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Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of
structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified
as a major threat to the public health of human being by the World Health Organization (WHO). Among
the four general mechanisms that cause antibiotic resistance including target alteration, drug inactiva-
tion, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves
as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing
to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by
lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression
of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug
resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physi-
ological functions in bacteria and their expression is subject tight regulation in response to various of
environmental and physiological signals. A comprehensive understanding of the mechanisms of drug
extrusion, and regulation and physiological functions of efflux pumps is essential for the development
of anti-resistance interventions. In this review, we summarize the development of these research areas
in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a
promising anti-drug resistance intervention.

� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction: drug efflux transporters and their clinical
relevance

Efflux pumps are found in almost all bacterial species and genes
encoding this class of proteins can be located on chromosomes or
plasmids [1,2]. According to their composition, number of
transmembrane spanning regions, energy sources and substrates,
bacterial efflux pumps are classified into five families: the resis-
tance-nodulation-division (RND) family, the major facilitator
superfamily (MFS), the ATP (adenosine triphosphate)-binding
cassette (ABC) superfamily, the small multidrug resistance (SMR)
family [a member of the much larger drug/metabolite transporter
(DMT) superfamily], and the multidrug and toxic compound extru-
sion (MATE) family [1–3]. Except for the RND superfamily which is
only found in Gram-negative bacteria, efflux systems of the other
four families: MFS, ABC, SMR and MATE are widely distributed in
both Gram-positive and negative bacteria [4]. Depending on the
specific classes they belong to, efflux pumps are either single-com-
ponent transporters or multiple-component systems containing
not only an inner membrane transporter, but also an outer mem-
brane channel and a periplasmic adaptor protein, such as the
RND type efflux pumps [5]. Owing to their tripartite composition
which allows direct extrusion of various drugs from cytosol or
periplasmic space to the outside of bacterial cells, RND family
pumps have been found to be associated extensively with clinically
significant antibiotic resistance, such as AcrB in Escherichia coli and
Salmonella typhimurium and MexB in Pseudomonas aeruginosa. In
Gram-positive bacteria, the clinically significant efflux pumps are
members of the MFS family, for example NorA in Staphylococcus
aureus and PmrA in Streptococcus pneumoniae [6].

In recent decades, with the development of various molecular
approaches [5], such as reverse transcription quantitative PCR
(RT-qPCR) and immunoblotting, association of efflux pump overex-
pression with clinically relevant levels of MDR has been increas-
ingly reported [7]. For instance, a recent screening of 50 clinical
E. coli strains isolated from human clinical samples and dog feces
in Sapporo, Japan, revealed a strong correlation of overexpression
of the AcrAB efflux pumps with the high-level fluoroquinolone
resistance in all 20 multi-resistant strains [8]. In another screening
of 52 Klebsiella pneumoniae strains isolated from burn patients hos-
pitalized in Shahid Motahari Hospital, Tehran, all 40 isolates which
displayed resistance to ciprofloxacin, tetracycline, ceftazidime and
gentamicin were found to express high levels of the AcrAB efflux
pump particularly in ciprofloxacin resistant strains [9]. In addition,
clinical resistance caused by overexpression of more than one
efflux pumps was also identified. For instance, simultaneous over-
expression of the MexAB–OprM and MexXY efflux systems was
demonstrated to account for the multi-resistance phenotype of a
collection of 12 P. aeruginosa clinical isolates identified in a hospi-
tal in France [10]. A clinical isolate of Stenotrophomonas maltophilia
strain with high minimum inhibitory concentration (MIC) of
several antibiotics was found to coordinately hyper-express the
RND family efflux pumps SmeZ and SmeJK [11]. In addition to
those encoded on the chromosomes of bacteria, plasmid-encoded
efflux pumps, such as OqxAB, which confer resistance to
olaquindox, was also found to cause drug resistance in E. coli clin-
ical isolates [12]. Association of efflux pump overexpression with
clinically relevant MDR in Gram-positive bacteria was also
reported. Among several hundred clinical isolates of S. aureus
studied by Christos Kosmidis et al. it was found that strains
overexpressing efflux pump genes were common and were widely
distributed geographically. These strains were mainly resistant to
methicillin and the resistance was clonally related with norA and
mepA overexpression [13].

2. Mechanisms of drug extrusion by the efflux pumps

Efflux pumps are prominent in terms of both their high
efficiency of drug extrusion and broad substrate specificities,
underlying their roles in multidrug resistance. Substrate profile of
the E. coli housekeeping efflux system AcrAB-TolC has been studied
and it was shown to include chloramphenicol, fluoroquinolone, tet-
racycline, novobiocin, rifampin, fusidic acid, nalidixic acid and b-
lactam antibiotics [2]. Similar to that in E. coli, the AcrAB-TolC efflux
system in S. typhimurium was also found to be able to expel differ-
ent classes of antimicrobial agents such as quinolones, chloram-
phenicol, tetracycline and nalidixic acid [1,14]. In P. aeruginosa,
two RND efflux pumps, MexAB–OprM which is the homolog of
the E. coli AcrAB-TolC system and MexXY-OprM, are constitutively
expressed and both of the systems can actively export fluoroquino-
lones, tetracycline and chloramphenicol. In addition to these com-
mon substrates, MexAB–OprM system can also export novobiocin
and b-lactams, such as carbenicilline, and MexXY system can also
export aminoglycosides [15]. Substrate profiles of other clinically
relevant pathogens are reviewed elsewhere [6,14].

2.1. Structures of RND efflux pumps

Owing to their prominent roles in MDR, various of biophysical
and biochemical characterization of bacterial efflux pumps,
especially the E. coli AcrAB-TolC system, have been conducted
[16–21]. In recent decade, elucidation of crystal structures of sev-
eral drug efflux pumps and those complexed with the substrates
or inhibitors has greatly accelerated our understanding of the fun-
damental mechanism of drug export and the characteristics of
their multisubstrate specificities. The first crystal structure of drug
efflux pump was that of the E. coli AcrB protein which was resolved
at 3.5 Å resolution by Murakami et al. [22]. The crystal was grown
in the trigonal space group R32, implying a symmetric AcrB trimer.
The trimeric complex is comprised by a large portion of the peri-
plasmic headpiece and a transmembrane region. The upper part
of the headpiece forms the TolC docking domain and the center
of the headpiece comprises the pore domain. Crystal structure of
AcrB with its substrate, minocycline or doxorubicin [23] was
resolved subsequently by the same research group. Findings from
this co-crystal showed that only one of the three protomers bound
with the substrate minocycline or doxorubicin (Fig. 1A). This, com-
bined with the asymmetric structure of AcrB revealed by the X-ray
crystal structure obtained independently by other two groups
[24,25], led to the proposal of the asymmetric configuration of AcrB



Fig. 1. Structure of AcrB and the functional rotation mechanism of the drug extrusion by the RND efflux system AcrAB-TolC. The three protomers are colored as green, blue
and red, respectively. (A) Top view of a ribbon representation with a drug (yellow and red) in the binding protomer. (B) Top view from the distal side of the cell. Drugs are
illustrated as hexagons. Red lines represent the entrance and exit sites of each protomer. The drug binding pocket and translocation pathway are in dotted lines. (C) Side view
of the AcrAB-TolC efflux system parallel to the membrane plane. Drugs are illustrated as hexagons. Red lines represent the entrance and exit sites of each protomer. The route
of substrate access, binding, and extrusion is shown. Figure is adopted and modified based on that by Marakarm et al. [23].
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trimer both in vitro and in vivo and a working mechanism of func-
tional rotation in which the three protomers display different con-
formation. The protomer bound with the substrate in the crystal
structure is indicated as the binding protomer which exists as
the tight (T) conformation. The substrate binding pocket in this
protomer is located in the porter domain, which is consisted of four
subdomains, PN1, PN2, PC1 and PC2 (Fig. 1A). Examination of the
substrate binding pocket revealed that it is enriched with aromatic
amino-acid residues: Phe 136, Phe 178 (PN2), Phe 610, Phe 615,
Phe 617, and Phe 628 (PC1), which are proposed to interact with
the substrate by hydrophobic or aromatic–aromatic interactions
[23]. Both minocycline and doxorubicin interact with Phe 615. In
addition, minocycline also interacts with Phe 178 and Asn 274,
and doxorubicin also interacts with Gln 176 and Phe 617 [23]. It
is suggested that these may provide an explanation on the wide
spectrum of substrate specificities of AcrB since different residues
are used for binding of different substrates. The second protomer is
designated as the extrusion protomer which exists as the open (O)
conformation, because it represents the configuration after sub-
strates extrusion. In this protomer, the pore-forming helix of PN1
is inclined and blocks the potential exit from the substrate binding
pocket (Fig. 1A red). The third protomer is defined as the access
protomer which exists as the loose (L) conformation, because it
possesses a vacant binding site, waiting for the binding of the
second substrate. Based on these information, the three-step func-
tional rotation mechanism of drug export was proposed [23]. In the
first step or the access (or loose, L) state (Fig. 1B and C), a ‘‘vesti-
bule’’ near the entrance is open to the periplasm and allows poten-
tial substrates to access [23]. In the binding (or tight, T) state, the
binding pocket expands to accommodate the substrate. Hence,
drugs enter into the vestibule from the surface of the cytoplasmic
membrane, move through the uptake channel, and bind to the
different sites in the binding pocket. At this stage, the exit from
the binding site is blocked by the central helix inclined from the
extrusion protomer. In the extrusion (or open, O) state, the exit
is opened because the central helix is inclined away, while the
vestibule is closed [23]. The bound drug is pushed out into the
top funnel by shrinking of the binding pocket. These changes
were expected to be coupled to proton translocation across the
membrane. The protonation and deprotonation of charged amino
acid residues within the transmembrane domains would affect
the accessibility or influence the binding or extrusion of the sub-
strates. This functional rotating mechanism was further confirmed
by the study of Takatsuka et al. using covalently linked AcrB trimer
which showed that inactivation of one of the three protomers led
to dysfunction of the entire trimer, an essential feature of the
functional rotating mechanism [26].

Building upon the discovery of multiple phenylalanine residues
in the substrate binding pocket of AcrB, Bohnert et al. [27]
conducted site-directed Phe mutations to study the role of hydro-
phobic residues in AcrB. Their results showed that mutation of
F610A caused significant decrease of the substrate MICs of oxacillin,
doxorubicin, novobiocin and clindamycin suggesting that the F610
residue has a special role in the substrate extrusion process. How-
ever, the molecular details of the recognition and transportation of
other substrates by AcrB were still unclear, since only minocycline
and doxorubicin have been co-crystallized within the binding
pocket. To better understand the recognition mechanism of other
compounds, computer docking to predict the binding of 30
compounds with the binding pocket of the binding protomer was
conducted [28]. Both computer docking and experimental results
confirmed that minocycline binds to the upper portion of the binding



Fig. 2. Comparison of MexB and AcrB structures based on their transmembrane helices. Three subunits of MexB and AcrB are individually represented in the same
orientation. The right panel shows the structural differences in the pore domain. The lower panel shows the side-chain conformation in the putative proton translocation site.
Figure is adopted from Sennhauser et al. [32].

Fig. 3. A potential mechanism for hydrophobic substrate transport by EmrD. (A)
Two ways (path 1 and 2) that drug can enter the internal cavity of the transporter.
(B) Drug transported through a rocker-switch alternating-access model. (C) Drug
transported across the lipid bilayer. Figure is revised from Yin et al. [35].
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pocket, which is called ‘‘groove binding’’. Such compounds also
include tetracycline, chlortetracycline, doxycycline, novobiocin,
erythromycin, nafcillin, rifampin, doxorubicin and levofloxacin.
Whereas some other ligands bind to the lower part of the pocket,
including chloramphenicol, carbenicillin, and cefamandole, which
is called ‘‘cave binding.’’ In addition, some compounds seem to use
both subdomains, such as cephalothin, cephaloridine, oxacillin,
linezolid, and ciprofloxacin. This successive process of binding and
transport was further demonstrated by the high resolution struc-
tures of AcrB/ankyrin-repeat protein (DARPin, a crystallization
chaperone) complexes with bound minocycline or doxorubicin [29].

The opportunistic pathogen P. aeruginosa encodes several mul-
tidrug efflux pump genes [30]. The MexAB–OprM tripartite system
was the first to be identified and was the best characterized in the
bacterium [31,32]. The multidrug exporter MexB belongs to the
RND family and its constitutive expression confers intrinsic
resistance of P. aeruginosa to a broad spectrum of antimicrobial
agents. MexB is closely related to E. coli AcrB. Crystal structures
of the tripartite efflux pump components MexA, MexB and OprM
have also been reported [30,33,34]. Comparison of the structures
of MexB and E. coli AcrB showed that the structural similarity
between the two proteins is obvious (Fig. 2). Specially, the trans-
membrane domain of MexB and AcrB was examined because it
was likely to be similar in all RND family transporters. Similar to
that of AcrB, the structure of the docking domain of MexB is
consisted of two subdomains, and one of them forms a long loop
that inserts into the docking domain of the neighboring subunit.
This may well explain the finding that outer membrane channels
and RND efflux pumps interact transiently in a rather low affinity
[18]. Moreover, this observation also led to the assumption that
the high specificities between MexB and OprM, and AcrB and TolC
mostly relies on the associated membrane fusion protein MexA or
AcrA [17]. Since crystals of MexB were grown in nonionic detergent
n-dodecyl-D-maltoside (DDM), the positive electron density
observed in the crystal was interpreted to be part of a DDM
molecule that co-crystallized with MexB. Residues interacting with
this substrate include Val47, Ser48 and Gln125 of PN1; Val177,
Ser180 and Gly179 of PN2; and Arg620 and Gln273 of PC1. The
binding site of the DDM to MexB corresponds to the previously
reported minocycline and doxorubicin binding sites in AcrB [27].
The fact that all three substrates bind to the binding cavity of the
pore domain suggests that the nature of this binding cavity is con-
served. Till now, no high-quality co-crystals of MexB with minocy-
cline or a tightly bound DDM molecule was obtained like AcrB,
though the substrate specificity of MexB resembles that of AcrB.

2.2. Structures of MFS and SMR efflux pumps

In addition to the RND efflux pumps which have attracted
intensive research interests owing to their significant roles in clin-
ically relevant drug resistance, contribution of other types of efflux
pumps to drug resistance has also been reported and 3D crystal
structures of several of these pumps have also been resolved. The
crystal structure of a multidrug transporter belonging to the MFS
family, EmrD, of E. coli has been reported [35]. Its structural



Fig. 4. Crystal structure of MexZ. Shown is the ribbon diagram of MexZ dimer. In
each monomer, the N-terminal is shown as blue and the C-terminal is shown as red.
Figure is adopted from Alguel et al. [44].
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arrangement may reflect a general architecture of MFS transport-
ers, where twelve transmembrane helices form a compact struc-
ture with four of the transmembrane helices (H3, H6, H9, and
H12) facing away from the interior, and the remaining transmem-
brane helices forming the internal cavity. Consistent with its
function of transporting lipophilic compounds, the internal cavity
of EmrD comprises mostly hydrophobic residues. Several of these
residues are also conserved in other MFS transporters. This type
of hydrophobic core has been previously proposed and also
observed in the structure of EmrE, a small multidrug efflux trans-
porter [36,37]. The mechanism of hydrophobic substrate transport
by EmrD is proposed (Fig. 3). In this proposed mechanism, the drug
can access the cavity either through the cytoplasm or through the
inner membrane leaflet, and substrate is transported through a
rocker-switch alternating-access model [35].

E. coli EmrE belongs to the small multidrug resistance family
(SMR) of the drug transporters. Its X-ray structure shows that it
functions as an inverted homodimer [38]. The asymmetric unit
contains eight EmrE monomers each composed of four transmem-
brane helices. The first three helices form a bundle against the
other equivalent helices of EmrE molecule, and the fourth helix
of each monomer interacts with each other and projects laterally
from the main body of the dimer. However, this conformation is
not in accordance with biochemical data. One possible reason is
that EmrE might be denatured since it was crystallized at pH 4
[38].
2.3. Structures of efflux gene regulators

Since overexpression of efflux pumps causes clinically signifi-
cant drug resistance, how the over-expression of efflux gene is
induced constitutes an important subject in drug resistance studies
(see the contents in the section of ‘‘regulatory networks of efflux
pumps’’ below). Piddock et al. categorized the mechanisms that
lead to increased expression of efflux pumps found in clinical iso-
lates into four groups: (i) mutations in the local repressor gene, (ii)
mutations in a global regulatory gene, (iii) mutations in the pro-
moter region of the transporter gene, and (iv) insertion elements
upstream of the transporter gene. 3D structures of efflux gene
regulators especially those bound with the inducers not only
provided structural basis on how the activity of these regulators
are mediated by structurally dissimilar antimicrobial agents to reg-
ulate efflux gene expression, but also provided insights into the
development of novel antimicrobial agents that interfere the
induction of efflux pump genes.

The expression of E. coli acrB efflux gene is controlled by the
local transcriptional repressor AcrR, which can be inactivated by
a variety of structurally unrelated antimicrobial agents [39].
Crystal structure of AcrR has been reported and it was revealed
that AcrR is constituted largely of a-helices and functions as a
dimer [39]. Each subunit of AcrR in the dimer contains nine
a-helices which are divided into two domains, the N-terminal
domain (a1–a3) and the C-terminal domain (a4–a9). In the homo-
logs regulators TetR, QacR and CmeR, the C-terminal domains
are ligand-binding domains [40–42]. However, the C-terminal
a-helical bundle of AcrR forms an internal cavity, which overlaps
with the substrate binding pocket of QacR, thus, it has been pre-
dicted to be a drug-binding pocket. Uniquely, the ligand-binding
pocket of AcrR possesses three openings, one is located at the
dimer interface and the other two are located at the front and side
surfaces of the monomer. There are 14 residues in the inner wall of
the ligand-binding pocket, and most of these residues are hydro-
phobic in nature [39]. The inner surface of the pocket displays a
negative potential owing to the presence of an acidic residue
E67. This suggests that AcrR mainly binds neutral and positively
charged ligands, which is consistent with the fact that most of
the AcrR ligands are indeed positively charged [39].

The transcription regulator MexR is the primary repressor of the
MexAB–OprM efflux system in P. aeruginosa which belongs to the
MarR transcription regulator superfamily [43]. The crystal struc-
ture of MexR has been resolved. It showed that MexR is mainly
consisted of a-helices and forms a triangular dimer which contains
two DNA binding domains. Each of the domains is connected via
two long helices to the dimerization domain made up of the
N- and C-terminal regions from the two monomers [43]. The dimer
exhibits a conformation in which the C-terminal tail of a monomer
inserts into the DNA binding domains of the neighboring
monomer. In the absence of an effector or effector-like ligand,
the positively charged side chains repulse each other to maintain
the crevice between the DNA binding domains, allowing the DNA
binding conformation of the MexR dimer. Consequently, it was
proposed that the MexR acts through an effector-induced
conformational change which reduces the spacing of DNA binding
domains and prevent its binding of DNA [43].

The TetR family transcription regulator MexZ is the negative
regulator of mexXY efflux gene in P. aeruginosa. Its repression is
relieved in the presence of inducing antibiotics [44]. The clinical
importance of MexZ has been strikingly highlighted [45], because
mexZ was found to be the most frequently mutated gene in clinical
isolates of P. aeruginosa from cystic fibrosis patients lungs. How-
ever, unlike many other TetR family transcription regulators, such
as TetR, QacR, and TtgR, which activity is modulated by the same
substrates as the efflux pumps they control, MexZ does not bind
those substrates directly and its activity is regulated by an anti-
repressor PA5471/ArmZ [46]. X-ray structure of MexZ is similar
to that of a typical TetR family protein and the overall structure
of MexZ is composed of nine a helices (Fig. 4). Among them,
a1–a3 forms the DNA binding domain with a3 being the DNA rec-
ognition helix. The rest a helices form the C-terminal domain
(CTD). Within the CTD, a5, a8, and a9 and the C terminal half of
a7 form a helical bundle with hydrophobic residues at the core.
MexZ exists as a dimer in solution, and the dimer has excessively
widely separated DBD domains with the average distance between
the two recognition helices as 60 Å, significantly larger than the
distance between the major grooves of B-DNA (34 Å). This
suggested that the X-ray crystal structure of MexZ represented that
of the activated form of MexZ that is released from the DNA. Anal-
ysis of MexZ mutations isolated from clinical strains showed that
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some mutations are located in the DNA recognition helix of the
protein which may affect the DNA binding ability of MexZ through
perturbing its interactions with the mexXY promoter DNA.
2.4. Structures of Gram-positive bacterial efflux gene regulators

Transcription regulators of clinically important Gram-positive
bacteria, such as S. aureus and Bacillus subtilis have also been
reported [41,47,48]. BmrR is a transcription regulator of the multi-
drug transporter Bmr in B. subtilis. BmrR activates the transcription
of bmr in response to lipophilic cationic drugs. X-ray crystal struc-
ture of BmrR complexed with the inducing drug tetraphenylphos-
phonium (TPP) and the promoter DNA of bmr, BmrR-TPP-bmr
promoter, has been resolved [47]. The BmrR monomer contains
three domains: the N-terminal DNA-binding domain, the linker
that connects the N- and C-terminal domains, and the C-terminal
drug binding domain (or BRC). The most striking feature of the
complex is that of the bmr promoter DNA. It was shown that the
base pair between the forward and lag strands in the promoter
region was broken because of the BmrR-TPP complex, which led
the unpaired adenine and thymine to slide towards the 30 direction
[47]. As a result, the nearby adenine and thymine also undergoes
displacement but still forms a distorted Watson–Crick base pair.
These evidence reveals a three step mechanism for transcription
activation, that is, localized base-pair breaking, base sliding, and
realignment. This pattern is different from that of many DNA-
binding proteins which bend and kink their operators.

Another well studied regulator of Gram-positive bacteria efflux
genes is QacR. QacR is the transcription repressor of the gene
encoding the multidrug transporter QacA. QacR binds to the IR1
operator site of qacA efflux pump gene in the absence of inducing
drugs and represses qacA expression. QacR can bind to various
structurally dissimilar compounds that are the substrates of QacA
efflux transporter, such as rhodamine 6G, ethidium and crystal vio-
let [49]. Structure of QacR bound simultaneously with two or more
different drugs such as ethidium (Et) and proflavin (Pf) has been
resolved, and it reveals the regulatory mechanism of QacR in
response to structurally different compounds. Surprisingly, it was
demonstrated that no additional global structural changes were
caused by dual drug binding to QacR [48], and the volume of the
multidrug-binding pocket of the QacR–Pf–Et ternary complex did
not need to expand to accommodate both drugs. An interesting
observation is that while the Pf binding site remains identical in
the QacR–Pf–Et ternary structure in comparison with that in the
binary complex of QacR–Pf, the Et molecule in the ternary
structure has shifted considerably in the pocket compared to its
location in the QacR–Et binary structure. Based on this, an uncom-
petitive binding mode was proposed because the exact Et-binding
site found in the ternary complex was not occupied in the absence
of Pf.
3. Physiological roles of MDR efflux pumps

The fact that all bacterial genomics contain efflux pump genes
and their expression is subject to tight regulation by various of
local and global transcriptional regulators has led to the proposal
that drug efflux pumps have physiological functions, especially
during the stress adaptation, development, and pathogenesis and
virulence of bacteria. There has been accumulating evidence dem-
onstrating that drug efflux pumps indeed play a general role of
detoxification in various of bacterial physiological processes.
Exploring the regulation of efflux pump genes as well as their spe-
cific physiological functions will advance our understanding of the
naturally or physiologically originated drug resistance which
occurs frequently in nature.
3.1. Roles in bacterial pathogenicity and virulence

Following the recognition that the house-keeping efflux pump
AcrAB-TolC serves as an important antibiotic resistance determi-
nant and plays a major role in the MDR phenotype of E. coli clinical
isolates [50,51], it was soon reported that the efflux system can also
pump toxic bile salts out of the cells and consequently promote the
adaptation of the bacterium in the animal intestinal tract [52]. Sub-
sequently, similar roles of AcrAB homologs in various other species,
such as P. aeruginosa [31,53], Neisseria gonorrhoeae [54] and S.
typhimurium [55] were also reported. These observations led to
the proposal that bacterial efflux pumps have the capacity to
extrude various host-derived antimicrobial compounds and facili-
tate the adaptation and survival of bacteria in their ecological and
physiological niches. Indeed, this notion is supported by increasing
evidence demonstrating that efflux pump defective mutations
caused reduced virulence of several pathogens. Buckley et al. stud-
ied the role of efflux pumps on virulence of S. typhimurium using
efflux pump defect mutants in a chicken model, and found that
mutants deficient in either acrB or tolC genes colonized poorly
and did not persist in the avian gut, indicating that AcrAB-TolC sys-
tem is essential for the colonization of S. typhimurium in chickens
[56]. Utilizing similar approaches Nishino et al. showed that S.
typhimurium lacking the macAB efflux pump genes displayed signif-
icantly attenuated virulence in a mouse model and a strain lacking all
drug efflux systems became completely avirulent [57]. In N. gonor-
rhoeae, a bacterial pathogen of the human genital mucosae, deletion
of mtrD or mtrE gene which product constitutes the MtrCDE efflux
system caused poor colonization of the bacteria in genito-urinary
tract of female mice [58]. More recently, studies have shown that
DacrB in K. pneumoniae and DacrA or DtolC in Enterobacter cloacae
led to a reduced capability of the pathogens to cause infection in
a mouse model, indicating that AcrAB-TolC is essential for the viru-
lence of K. pneumoniae and E. cloacae [59,60]. In addition to causing
defect in animal models, in plant pathogen an acrB-deficient
Erwinia amylovora was reported to have impaired virulence on
apple rootstock and fail to colonize its host plant [61]. Similarly,
deletion of either acrA or dinF pump gene in Ralstonia solanacearum
caused reduced virulence on the tomato plant, while complemen-
tary expression of these two genes in plasmid restored its virulence
to nearly wild type level [62].

In addition to their roles in host-pathogen interaction,
multidrug efflux pumps may also play a direct role in bacterial
pathogenesis. Hirakata et al. [63] examined the contribution of
the four best-studied P. aeruginosa multidrug efflux pumps
(MexAB–OprM, MexCD–OprJ, MexEF–OprM and MexXY–OprM)
to the virulence of the bacterium by testing the ability of efflux
pump mutants to invade epithelial cells (Madin–Darby canine kid-
ney (MDCK) cells), and showed that except for the mexCD-OprJ sys-
tem, deletion of other efflux systems caused a significantly reduced
ability of the bacterium to invade MDCK cells. Mutants lacking the
MexAB–OprM system could not invade MDCK cells and that
invasion could be restored by complementation of the strain with
plasmid encoded mexA–oprM or by supplementation with culture
supernatant obtained from MDCK cells infected with wild-type P.
aeruginosa. These studies suggested that efflux systems can
directly export virulent determinants and contribute to bacterial
pathogenesis. In some other cases, efflux pump activity affects bac-
terial virulence in a more indirect manner, such as through altering
quorum sensing responses. Those circumstances will be discussed
as below.

3.2. Roles in cell-to-cell communication

Intercellular communication among bacteria plays an impor-
tant role in bacterial stress response and community behaviors.
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One of the most important cell-to-cell communication mecha-
nisms is the quorum sensing system. Quorum sensing (QS) bacteria
produce and release chemical signaling molecules called
autoinducers which increase in concentration as a function of
cell-population density. As the accumulated autoinducers reach a
minimal threshold stimulatory concentration, these small mole-
cules bind to specific receptors which act as transcription regula-
tors and consequently alters the gene expression profile in
bacteria [64]. QS controls many cellular functions, including bio-
synthesis of antimicrobial peptides, metabolic switch, motility,
polysaccharide synthesis and activation of many virulence factors.

In order to be sensed by other bacteria, autoinducers synthe-
sized in vivo need to be exported and released into the extracellular
space. Therefore transportation of the autoinducers is a key aspect
for the regulatory function of QS. Autoinducers differ in their capa-
bility to diffuse across bacterial membranes. For instance, two
N-acylhomoserine lactones (AHL) autoinducers from Vibrio fischeri
and P. aeruginosa, 3-oxohexanoyl homoserine lactone (3OC6-HSL)
and N-butyryl homoserine lactone (C4-HSL, also called PAI-2)
respectively, are freely diffusible [65,66]. However, N-(3-oxodo-
decanoyl) homoserine lactone (3OC12-HSL, also called PAI-1) and
2-heptyl-3-hydroxy-4-quinolone (PQS) autoinducers of P. aerugin-
osa are not readily diffusible across the membrane, either due to
their lager size or hydrophobic nature [66,67]. Under these circum-
stances, additional membrane vesicles or membrane transporters
are required to assist the cross membrane transportation of those
autoinducers. Herein we discuss the roles of bacterial MDR efflux
pumps in autoinducers traffic and QS response.

The involvement of MDR efflux pumps in antoinducers traffic
was first reported in P. aeruginosa, of which the QS system has been
intensively studied. Poole et al. reported that hyper expression of
MexAB–OprM efflux system in a P. aeruginosa isolate produced less
AHL autoinducer 3OC12-HSL and displayed diminished QS response
as indicated by the reduced production of several QS controlled
extracellular virulence factors [68]. It was proposed that active
efflux of 3OC12-HSL by MexAB–OprM efflux pump limited the
intracellular concentration of the autoinducer and consequently
its dependent activation of the autoinducer producing gene lasI
and genes encoding those virulence factors. The capability of efflux
pumps to export QS autoinducers was also supported by the stud-
ies of Pearson et al. which demonstrated that DmexAB-oprM P.
aeruginosa display reduced diffusion of the [3H]3OC12-HSL autoin-
ducer to the extracellular environment and accumulation of the
intracellular [3H]3OC12-HSL, confirming that MexAB–OprM plays
a role in the active efflux of 3OC12-HSL [66]. The MexEF–OprN
and MexGHI–OpmD efflux system has also been shown to play a
role in QS response, but in an indirect manner [69,70]. Expression
of C4-HSL autoinducer synthase gene rhlI in a MexEF–OprN hyper
expression mutant was found to be at only half level of that in wild
type strain which led to decreased production of extracellular
virulence factors controlled by QS [69]. Another efflux pump
MexGHI-OpmD was found to export anthranilate, a toxic metabo-
lite and PQS autoinducer precursor [70]. Consequently, deletion of
mexG or opmD led to the failure of the synthesis of 3OC12-HSL and
PQS owing to the accumulated anthranilate precursor inside the
cells [70].

The involvement of MDR efflux pumps in QS has also been
reported in other bacterial species. For instance, it was reported
that overexpression of the QS regulator SdiA in E. coli had increased
AcrA and AcrB protein levels, suggesting a potential role of the
AcrAB efflux pump in QS [71]. E. coli AcrAB and MdtK (NorE, a MATE
type pump) efflux pumps were also proposed to export growth ces-
sation QS signals and consequently mutation of these two pumps
affected the adaptation of the bacterium to its stationary growth
[72]. In Bacteroides fragilis, a predominant anaerobic opportunistic
pathogen in gastrointestinal infection, it has been shown that the
expression of the BmeB efflux pump is controlled by QS, and it
was proposed that BmeB can efflux AHL autoinducers outside of
cells and modulate the intracellular AHL concentrations [73]. In
Burkholderia pseudomallei, MDR efflux pump BpeAB–OprB was
shown to be essential for the extracellular secretion of six AHL
autoinducers [74,75], although a more recent study by another
group demonstrated that this specific function of BpeAB-OprB
pump is absent in a distinct B. pseudomallei strain [76].

On the other hand, Martinez et al. proposed that efflux pumps
facilitate the shut-down of QS response in bacteria by increasing
the efflux of autoinducers and/or autoinducer precursors, thus
enabling the bacteria to quickly respond to environmental changes
[77]. This notion is supported by the observation that QS null
mutants are frequently isolated from environmental and clinical
samples [78], which suggesting that lacking of this cell-to-cell
communication system may be advantageous to P. aeruginosa at
least in certain situations. This notion also seems reasonable at an
economic aspect of view, as it has been calculated that QS response
consumes at least 5% of the total energy supply in P. aeruginosa,
whereas production of autoinducers requires only 0.01% of the total
energy supply [79], underlying the important roles of efflux pumps
in mediating the response of QS. Although export of autoinducers
might not be the main physiological function of MDR efflux pumps,
their involvement in this physiological process is clearly illustrated.
Considering the central role of QS in virulence regulation in many
pathogens, these efflux pumps dependent QS systems provide an
alternative target for the development of antimicrobial
interventions.
3.3. Roles in biofilm formation

Most chronic and persistent bacterial infections are associated
with biofilm growth, a strategy that has accelerated the emergence
and rapid spread of multidrug resistant bacteria. It has been known
for decades that biofilm associated bacteria is much more difficult
to be eradicated by bactericidal antimicrobials than planktonic
cells [80]. There seem to be multiple mechanisms operating simul-
taneously to contribute to this phenomenon. However, our under-
standing regarding the detailed underlying mechanisms is still
very limited except for a few cases [81,82].

Recently, several studies have provided evidence to show that
defect in efflux activity impairs biofilm formation, which linked
the physiological function of efflux pump to biofilm formation.
Kvist et al. [83] reported that inhibition of efflux activities by efflux
pump inhibitors (EPIs) reduced biofilm formation in both E. coli
and Klebsiella strains, while simultaneous treatment with different
EPIs abolished biofilm formation completely. A screening of 22
efflux pump mutants for reduced biofilm formation has led to
the identification of six efflux pumps that contribute to biofilm for-
mation in E. coli K-12 strain [84]. Baugh et al. demonstrated that in
Salmonella enterica serovar Typhimurium, genetic inactivation of
any efflux pump or chemical inhibition of the efflux activity (EPIs
treatment) results in compromised ability of Salmonella to form
biofilm [85]. Further studies showed that defect of biofilm forma-
tion in efflux pump mutants was resulted from transcriptional
repression of curli biosynthesis genes and consequently inhibition
of its production, but was not associated with altered aggregative
ability or export of any biofilm-promoting factor [86]. Their study
also showed that efflux pump inhibitors that known to be active
against Salmonella also effectively prevented biofilm formation in
other species, including E. coli, P. aeruginosa and S. aureus, at a con-
centration lower than the growth inhibition concentration [86].
The impaired biofilm formation resulted from efflux pump inacti-
vation has also been reported in B. pseudomallei [76]. The growing
body of evidence which unveils the role of MDR efflux pump
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systems in biofilm formation has provided a promising antibiofilm
strategy via inhibition of efflux activity.
4. Regulatory network of efflux pumps

Although efflux genes are ubiquitously distributed in bacterial
genomes, except for the few housekeeping efflux systems, expres-
sion of the majority of them is subject to tight control by various
transcription regulators, underlying their roles in facilitating the
adaptation of bacteria to specific stimuli. Recent observation that
overexpression of SmeDEF efflux pump in S. maltophilia impairs
the fitness and virulence of this bacterium supported this notion
[87,88]. Considering the capacity of efflux pump to extrude a wide
range of structurally unrelated chemicals, it is reasonable to spec-
ulate that improper overexpression of efflux pumps may cause
unwanted efflux of metabolites or other signaling molecules,
resulting in deleterious effects on cell physiology. Therefore,
expression of efflux pumps is usually well tuned and is only
expressed at a low, basal level under the ordinary laboratory
growth condition. Although the composition and functions of
MDR efflux pumps are relatively conserved in different species,
their regulatory mechanisms vary significantly. For instance, S.
typhimurium, a member of the closest known genus to E. coli,
employs a distinct regulatory network of efflux pump gene expres-
sion from that of E. coli. On the other hand, despite the divergence
between species, different bacteria still share some common pat-
terns in regulating the expression of efflux pump genes. A sum-
mary of the regulatory network of efflux pump gene expression
in the model organisms E. coli and Salmonella has been reviewed
by Nishino et al. [14]. Here, we focus on the findings in recent years
and in a broader range of bacterial species. We categorize them
into different regulatory patterns.
4.1. Regulation by local repressors

A glance of the currently known regulators of MDR efflux
pumps in various species (Table 1) shows that majority of the reg-
ulators belong to the TetR, MarR, or MerR family, which usually
acts as the transcriptional repressors [89–91]. For most of the
efflux pumps, especially the RND type efflux pumps, a local repres-
sor gene is usually found adjacent to the structural genes of efflux
pumps [92]. Mutation in the local repressor gene is frequently
observed in clinical isolates that display MDR phenotypes, suggest-
ing that the purpose of this local repressor might be to avoid the
excessive production of efflux pumps.

The simplest pattern of efflux pumps activation is through de-
repression of the local repressor mediated directly by specific
effector molecules (e.g., bile salts, antibiotics etc.). A typical exam-
ple is the activation of emrAB expression via the de-repression of
the active form of EmrR, a MarR family repressor. In this system,
emrR gene is located immediately upstream of the emrAB genes
and encodes EmrR protein. EmrR binds directly to the promoter
region of emrRAB operon and blocks the transcript of emrAB under
non-inducing conditions [93]. When exposed to toxic chemicals,
such as carbonylcyanide-3-chlorophenylhydrazone (CCCP),
2,4-dinitrophenol (DNP) and ethidium bromide (Eb), binding of
these drugs to EmrR causes conformational changes in the protein
which attenuates its binding to the DNA promoter, resulting in the
relief of the repression of emrAB [94]. Similar regulatory mecha-
nism is also found in the case of the Bmr pump in B. subtilis which
expression is mediated by the local repressor BmrR and binding of
BmrR to DNA is destabilized by rhodamine 6G and tetraphenyl-
phosphonium (TPP) [95,96]. Similar systems also include the
expression of cmeABC pump in Campylobacter jejuni [97] and
mtrABC pump in N. gonorrhoeae [98], which expression is repressed
by the regulator CmeR and MtrR respectively and both repressors
can interact with bile salts and consequently be released from
DNA binding. Other examples include the BpeR–BpeAB system in
B. pseudomallei [74], MexT–MexEF system in P. aeruginosa
[99,100], TtgR–TtgABC system in P. putida [101], MepR–MepA
[102] and QacR–QacA systems [41,103,104] in S. aureus, and the
SmeT-SmeDEF system in S. maltophilia. In all these cases, the
repressor can be released from its bound DNA promoter upon
the binding of their corresponding ligands or effector molecules.
One explanation for the universal distribution of this negative reg-
ulation pattern might be that this mechanism does not require
additional time to synthesize the activator and thus enables the
corresponding bacterium to act more rapidly to environmental
changes, e.g. toxic chemical exposure.

4.2. Regulation by global response regulators

Another common pattern is that the expression of efflux pumps
is regulated by global regulators, in the presence or absence of a
local repressor. One example is the intensively studied AcrAB
housekeeping efflux pump in E. coli, which is conditionally acti-
vated by three XylS/AraC family regulators, MarA, Rob, and SoxS.
These three regulators show high homology to each other and
can bind to the same DNA sequence called marbox on the promoter
of acrAB [105]. These three regulators can activate acrAB expression
in response to different environmental signals. For instance, AcrAB
is activated by salicylate, a plant hormone, through the MarA reg-
ulator. Binding of salicylate to MarR, a local repressor of marRAB
operon, causes conformational changes in the protein which led
to disassociation of MarR from the marRAB promoter [106–108].
Consequently, expression of MarA is de-repressed, which in turn
activates the expression of acrAB. When E. coli is exposed to decan-
oate and unconjugated bile salts, chemicals commonly found in
intestinal tract, expression of acrAB is activated by the Rob tran-
scription regulator [109]. The inducers specifically bind to the
non-DNA-binding domain of Rob, and since in this case activation
of acrAB expression is not due to the increased expression level of
Rob, it was proposed that expression of acrAB is activated by con-
formational changes of pre-existing Rob [109,110]. During oxida-
tive stress (e.g., superoxide generated by redox-cycling agents),
expression of acrAB is induced in a SoxRS dependent manner.
Under this circumstance, SoxR is first activated via the oxidation
of its [2Fe–2S] cluster by superoxide species. It then oxidizes SoxS
into its active form which then binds to the maxbox on acrAB pro-
moter and induces acrAB expression [111].

Similarly, the expression of acrAB efflux pump in Salmonella can
be induced by paraquat, a superoxide generator, also in a SoxS
dependent manner [112]. In E. coli, indole induces the expression
of multiple efflux pumps but not AcrAB. However, indole can induce
AcrAB expression inSalmonella [113]. It was shown that indole acti-
vated expression of acrAB in Salmonella is mediate by RamA, an AraC
family transcriptional regulator [114]. This Salmonella specific reg-
ulator constitutes a distinct regulatory network which differs from
that of E. coli. It was reported that bile salts induced acrAB expres-
sion is also dependent on RamA [114]. Shift of the intrinsic trypto-
phan spectrum of RamA upon adding of bile salts suggested direct
binding of bile salts to this regulator, indicating a similar role of
RamA in Salmonella as that of Rob in E. coli. Following study by
Abouzeed et al. showed that RamA is regulated by its local repres-
sor, RamR, a TetR family transcriptional regulator [115].

In B. subtilis, both Bmr and Blt efflux pumps are positively reg-
ulated by the global regulator Mta [116]. This MerR family regula-
tor binds directly to bmr and blt promoters and activates their
expression [116], yet the inducing signal of Mta is still unknown.
In N. gonorrhoeae, it was reported that induction of the MtrCDE
pumps by detergents is dependent on MtrA, an AraC family



Table 1
A summary of the known regulators of MDR efflux pumps.

Efflux pump Pump type Regulator Regulator family Inducible signal References

Acinetobacter baumannii
AdeABC RND AdeRS TCS ? [131]

Agrobacterium tumefaciens
AmeABC RND AmeR TetR ? [154]

Burkholderia pseudomallei
AmrAB RND AmrR putative TetR ? [155]
BpeAB RND BpeR TetR Erythromycin, stationary phase growth [74]

Campylobacter jejuni
CmeABC RND CmeR TetR Bile salts [97]

CosR OmpR Paraquat [119]

Bacillus subtilis
Bmr MFS BmrR MerR Rhodamine 6G, TPP [95,96]

Mta MerR ? [116]
Blt MFS BltR MerR ? [156]

Mta MerR ? [116]

Escherichia coli
AcrAB RND AcrR TetR ? [157]

AcrS TetR ? [158]
MarA AraC Salicylate, DNP [111]
MarR MarR Salicylate, DNP [106]
SoxS AraC Paraquat [111]
Rob AraC Bile salts, fatty acids [111]
SdiA LysR ? [71]

AcrD RND BaeSR TCS Indole [122]
CpxAR TCS Indole [122]

AcrEF RND H-NS Histone-like protein ? [159]
CusCFBA RND CusRS TCS Copper, silver, anaerobic amino acid limitation [160]
EmrAB MFS EmrR MarR CCCP, DNP, Eb, salicylate [93]
EmrKY MFS EvgSA TCS ? [124]

H-NS Histone-like protein ? [159]
MdtABC RND BaeSR TCS Indole [123]

CpxAR TCS Indole [122]
MdtEF RND ArcAB TCS Anaerobic condition [126]

CRP CRP-FNR N-Acetyl-D-glucosamine
EvgSA TCS ? [125]
H-NS Histone-like protein ? [126,159]
GadE Acid stress [161]
GadX Indole [162]

Neisseria gonorrhoeae
FarAB RND FarR MarR ? [118]
MtrCDE RND MtrR TetR Fatty acids, bile salts [98]

MtrA AraC TX-100 (detergent) [117]

Pseudomonas aeruginosa
MexAB RND MexR MarR Superoxide stress [163,164],

NalD TetR ? [165]
MexCD RND NfxB LacI/GalR Biocide chlorhexidine [53]
MexEF RND MexT LysR Chloramphenicol, GSNO (nitrosative stress) [99,100]
MexXY RND MexZ TetR Tetracycline, erythromycin, gentamicin [166,167,168]

Pseudomonas putida
ArpAB RND AprR TetR Organic solvents [169]
SrpABC RND SrpR TetR ? [170]

SrpS IclR ? [170]
TtgABC RND TtgR TetR Chloramphenicol, tetracycline [101]
TtgDEF RND TtgT Organic solvents [171]
TtgGHI RND TtgV IclR Organic solvents [172]

Salmonella typhimurium
AcrAB RND AcrR TetR ? [173]

MarA AraC ? [174]
RamA AraC Indole, bile salts [114]
RamR TetR ? [115]
SoxS AraC ? [112,174]

AcrD RND BaeSR TCS Indole, zinc, copper [130]
CpxAR TCS Indole, zinc, copper [130]

AcrEF RND AcrS TetR ? [175]
MacAB ABC PhoQP TCS Magnesium [57]
MdsABC RND GolS MerR Gold
MdtABC RND BaeSR TCS Indole, zinc, copper [130]

CpxAR TCS Indole, zinc, copper [130]
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Table 1 (continued)

Efflux pump Pump type Regulator Regulator family Inducible signal References

Staphylococcus aureus
MepA MATE MepR Chlorhexidine, cetrimide, dequalinium, [102]
QacA MFS QacR TetR Rhodamine 6G, TPP [41,103,104]

Stenotrophomonas maltophilia
SmeABC RND SmeRS TCS ? [132]
SmeDEF RND SmeT TetR Triclosan [176,177]
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transcriptional regulator [117]. However, there is no direct evi-
dence to demonstrate that MtrA binds to the mtrCDE promoter.
FarAB, another RND type efflux pump in N. gonorrhoeae, was
reported to be negatively regulated by FarR, a MarR family regula-
tor, through direct binding to the farAB promoter [118]. In C. jejuni,
the major MDR efflux pump CmeABC is negatively regulated by the
global regulator, CosR, in response to paraquat [119]. CosR is an
OmpR family regulator, and can directly bind to the cmeABC pro-
moter as confirmed by both electrophoretic mobility shift assay
(EMSA) and DNase I footprinting assays.

4.3. Regulation by two component systems

Two component system (TCS) is widely distributed in prokary-
otes, which allows bacteria to sense and respond to various envi-
ronmental changes. TCS is typically consisted of a histidine
kinase and a response regulator [120]. The Membrane associated
histidine kinase can sense and transduce different environmental
stimuli through phosphorylation of the response regulator, which
acts as the transcriptional regulator and alters the expression of
downstream genes [120]. Based on homology analysis, it was sug-
gested that there are total of 30 sensors and 34 response regulators
in E. coli gnome [121].

A comprehensive investigation of the relationship between
TCSs and efflux pumps revealed that 17 response regulators are
involved in drug resistance in E. coli [122]. Using efflux pump gene
deletion strains, it was found that the increased resistance in TCS
overexpression background was attributed to the expression of
several efflux pumps [122]. Among them, BaeSR system activated
the expression of mdtABC and acrD in response to indole
[113,123], CpxAR system activated the expression of mdtABC and
acrD probably in response the envelop stress [122], and EvgSA sys-
tem activated the expression of mdtEF and emrKY in response to
yet unknown signals [124,125]. Recently, our group found that
ArcAB TCS activated the expression of mdtEF efflux pump in M9
glucose medium under anaerobic condition by directly binding to
multiple regions on the promoter of gadE-mdtEF operon [126,127].

In Salmonella, the expression of RND type MacAB pump is regu-
lated by the PhoPQ TCS, the master regulator of the virulence of
Salmonella, which senses and responds to low magnesium level
and low pH condition [128,129]. Protection of macA promoter by
purified PhoP protein in DNase I footprinting suggested that PhoP
directly controls the expression of macAB [57]. Similar as in E. coli,
the Samonella TCS BaeSR system also activates the expression of
mdtABC and acrD, but in response to copper or zinc. EMSA assay
confirmed the direct binding of BaeR to the promoter of mdtABC
and acrD [130].

The involvement of TCS in the regulation of efflux pumps has
also been reported in other species. It was reported that in Acineto-
bacter baumannii, expression of RND type efflux pump AdeABC is
controlled by the AdeRS TCS encoded by adeRS genes located
upstream of adeABC genes [131]. Inactivation of AdeR or AdeS led
to susceptibility of A. baumannii to aminoglycosides which are
the substrates of this pump, indicating the essential role of AdeRS
in adeABC expression. However, the nature of the inducing signal
and the mechanism of AdeRS activation remains unclear. The
RND type efflux pump SmeABC in S. maltophilia is also reported
to be controlled by a TCS called SmeRS, located upstream of the
efflux pump genes. Studies have found that inactivation of SmeR
response regulator resulted in decreased resistance to several anti-
biotics and overexpression of smeR can increase the transcript of
smeABC [132].

5. Efflux pump inhibitors

Overexpression of multidrug efflux pumps has been frequently
found in clinical isolates that have increased MICs to antibiotics.
Recent studies suggested that multidrug transporters have become
a major determinant for the efficacy of both new and old antibiotics
[133]. As a consequence, antibiotic drug discovery and development
in recent years have to take into consideration the overcome of anti-
biotic resistance in common Gram-positive and Gram-negative
pathogens. Studies on the structures of multidrug efflux pumps
not only provided essential evidence for the mechanisms of
multidrug binding and extrusion, but also have shed light on the
structure-based approach to discover efflux pump inhibitors (EPIs).
To date, at least two classes of broad-spectrum EPI, such as
peptidomimetics and pyridopyrimidines, have been extensively
characterized [133].

Phenyl-arginine beta-naphthylamide (PAbN) [MC-207,110] was
the first identified EPI that inhibits all four clinically relevant
P. aeruginosa efflux systems, MexAB–OprM, MexCD–OprJ,
MexEF–OprN, and MexXY–OprM [134]. It successfully reduced the
emergence of levofloxacin-resistance in P. aeruginosa strain PAO1
treated with levofloxacin [135]. PAbN also has an activity against
the AcrAB-TolC in a variety of Gram-negative pathogens, such as
E. coli, S. typhimurium and K. pneumoniae [134]. It’s inhibition mech-
anism was proposed to be acting as an RND substrate that occupies
an affinity site in the large substrate-binding pocket different from
that occupied by a given antibiotic [134]. However, the general use
of this molecule remains questionable for several reasons. The most
important reason is that high concentration of PAbN affects the
membrane integrity of bacteria which may lead to LPS modification
[135] and consequently the induction of undesirable resistance pro-
files by reducing drug penetration. PAbN derivatives have been
explored in order to improve the efficacy of this class of peptidomi-
metic EPI. One derived compound, MC-04,124, is more stable than
the original PAbN molecule in biological fluids, exhibits less toxicity,
and has stronger activity against P. aeruginosa strains that overex-
press efflux pumps [136].

Considerable efforts have been made to further modify this
chemical series which led to the development of pyridopyrimidine
compounds. However, the first generation of pyridopyrimidine deriv-
atives had the problems of low solubility, high serum protein binding
as well as lack of efficacy in vivo. Following the approaches of scaf-
folds re-design [137,138], addition of hydrophilic chains, as well as
introduction of quaternary ammonium salt side chains [139,140],
the compound [[2-({[((3R)-1-{8-{[(4-tert-butyl-1,3-thiazol-2-yl)
amino]carbonyl}-4-oxo-3-[(E)-2-(1H-tetrazol-5-yl)vinyl]-4H-pyrido
[1,2-a]pyrimidin-2-yl}piperidin-3-yl)oxy]carbonyl}amino) ethyl]
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(dimethyl) ammonio] acetate [D13-9001] [141], which was referred
to as AcrAB/MexAB-specific inhibitor of pyridopyrimidine derivative
(ABI-PP) by Nakashima et al. [142], was developed. ABI-PP exhibited
potent inhibitor efficacy in vivo, high solubility, and a good safety pro-
file in an acute toxicity assay [141]. Recently, the X-ray crystal struc-
tures of ABI-PP bound with AcrB and MexB have been obtained and
the structure shows that the pyridopyrimidine derivative (ABI-PP,
mentioned as D13-9001priverously) binds to a narrow pit located
in the distal pocket and hinders the rotation of the pump [142]. These
structural details provided essential evidence for the structure-based
development of universal inhibitors that inhibit both MexB and
MexY.

Another group of EPIs is called the quinoline derivatives, because
of their structural similarity with quinolones [143]. These com-
pounds include chloroquinolone, alkoxyquinolone, alkylaminoqui-
nolone, pyrridoquinolone, and thioalkoxyquinolone [136]. Some of
them have been shown to be able to reduce the MICs of quinolones
and cyclines. Moreover, these derivatives can increase intracellular
concentration of radiolabelled norfloxacin or chloramphenicol
[144,145] and increase antibiotic susceptibility for various strains
including the clinical isolates of Enterobacter aerogenes and K. pneu-
moniae [145]. An advantage of this series of derivatives is that they
do not destroy the membrane integrity of bacteria as measured by
the potassium leakage and periplasmic activity tests [145].

In addition to the structurally modified synthetic compounds
that display efflux pump inhibition activities, high-throughput
assays have also used to screen compounds that might be putative
EPIs. In a high-throughput screening for putative inhibitor of E. coli
in the presence of novobiocin, a 3-arylpiperidine derivative was
identified to be able to increase the intracellular concentration of
norobiocin and another antibiotic linezolid [146]. Another screen-
ing of an N-heterocyclic organic compound library was conducted
to identify putative EPIs that can reverse multidrug resistance in
E. coli that over-expresses AcrAB and AcrEF efflux pumps [147].
Among the compounds tested, naphthylpiperazines (NMP) was
the most potent arylpiperazines that has been shown to increase
the intracellular accumulation of several antibiotics, such as
fluoroquinolones, chloramphenicol, and linezolid. However, these
compounds seem to be too toxic for clinical usage because of
‘‘serotonin agonist’’ properties [136]. Natural products (NP) that
have been implicated in efflux inhibition have also attracted
intensive attention since these compounds are often less toxic than
synthetic compounds. Lee et al. [148] discovered two compounds,
EA-371a and EA-371d, in microbial fermentation extracts to be
specific inhibitors of the MexAB–OprM pump in P. aeruginosa. In
addition, pheophorbide a extracted from Berberis aetnensis was
shown to lower the MIC of ciprofloxacin against E. coli and
P. aeruginosa [149,150].

In Gram-positive bacteria, EPIs against the NorA system in S.
aureus has been intensively studied. A large number of both syn-
thetic and natural compounds have been found to be EPIs against
S. aureus NorA, especially those of natural origins such as genistein
isolated from Lupinus argenteus, spinosan A isolated from Dalea
spinosa and Tiliroside isolated from Herissantia tiubae [151–153].

Though considerable efforts have been made to the develop-
ment of EPIs, none of these EPIs is used in clinics currently. One
main reason is that the mechanisms of most EPIs remain unknown,
except the extensively investigated PAbN. But very recently, with
the availability of the first inhibitor-bound structures of AcrB and
MexB [142], our understanding of the detailed mechanism of EPIs
and the development of clinically useful efflux pump inhibitors
have been advanced significantly. Future research will focus on
the development of extensive biological assays towards the
application of EPIs in clinics, such as fitness and in vivo modeling
studies [134]. In addition, expanded EPI efficacy assays beyond
the several model microorganisms, such as P. aeruginosa and
E. coli should also be developed.

In summary, significant development on the mechanism, regu-
lation, and physiological functions of multidrug efflux pumps have
been achieved in the past decades. The growing numbers of the X-
ray crystal structures of efflux pumps as well as those with bound
substrates or inhibitors continue to advance our understanding of
this important determinant of MDR and guide the development of
efflux pump inhibitors. EPIs combining with antibiotics presented
as a promising intervention to combat infections caused by drug
resistant pathogens. Approaches to prevent the over-expression
of efflux genes by targeting to their transcription regulators pro-
vide an alternative emerging strategy. However, to facilitate their
clinical applications, future endeavors to lower their cytotoxicity,
improve solubility, as well as search for the candidates that can
inhibit different classes of efflux pumps is necessary.
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