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a b s t r a c t

In this paper we investigate the asymptotic behavior of solutions to the initial boundary
value problem for a mixture of two rigid solids modeling temperature and porosity. Our
main result is to establish conditions which ensure the analyticity and the exponential
stability of the corresponding semigroup.
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1. Introduction

This article is concerned with a special case of a linear theory for binary mixtures of porous viscoelastic materials.
The theory of viscoelastic mixtures has been investigated by several authors (see for instance, [1–3] and the references
therein). In [1] binarymixtures have been consideredwhere the individual components aremodeled as porous Kelvin–Voigt
viscoelastic materials and the volume fraction of each constituent was considered as an independent kinematical quantity.
The authors assumed that the constituents have a common temperature and that every thermodynamical process that takes
place in the mixture satisfies the Clausius–Duhem inequality. At the end of that work, they presented as an application the
interaction between the temperature field θ and the porosity fields u andw in a homogeneous and isotropic mixture. In this
case, and after some considerations, the equations which govern the fields u, w and θ in the absence of body loads are given
by the system

ρ1utt − a11 1u − a12 1w − b11 1ut − b121wt + α (u − w) − k1 1θ − β1 θ = 0 in Ω × (0, ∞),

ρ2 wtt − a12 1u − a22 1w − b12 1ut − b22 1wt − α (u − w) − k2 1θ − β2 θ = 0 in Ω × (0, ∞),

c θt − κ 1θ + k1 1ut + k2 1wt + β1 ut + β2 wt = 0 in Ω × (0, ∞), (1.1)

∗ Corresponding author.
E-mail addresses:malves@ufv.br (M.S. Alves), rivera@lncc.br (J.E. Muñoz Rivera), mauricio@ing-mat.udec.cl, masepulveda.cortes@gmail.com

(M. Sepúlveda), overa@ubiobio.cl (O.P. Vera Villagrán).

0893-9659/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.10.044

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82694132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.aml.2011.10.044
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:malves@ufv.br
mailto:rivera@lncc.br
mailto:mauricio@ing-mat.udec.cl
mailto:masepulveda.cortes@gmail.com
mailto:overa@ubiobio.cl
http://dx.doi.org/10.1016/j.aml.2011.10.044


M.S. Alves et al. / Applied Mathematics Letters 25 (2012) 884–889 885

where Ω is a bounded domain of R3 with smooth boundary ∂Ω . The function u = u(x, t) (and w = w(x, t)) represents
the fraction field of a constituent and θ = θ(x, t) the difference of temperature between the actual state and a reference
temperature. We consider the following initial and boundary conditions

u(x, 0) = u0, ut(x, 0) = u1, w(x, 0) = w0, wt(x, 0) = w1, θ(x, 0) = θ0 in Ω

u(x, t) = u(x, t) = w(x, t) = w(x, t) = θ(x, t) = θ(x, t) = 0 on ∂Ω.
(1.2)

We assume that ρ1, ρ2, c, κ , and α are positive constants. Since coupling is considered, we consider

β2
1 + β2

2

 
k21 + k22


≠

0, but the sign of βi or ki (i = 1, 2) does not matter in the analysis. The matrix A = (aij) is symmetric and positive
definite and B = (bij) ≠ 0 is symmetric and non-negative definite, that is, a11 > 0, a11a22 − a212 > 0, b11 ≥ 0 and
b11b22 − b212 ≥ 0. Our purpose in this work is to investigate the stability of the solutions to the system (1.1)–(1.2). The
asymptotic behavior, as t → ∞, of solutions to the equations of linear thermoelasticity has been studied by many authors.
Obviously, to get these stability results, we consider several restrictions on the constitutive coefficients. In this sense, this
system of equations does not intend to model the general problem. We refer to the book of Liu and Zheng [4] for a general
survey on these topics. However, we recall that very few contributions have been addressed to study the time behavior
of the solutions of nonclassical elastic theories. In this direction we mention the works [3,5–7]. In [8], the authors treat
a similar problem for a one-dimensional mixture modeling temperature and porosity and prove the exponential decay of
solutions. We note that we cannot expect that this system always decays in a exponential way. For instance, in case that
β1 +β2 = 0, k1 + k2 = 0, ρ2 (a11 + a12) = ρ1 (a12 + a22) and b11 + b12 = b12 + b22 = 0 we can obtain solutions of the form
u = w and θ = 0. These solutions are undamped and do not decay to zero. These are very particular cases, but we will see
that there are some other caseswhere the solutions decay, but the decay is not so fast to be controlled by an exponential. Our
main result is to obtain conditions over the coefficients of the system (1.1) to ensure the exponential stability as well as the
analyticity of the semigroup associated with (1.1)–(1.2). We follow the same line of reasoning adopted in the papers [5,6].
This paper is organized as follows. Section 2 outlines briefly thewell-posedness of the system is established. In Section 3, we
show the exponential stability of the corresponding semigroup provided that certain conditions are guaranteed. In Section 4,
we treat the analyticity of the semigroup. In the last Section 5 we show, for some cases, the lack of exponential stability of
the semigroup. Throughout this paper C is a generic constant.

2. The existence of the global solution

In this section, we use the semigroup approach to show the well-posedness of the system. We introduce the face space
H = H1

0 (Ω) × H1
0 (Ω) × L2(Ω) × L2(Ω) × L2(Ω) equipped with the inner product given by

⟨(u1, w1, v1, η1, θ1), (u2, w2, v2, η2, θ2)⟩H = a11 ⟨∇u1, ∇u2⟩ + a22 ⟨∇w1, ∇w2⟩

+ a12 (⟨∇u1, ∇w2⟩ + ⟨∇w1, ∇u2⟩) + α ⟨u1 − w1, u2 − w2⟩ + ρ1 ⟨v1, v2⟩ + ρ2 ⟨η1, η2⟩ + c ⟨θ1, θ2⟩

where ⟨u, v⟩ =


Ω
uv dx, and the induced norms | · | and ∥ · ∥H which are equivalent to the usual norms in L2(Ω) and H ,

respectively. We also consider the linear operator A : D(A) ⊂ H → H

A


u
w
v
η
θ

 =



v
η

1
ρ1

∆(a11u + a12w + b11v + b12 η + k1 θ) −
α

ρ1
(u − w) +

β1

ρ1
θ

1
ρ2

∆(a12u + a22w + b12v + b22 η + k2 θ) +
α

ρ2
(u − w) +

β2

ρ2
θ

1
c

∆(κ θ − k1v − k2 η) −
β1

c
v −

β2

c
η


whose domainD(A) is the subspace ofH consisting of vectors (u, v, w, η, θ) such that v, η, θ ∈ H1

0 (Ω), κ θ −k1v−k2 η ∈

H2(Ω), a11u+a12w+b11v+b12 η+k1 θ ∈ H2(Ω), and a12u+a22w+b12v+b22 η+k2 θ ∈ H2(Ω). The system (1.1)–(1.2) can
be rewritten as the following initial value problem d

dtU(t) = AU(t),U(0) = U0 for all t > 0withU(t) = (u, w, ut , wt , θ)T

and U0 = (u0, w0, u1, w1, θ0)
T , and the T is used to denote the transpose. We can show that the operator A is densely

definite, dissipative, that is, Re ⟨AU,U⟩H 6 0, for all U ∈ D(A), and 0 belongs to the resolvent set of A, denoted by ρ(A)
(see [6]). Therefore, using the Lumer–Phillips theorem we conclude that the operator A generates a C0-semigroup SA(t) of
contractions on the space H . The following theorem follows.

Theorem 2.1. For any U0 ∈ H , there exists a unique solution U(t) = (u, w, ut , wt , θ) of (1.1)–(1.2) satisfying u, w ∈

C([0, ∞[: H1
0 (Ω)) ∩ C1([0, ∞[: L2(Ω)), θ ∈ C([0, ∞[: L2(Ω)) ∩ L2(]0, ∞[: H1

0 (Ω)). If U0 ∈ D(A) then u, w ∈ C1([0, ∞[:

H1
0 (Ω)) ∩ C2([0, ∞[: L2(Ω)), θ ∈ C([0, ∞[: H1

0 (Ω)) ∩ C1([0, ∞[: L2(Ω)), and

a11u + a12w + b11 ut + b12 wt + k1 θ ∈ C([0, ∞[: H2(Ω))

a12u + a22w + b12 ut + b22 wt + k2 θ ∈ C([0, ∞[: H2(Ω))

κ θ − k1 ut − k2 wt ∈ C([0, ∞[: H2(Ω)).
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3. Exponential stability

We denote by CP the Poincaré constant. To simplify the notation in the product, in the next theorems we consider
Ξ =

α(b12+b11) (ρ1 b12−ρ2b11)
ρ2 b11(a11 b12−a12 b11)+ρ1b12(a12b12−a22 b11)

. Our main tool is the following theorem established in [9] (see also [10,11]).

Theorem 3.1. Let S(t) be a C0-semigroup of contractions of linear operators on a Hilbert space X with infinitesimal generator
A. Then S(t) is exponentially stable if, and only if, iR ⊂ ρ(A) and

lim sup
|λ|→∞

(iλI − A)−1


L(X)
< ∞. (3.1)

Our starting point in order to show the exponential stability is the following lemma

Lemma 3.2. We suppose that one of the following items holds.

(a) β2b11 = β1b12, β2b12 = β1b22, and k2b11 ≠ k1b12, or k2b12 ≠ k1b22;
(b) Ξ is not an eigenvalue of the operator −∆;
(c) β1 = ϱk1, β2 = ϱk2, ϱ ≠ 0, and ϱ < 1

CP
, and k2b11 ≠ k1b12, or k2b12 ≠ k1b22.

Then iR ⊂ ρ (A).

Proof. We show this result by a contradiction argument. Following the arguments given in [4] (see also Ref. [8]), the proof
consists of the following steps:

Step 1. Since 0 ∈ ρ(A), for any real number λ with ∥λA−1
∥ < 1, the linear bounded operator iλA−1

− I is invertible.
Therefore iλI−A = A(iλA−1

− I) is invertible and its inverse belongs toL(H), that is, iλ ∈ ρ(A). Moreover, ∥(iλI−A)−1
∥

is a continuous function of λ in the interval

−∥A−1

∥
−1, ∥A−1

∥
−1


.

Step 2. If sup

∥(iλI − A)−1

∥ : |λ| < ∥A−1
∥

−1


= M < ∞, then for |λ0| < ∥A−1
∥

−1 and λ ∈ R such that |λ − λ0| <

M−1, we have ∥(λ−λ0)(iλ0I−A)−1
∥ < 1, therefore the operator iλI−A = (iλ0I−A) (I+i(λ−λ0)(iλ0I−A)−1) is invertible

with its inverse inL(H), that is, iλ ∈ ρ(A). Sinceλ0 is arbitrarywe can conclude that

i λ : |λ| < ∥A−1

∥
−1

+ M−1


⊂ ρ(A)

and the function ∥(iλI − A)−1
∥ is continuous in the interval


−∥A−1

∥
−1

− M−1, ∥A−1
∥

−1
+ M−1


.

Step 3. It follows from item (3.1) that if iR ⊂ ρ(A) is not true, then there exists ω ∈ R with ∥A−1
∥

−1
≤ |ω| such

that {iλ : |λ| < |ω|} ⊂ ρ(A) and sup

∥(iλI − A)−1

∥ : |λ| < |ω|


= ∞. Therefore, there exists a sequence of real
numbers (λν)ν∈N with λν → ω when ν → ∞ and |λν | < |ω|, for all ν ∈ N, and sequences of vector functions
Uν = (uν, wν, vν, ην, θν) ∈ D(A), Fν = (fν, gν, hν, pν, qν) ∈ H , such that (iλν I − A)Uν = Fν and ∥Uν∥H = 1, for
all ν ∈ N, and Fν → 0 in H when ν → ∞. Hence,

Re⟨(i λν I − A)Uν,Uν⟩H = b11|∇vν |
2
+ b22|∇ην |

2
+ 2b12Re⟨∇vν, ∇ην⟩ + κ|∇θν |

2
→ 0 as ν → ∞;

Case I. If B is positive definite: κ|∇θν |
2
+

det B
2b22

|∇vν |
2
+

det B
2b11

|∇ην |
2

→ 0, then limν→∞ ∥Uν∥H = 0.
Case II. If B is singular. We suppose b11 > 0 (the case b11 = 0 and b22 > 0 is similar), we obtain

κ|∇θν |
2
+

1
b11

|∇(b11vν + b12 ην)|
2

→ 0 as ν → ∞. (3.2)

It follows that θν → 0 and b11vν + b12 ην → 0 in H1
0 (Ω). Since (uν)ν∈N and (wν)ν∈N are sequences bounded in

H1
0 (Ω), there exist subsequences, still denoted by (uν)ν∈N and (wν)ν∈N, such that uν → u and wν → w in L2(Ω). It

follows that vν → v, ην → η and b11vν + b12 ην → b11v + b12 η in L2(Ω), and by (3.2) we have b11v + b12 η = 0
and b11u + b12w = 0. On the other hand,

iλνρ1vν − ∆(a11uν + a12wν + b11vν + b12ην + k1θν) + α(uν − wν) − β1θν = ρ1hν → 0 in L2. (3.3)

We apply the basic energy estimate, and by compactness arguments we conclude that the sequence (a11uν +

a12wν + b11vν + b12ην + k1θν)ν∈N converge in H1
0 (Ω). In a similar way we have the same convergence of

(a12 uν + a22 wν + b12 vν + b22 ην + k2 θν)ν∈N. Therefore, using (3.2) we obtain that (a11 uν + a12 wν)ν∈N and
(a12 uν + a22 wν)ν∈N converge in H1

0 (Ω). Since (aij) is positive definite, it follows that uν → u, wν → w, vν →

v, ην → η in H1
0 (Ω).

(a) Using the Cauchy–Schwarz and Young inequalities we get

1
2

|∇(k1vν + k2ην)|
2 6 (|cqν | + |λν | |cθν | + C |b11vν + b12ην |) |k1vν + k2ην | + κ2

|∇θν |
2 .

Since the sequence (k1vν + k2ην)ν∈N is bounded in L2(Ω), using (3.2) we conclude that k1 vν + k2 ην → 0 in H1
0 (Ω), and

then k1v + k2 η = 0. Since k1 b12 ≠ k2 b11, we have, b11v + b12 η = 0 and b11u + b12w = 0, that u = w = v = η = 0.
Therefore, limν→∞ ∥Uν∥H = 0 and we have a contradiction.
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(b) It results that ρ1 ω2u+ a11 1u+ a12 1w −α (u−w) = 0 and ρ2 ω2w + a12 1u+ a22 1w +α (u−w) = 0 in L2(Ω).
On the other hand, it results by b11v + b12 η = 0 and b11u + b12w = 0, that u = −

b12
b11

w. Thus w verifies − 1w = Ξw, and
it follows that w = 0 and u = v = η = 0. If b12 = 0, by b11v + b12 η = 0 and b11u + b12w = 0, we obtain that u = v = 0
and then a12 1w + αw = 0. Using the hypothesis we conclude that w = 0 and η = 0. Therefore limν→∞ ∥Uν∥H = 0 and
we have a contradiction.

(c) We use similar arguments to show that v = η = 0, and then limν→∞ ∥Uν∥H = 0. �

Theorem 3.3. Under the hypothesis of Lemma 3.2, the C0-semigroup SA(t) is exponentially stable, that is, there exist positive
constants M and µ such that ∥SA(t)∥L(H) 6 M exp(−µt).

Proof. In view of Theorem 3.1 and Lemma 3.2 it is sufficient to prove (3.1). Given λ ∈ R and F = (f , g, h, p, q) ∈ H , let
U = (u, w, v, η, θ) ∈ D(A) be the solution of (iλ I − A)U = F . That is,

iλu − v = f in H1
0 (Ω), and iλw − η = g in H1

0 (Ω) (3.4)

iλ ρ1v − ∆(a11u + a12w + b11v + b12 η + k1 θ) + α (u − w) − β1 θ = ρ1h in L2(Ω) (3.5)

iλ ρ2 η − ∆(a12u + a22w + b12v + b22 η + k2 θ) − α (u − w) − β2 θ = ρ2p in L2(Ω) (3.6)

iλc θ + β1v + β2 η − ∆(κ θ − k1v − k2 η) = cq in L2(Ω). (3.7)

Since Re⟨(iλI − A)U,U⟩H = Re⟨F ,U⟩H , there exists a positive constant C such that

|∇θ |
2
+ |∇(b11v + b12 η)|2 6 C ∥F∥H ∥U∥

H
. (3.8)

Taking the inner product of (3.5)with u and (3.6)withw, adding these identities, using (3.4), the Young and Cauchy–Schwarz
inequalities, we obtain

det A
2a22

|∇u|2 +
det A
2a11

|∇w|
2 6 ρ1|v|

2
+ ρ2|η|

2
+ C |∇θ | (|∇u| + |∇w|) + |∇(b11v + b12 η)| |∇u| + ρ1 (|v| |f |

+ |h| |u|) + |∇(b12v + b22 η)| |∇w| + ρ2 (|η| |g| + |p| |w|) . (3.9)

(a) Multiplying (3.7) by (k1v + k2 η), integrating over Ω and using the Gauss Theorem, Young and Cauchy–Schwarz
inequalities, and (3.8), we obtain

|∇(k1v + k2 η)|2 6 C |⟨θ, λi (k1v + k2 η)⟩| + C∥F∥H∥U∥H . (3.10)

Multiplying Eqs. (3.5) and (3.6) by k1u/ρ1 and k2w/ρ2 respectively, adding the result, taking the inner product of θ with
iλ(k1v + k2 η); in L2(Ω) and by (3.8), it follows that

|⟨θ, λi (k1v + k2 η)⟩| 6 C |∇θ | (|∇u| + |∇w|) + C ∥F∥H ∥U∥H . (3.11)

Substituting (3.11) in (3.10), since k1b12 ≠ k2b11, and using (3.8) we conclude that

|∇v|
2
+ |∇η|

2 6 C |∇θ | (|∇u| + |∇w|) + C ∥F∥H ∥U∥H . (3.12)

By (3.8), (3.9) and (3.12) we obtain |∇u|2 +|∇w|
2 6 C ∥F∥H ∥U∥H . Using (3.8) and (3.12) we get ∥(iλI −A)−1F∥ 6 C ∥F∥H .

(b) From (3.5) and (3.8) we obtain |∇(b11u+b12w)|2 6 C∥U∥H ∥F∥H , for |λ| > 1. Performing the inner product between
(3.5) and u, v in H1

0 (Ω), and using b212 = b11b22, we get

|∇u|2 + |∇w|
2 6 C


|∇(b11v + b12 η)| ∥U∥H + ∥U∥H∥F∥H +

1
|λ|

∥U∥
2
H +

1
|λ|

∥U∥H∥F∥H


. (3.13)

Combining (3.8), the inner product of (3.5) with u, and (3.6) with w, respectively, and using (3.13) we obtain
1 −

C
|λ|


∥U∥H 6 C∥F∥H , for |λ| > 1. Thus ∥(i λ I − A)−1 F∥H 6 C∥F∥H when |λ| is large enough. Since the function

λ → ∥(iλI − A)−1
∥L(H) is continuous, we conclude.

(c) By similar arguments taking the inner product in L2(Ω) of (3.7) with k1v+k2 η, using (β1, β2) = ϱ (k1, k2), and (3.11)
we conclude |∇(k1v + k2 η)|2 6 C |∇θ | (|∇u| + |∇w|) + C∥U∥H∥F∥H . Since k1 b12 ≠ k2 b11, we obtain (3.12). �

4. Analyticity

We recall the following result (see [4]): Let S(t) be a C0-semigroup of contractions of linear operators in a Hilbert space
X with infinitesimal generator A. Suppose that iR ⊂ ρ(A). Then, S(t) is analytic if and only if lim sup|λ|→∞ ∥λ (i λ I −

A)−1
∥L(X)g < ∞. It follows from Lemma 3.2 that the imaginary axis is contained in ρ(A). In the next theorem of this

section, we will show that there is a positive constant C , independent on λ, such that |λ| ∥(iλI − A)−1
∥ 6 C, ∀λ ∈ R.
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Theorem 4.1. Suppose that item (a) or (c) of Lemma 3.2 occurs. Then the semigroup SA(t) is analytic.

Proof. Given λ ∈ R and F = (f , g, h, p, q) ∈ H , let U = (u, w, v, η, θ) ∈ D(A) be the solution of (iλI − A)U = F . In
Theorem 3.3 we proved (see (3.8) and (3.12)) that there exists C > 0 such that

|∇θ |
2
+ |∇u|2 + |∇w|

2
+ |∇v|

2
+ |∇η|

2 6 C∥F∥H∥U∥H . (4.1)

Since Im⟨(iλI − A)U,U⟩H = Im⟨F ,U⟩H we have λ∥U∥
2
H 6 |Im⟨AU,U⟩H | + ∥U∥H∥F∥H , with

Im⟨AU,U⟩H = 2i Im (a11 ⟨∇v, ∇u⟩ + a12 ⟨∇v, ∇w⟩ + α ⟨v − η, u − w⟩ + a12 ⟨∇η, ∇u⟩
+ a22 ⟨∇η, ∇w⟩ − β1 ⟨θ, v⟩ − β2 ⟨θ, η⟩ + k2 ⟨∇θ, ∇η⟩ + k1 ⟨∇θ, ∇v⟩) . (4.2)

By (4.1)–(4.2) we conclude that |Im⟨AU,U⟩H | 6 C∥F∥H∥U∥H , and then λ∥U∥
2
H 6 C∥F∥H∥U∥H , for all λ ∈ R. The proof is

complete. �

5. About the lack of exponential stability

In this section we will show that there are cases where the lack of exponential stability of the semigroup occur. To show
the lack of exponential stability wewill show that the condition (3.1) of Theorem 3.1 does not hold. To do this, it is sufficient
to show the existence of sequences Fν ∈ H and ξν ∈ R such that (Fν)ν∈N is bounded, |ξν | → ∞ and ∥(i ξν I−A)−1Fν∥ → ∞

when ν → ∞. We denote by ϕν ∈ H1
0 (Ω)∩H2(Ω) and λν ∈ R the sequences of eigenvectors and eigenvalues, respectively,

of the operator −∆, that is, −1ϕν = λν ϕν in Ω , with λν → ∞ as ν → ∞ and such that (ϕν)ν∈N is a orthonormal basis of
L2(Ω).

Theorem 5.1. Suppose that ρ2b11(a11b12 − a12b11) = ρ1b12 (a22 b11 − a12 b12), k2 b11 = k1 b12, k2 b12 = k1 b22 and
β1 b12 = β2 b11. Additionally, we assume that a11b12 − a12b11 have the same sign that b12. Then SA(t) is not exponentially
stable.

Proof. First of all, we assume that b12 ≠ 0 and b12 + b11 ≠ 0. For each ν ∈ N, we take Fν = (0, 0, aρ−1
1 ϕν, bρ−1

2 ϕν, 0) ∈ H ,
with a, b ∈ R, and we denote by Uν = (uν, wν, vν, ην, θν) the solution of the resolvent equation (iλI − A)Uν = Fν, λ ∈ R.
For each ν ∈ N, the solutions of the resolvent equation are of the form uν = Aν ϕν, wν = Bν ϕν and θν = Cν ϕν . Thus, we
get the system

vν = iλuν, ην = iλwν, (5.1)

−ρ1λ
2Aν + λν(a11 + iλb11)Aν + λν(a12 + iλb12)Bν + λνk1Cν + α(Aν − Bν) − β1Cν = a, (5.2)

−ρ2λ
2Bν + λν(a12 + iλb12)Aν + λν(a22 + iλb22)Bν + λνk2Cν − α(Aν − Bν) − β2Cν = b, (5.3)

(icλ + κλν)Cν + iλ(β1 − k1λν)Aν + iλ(β2 − k2λν)Bν = 0. (5.4)

Multiplying (5.2) by b12 and (5.3) by b11, subtracting the results we get
−λ2

+
(a11b12 − a12b11) λν

ρ1b12


(ρ1b12Aν − ρ2b11Bν) + α(b12 + b11)(Aν − Bν)

+ [λν(k1b12 − k2b11) − (β1b12 − β2b11)] Cν = ab12 − bb11. (5.5)

Taking a = α and b = −α in (5.3) and (5.4), respectively, we obtain
−λ2

+
(a11b12 − a12b11)λν

ρ1b12


(ρ1b12Aν − ρ2b11Bν) + α(b12 + b11)(Aν − Bν) = α(b12 + b11). (5.6)

Taking λ = ξν =


a11b12−a12b11

ρ1b12
λν , it results by (5.6) that Aν = 1 + Bν . Replacing in (5.4) we get Cν = −

iξν (β1−k1λν )

κ λν+icξν
−

i ξν [(β1+β2)−(k1+k2) λν ]
κ λν+icξν

Bν . Replacing in (5.2), we have Bν =
Pν+iλν ξν Qν

Rν+iλν ξν Sν
where

Pν =

ρ1 ξ 2

ν − a11 λν

 
κ2 λ2

ν + c2 ξ 2
ν


− c ξ 2

ν (k1 λν − β1)
2 ,

Qν = −κ(k1 λν − β1)
2
− b11 (κ2 λ2

ν + c2 ξ 2
ν ),

Rν =

−ρ1ξ

2
ν + (a11 + a12)λν


(κ2λ2

ν + c2ξ 2
ν ) − cξ 2

ν (k1λν − β1) [β1 + β2 − (k1 + k2)λν ] ,

Sν = (b11 + b12)(κ2 λ2
ν + c2 ξ 2

ν ) + κ (β1 − k1λν) [β1 + β2 − (k1 + k2) λν ] .

We conclude that limν→∞ ∥ην∥ = limν→∞ ξν |Bν | = ∞ and therefore

lim
ν→∞

∥Uν∥H = ∞.
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Now, assume that b12 = 0. In this case b22 = 0 and by hypothesis of the proposition we must have a12 = k2 = β2 = 0.
Taking a = α + 1, b = −α in (5.2) and (5.3), respectively, it follows that

−ρ1λ
2Aν + λν(a11 + iλb11)Aν + α (Aν − Bν) + (λνk1 − β1) Cν = α + 1 (5.7)

−ρ2 λ2
+ a22 λν


Bν − α(Aν − Bν) = −α, and (icλ + κ λν)Cν + iλ(β1 − k1λν)Aν = 0. (5.8)

Taking λ = ξν =


a22
ρ2

λν ; in (5.7)–(5.8) we obtain Bν = Aν − 1. The proof of the theorem is complete. �
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