � 1, there exists a matrix Ni ∈ A(k+ip)

such that Ni � RBσ3 . Now, since Bσ3 is within ε′ of the �-absorbing matrix L3, we
must have Bσ3(s, t) � ε′ for any (s, t) �∈ G(�). Therefore Ni(s, t) � Rε′ = ε

8n
for

any (s, t) �∈ G(�), and we conclude from Proposition 2.9 that Mi = Ñi〈G(�)〉 is
�-absorbing and d(Ni, Mi) � ε

4 .
The matrix Ci = Bσ1Bσ2NiBσ4Bσ5A[m0+1,m] belongs to A(m+ip). To complete

the proof it suffices to show:

Claim. d(Bσ1Bσ2NiBσ4Bσ5A[m0+1,m], Bσ1Bσ2Bσ3Bσ4Bσ5A[m0+1,m]) � ε.

By Proposition 2.6, the expression on the left is at most d(Bσ2NiBσ4 , Bσ2Bσ3Bσ4).

Now:

d(Bσ2Bσ3Bσ4 , Bσ2NiBσ4) � d(Bσ2Bσ3Bσ4 , L2L3L4) + d(L2L3L4, L2MiL4)

+ d(L2MiL4, Bσ2NiBσ4) (1)

by Proposition 2.6, d(Bσ2Bσ3Bσ4, L2L3L4) � d(Bσ2 , L2) + d(Bσ3, L3) +
d(Bσ4 , L4). Each of these three summands is at most ε′, so d(Bσ2Bσ3Bσ4 ,L2L3L4)�
3ε′ � 3ε

8 . Similarly, since d(Mi, Ni) � ε
4 , d(L2MiL4, Bσ2NiBσ4) � ε

4 + 2ε′ � ε
2 .
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Since L2 is Res(�)-avoiding and L3 is �-structured quasi-idempotent and Mi and
L3 are each �-absorbing, Lemma 2.8 implies L2MiL4 = L2L3L4. Thus d(L2L3L4,

L2MiL4) = 0 and the sum on the right hand side of (1) is at most ε, proving the
claim and the lemma.

So it remains to prove Lemmas 3.2 and 3.3. In Section 3.2 we present a lemma
that is key to the proof of both of these lemmas. In Section 3.3 we prove Lemma
3.3. In Section 3.4 we present another lemma which is used in Section 3.5 to prove
Lemma 3.2.

3.2. Partitioning a sequence of matrices into many segments with the same pattern

The following lemma asserts that given any long enough sequence of stochastic
matrices, it is possible to find a stable digraph D and a chain of segments of length
h such that each of the h subproducts can be very well approximated by a matrix
(not the same for each subproduct) that has pattern D, where the closeness of the
approximation is small relative to the smallest nonzero entry of the approximating
matrix.

First we need a definition. If D is a digraph and ω, δ are real numbers in [0, 1] we
say that a stochastic matrix A is (D, ω, δ)-conforming if for all (s, t) ∈ D, A(s, t) �
ω and for all (s, t) �∈ D, A(s, t) < ωδ. (Intuitively, the entries corresponding to D

are “big” and the other entries are “small”.)

Lemma 3.4. Let n, h be positive integers and δ > 0. There exists a positive integer
r0 = r0(n, h) (independent of δ) and a real number δ′ = δ′(n, δ) (independent of
h) with the following property: Given any r � r0 and (A1, A2, . . . , Ar) ∈ (Sn)

r

there exists a stable digraph D on [n], a real number ω ∈ [δ′, 1] and an interval
chain (σ1, σ2, . . . , σh) of length h contained in [r0] such that for each i ∈ [h], Aσi

is (D, ω, δ)-conforming.

Proof. Let n, h, δ be given. We first define a sequence γ of n2 + 3 real numbers
0 = γ0 < γ1 < γ2 < · · · < γn2+1 < γn2+2 = 1 with γn2+1 = 1/(n + 1), and for j ∈
[1, n2], γj = (γj+1/n)n!δ. The number δ′ is defined to be (γ2)

n!. Observe that δ′ is
independent of h.

Define the real intervals I0, I1, . . . , In2+1 by Ij = (γj , γj+1]. These intervals par-
tition (0, 1]. For A ∈ Sn, let lA be the largest index j such that Ij contains no entry
of A; j is well defined and positive by the pigeonhole principle. Also, j /= n2 + 1
since A contains an entry that is at least 1/n. Let GA be the graph consisting of all
(s, t) such that A(s, t) � γlA+1, i.e., A(s, t) lies in one of the intervals to the right of
IlA . The ordered pair (lA, GA) is called the type of the matrix A.

Now define r0 to be (n!h)n
22n2

. Let r � r0 and suppose that A1, A2, . . . , Ar is
a sequence of stochastic matrices. Assign to each (integer) subinterval σ a “color”
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which is the type (lAσ , GAσ ) of the matrix Aσ . There are at most n22n2
different

colors (n2 is a bound on the number of distinct values for lA and 2n2
is the number

of different digraphs). So by Lemma 2.4 and the fact that r � r0, there is an interval
chain τ of length n!h in which each interval has the same color. Let (l, G) be the
common color of these intervals.

We now specify D, ω, and σ required by the conclusion of the lemma. Let D =
Gn!. By Lemma 2.5, D is a stable digraph. Let ω = γ n!

l . Define (σ1, . . . , σh) as
follows: group the intervals of τ consecutively into h groups of size n! and let σi be
the union of the intervals in the ith group.

Let i ∈ [h], we must show that Aσi
is (D, ω, δ)-conforming. Aσi

is the product
of n! matrices, each of type (l, G). Thus for each of these n! matrices, each entry
corresponding to an arc of G is at least γl+1 and each entry corresponding to a non-
arc of G is less than γl . Since D = Gn!, each entry of Aσj

corresponding to an arc

of D is at least γ n!
l+1 = ω. Each entry corresponding to a non-arc of D is the sum of

at most nn! terms each of which is less than γl , and so each such entry is less than
nn!γl = δω. �

3.3. Proof of Lemma 3.3

We will need the following fact (which is a special case of a property of compact
subsets of Euclidean space):

Lemma 3.5. Let B ⊆ Sn be closed. There exists a number α = α(B) > 0 with
the following property. Given any matrix A ∈ B, there is a matrix B ∈ B such that
B(s, t) = 0 for all (s, t) such that A(s, t) < α.

Proof. Suppose no such α exists. Then for each i � 1, the number 2−i violates
the property, so there is a matrix Ai ∈ B such that for any matrix B ∈ B, there is
an (s, t) such that Ai(s, t) < 2−i and B(s, t) > 0. Define the digraph Di = {(s, t) :
Ai(s, t) � 2−i}. Choose D such that Di = D for infinitely many i and consider the
subsequence of matrices Ai such that Di = D; by compactness there is an infinite
subsequence i1, i2, i3, . . . such that {Aij } converges to a matrix B ∈ B. We now have
a contradiction to the choice of Ai1 : By definition of D and i1, for any (s, t) such
that Ai1(s, t) < 2−i1 we have (s, t) �∈ Di1 = D, which implies that the sequence
{Aij (s, t)} converges to 0 and hence B(s, t) = 0. �

We proceed with the proof of Lemma 3.3. The number k0 in this lemma is
taken to be r0(n, 1) from Lemma 3.4 and p(n) is chosen to be the least common
multiple of the set {1, 2, . . . , k0}. Define δ = min{α(A(i)) : 1 � i � k0} where
α(A(i)) is as defined in Lemma 3.5. Let R = 1

δ′(n,δ)
where δ′ is as defined in

Lemma 3.4.
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Suppose (A1, A2, . . . , Ak) ∈ Ak where k � k0, and let M = A[1,k]. By Lemma
3.4 with h = 1, we can find a stable digraph D, a real number ω � δ′ and an interval
σ ⊆ [k0] such that Aσ (s, t) � ω for (s, t) ∈ D and Aσ (s, t) < ωδ for (s, t) �∈ D. Let
σ = [l1 + 1, r1] and let q = r1 − l1. Since q � k0, q is a divisor of p. By Lemma
3.5 and the fact that α(A(q)) � δ and ω � 1, there is a matrix B ∈ A(q) such that
B(s, t) = 0 for all (s, t) �∈ D. Define the matrix C ∈ A(p) to be Bp/q and let Ni =
A[1,l1]BCiA[r1+1,k]. Trivially Ni ∈ A(k+ip). We now show that Ni � RA[1,k]. Since
D is stable and contains the pattern of B and Ci is a power of B, BCi(s, t) =
0 for all (s, t) �∈ D. For (s, t) ∈ D, BCi(s, t) � 1 while Aσ (s, t) � δ′. We con-
clude that BCi � RAσ . Since inequalities of nonnegative matrices are preserved
under pre- or post-multiplication of nonnegative matrices, Ni = A[1,l1]BCi

A[r1+1,k] � RA.

3.4. Convergence of products of (D,ω,δ)-conforming matrices

In preparation for the proof of lemma 3.2 we prove a lemma that says that given a
sequence of matrices of the right length, each of which is (D, ω, δ)-conforming for
some stable �-structured digraph D and δ sufficiently small, their product is close
to a Res(�)-avoiding matrix and also to a �-structured quasi-idempotent matrix.

First, we present a lemma assuming the stronger hypothesis that each matrix has
pattern D (rather than just being close to a matrix with pattern D). This lemma is
similar to standard results.

Lemma 3.6. Let � be a partial partition of [n] and D be a stable �-structured
digraph. Suppose C1, C2, �, Cm are stochastic matrices with pattern D. Let γ =
e−∑

i µ(Ci).

1. C[1,m] is within distance 2γ of some Res(�)-avoiding matrix.
2. C[1,m] is within distance nγ 2 of some �-structured quasi-idempotent matrix.

Proof. Since each Ci has pattern D and D is stable, any product C = ∏
i Ci has

pattern D.
To prove (1), let � = �D and let S = Res(�). and consider the matrix C̃〈S〉. This

matrix is S-absorbing and we will show d(C, C̃〈S〉) � 2γ . By Proposition 2.9, it
suffices to show that C(s, S) � γ for each s ∈ [n]. For s ∈ ∪� we have C(s, S) = 0,
since D is �-absorbing. For s ∈ S, view C as the transition probability matrix for
the m-step stochastic process defined by (C1, C2, . . . , Cm). Note that if the process
ever leaves S it never returns, so C(s, S) is equal to the probability that, starting the
process from s, the process is in S after every step. Since each Ci has pattern D and
D is stable, Ci(t, ∪�) must be nonzero for each state t and therefore it is at least
µ(Ci). In other words for each i and state t ∈ S, the conditional probability that the
process is in S after step i given that it is in t after step i − 1 is at most (1 − µ(Ci)).

We conclude that C(s, S) �
∏m

i=1(1 − µ(Ci)) � e−∑m
i=1 µ(Ci).
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Now for the proof of (2). By Propostion 2.10 it suffices to show that �C � γ 2.
We show by reverse induction on i that for i ∈ [m], �C[i,m] �

∏m
j=i (1 − 2µ(Cj )),

from which the desired inequality follows.
For the basis i = m, note that if t is recurrent and |�[t]| = 1 then �Cm(t) = 0.

Otherwise, Cm(s, t) � µ(Ci) for all s ∈ �[t] (since D is stable) and so maxCm(t) �
1 − µ(Ci) and minCm(t) � µ(Ci); thus �Cm(t) � 1 − 2µi .

The induction step follows immediately from:

Claim. If A, B are matrices with pattern D where D is stable, then �AB � (1 −
2µ(A))�B.

For the claim, let t be an arbitrary recurrent state. We first upper bound maxAB(t).

Let ut ∈ �[t] be the state minimizing B(u, t) over all u ∈ �[t]. Then for s ∈ �[t]
we have,

AB(s, t)=
∑

u∈�[s]
A(s, u)B(u, t)

�
∑

u∈�[s]−{ut }
A(s, u)maxB(t) + A(s, ut )minB(t)

=maxB(t) − A(s, ut )�B(t) � maxB(t) − µ(A)�B(t).

So maxAB(t) � maxB(t) − µ(A)�B(t). A similar argument gives minAB(t) �
minB(t) + µ(A)�B(t). Combining these gives �AB(t) � �B(t)(1 − 2µ(A)) for
each recurrent t, and the claim follows. �

We now prove an “approximate” version of the previous lemma, in which the
matrices are assumed only to be (D, ω, δ) conforming for some appropriate δ.

Lemma 3.7. Let n, ε′ be given, let J = �ln 4n
ε′ , δ = ε′

8nJ
, and ω ∈ [0, 1]. Let � be

a partial partition and D be a stable �-structured digraph. If K = J �1/ω then the
product of any K matrices, each (D, ω, δ)-conforming, is within ε′ of some Res(�)-
avoiding matrix, and is also within ε′ of some �-structured quasi-idempotent matrix.

Proof. Let D be a stable digraph and ω ∈ [0, 1] and K = J �1/ω, so that J/ω �
K � 2J/ω. Let A1, A2, . . . , AK be a sequence of (D, ω, δ)-conforming matrices
and for each i ∈ [K], let Bi = Ãi〈D〉. By Proposition 2.9, d(Ai, Bi) � 2nωδ and by
Proposition 2.6, d(A[1,K], B[1,K]) � 2nωδK � ε′/2.

Each Bi has pattern D and smallest nonzero entry at least ω. Therefore, by Lemma
3.6, B[1,K] is within distance ne−2Kω � ε′/2 of some �-structured quasi-idempotent
matrix, and so A[1,K] is within ε′ of that matrix. Similarly, by Lemma 3.6, B[1,K] is
within 2e−Kω � ε′/2 of some Res(�)-avoiding matrix and hence A[1,K] is within
ε′ of that matrix. �
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3.5. Proof of Lemma 3.2

We are given n and ε′ > 0. We will define a number b = b(n, ε′) and show
that given (B1, B2, . . . , Bb) ∈ Sb we can find the desired spanning interval chain
(σ1, σ2, σ3, σ4, σ5) of [b].

Define δ = δ(n, ε′) and J = J (n, ε′) as in Lemma 3.7. Let δ′ = δ′(n, δ) be defined
as in Lemma 3.4. Define h = 2J �1/δ′ + 1. Finally, define b = r0(n, h) as in Lemma
3.4. Note that b can be expressed as a function of n and ε′.

Given (B1, B2, . . . , Bb), apply Lemma 3.4 to obtain an interval chain (τ1,

τ2, . . . , τh) contained in [b], a stable digraph D and a real number ω � δ′ so that
each Bσi

is (D, ω, δ)-conforming. Define K = K(J, ω) as in Lemma 3.7 and note
that h � 2K + 1.

We now define σ1 to be the portion of [b] preceding τ1, σ2 = ∪K
i=1τi , σ3 = τK+1,

σ4 = ∪2K+1
i=K+2τi and σ5 is the portion of [b] coming after σ4. We also define � = �D .

By Lemma 3.7 we have that Bσ2 is within ε′ of some Res(�)-avoiding matrix,
and Bσ4 is within ε′ of some �-structured quasi-idempotent matrix. Finally Bσ3 is
(D, ω, δ)-conforming, so by Proposition 2.9, is within 2nωδ � ε′ of B̃σ3 which has
pattern D and is therefore �-absorbing.

Acknowledgements

We express our gratitude to Joseph Wong for pointing us to Ref. [4], and to D.J.
Hartfiel for helpful comments.

References

[1] A. Condon, L. Hellerstein, S. Pottle, A. Wigderson, On the power of finite automata with both non-
deterministic and probabilistic states, SIAM J. Comput. 27 (1998) 739–762.

[2] C. Dwork, L. Stockmeyer, Finite state verifiers I: the power of interaction, JACM 39 (4) (1992)
800–828.

[3] P. Erdös, G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935) 464–470.
[4] D.J. Hartfiel, Markov Set-Chains, Springer, Berlin, 1998.
[5] D.J. Hartfiel, Nonhomogeneous Matrix Products, World Scientific, 2002.


