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1. Introduction

This article is concerned with a special case of a linear theory for binary mixtures of porous viscoelastic materials.
The theory of viscoelastic mixtures has been investigated by several authors (see for instance, [1-3] and the references
therein). In [1] binary mixtures have been considered where the individual components are modeled as porous Kelvin-Voigt
viscoelastic materials and the volume fraction of each constituent was considered as an independent kinematical quantity.
The authors assumed that the constituents have a common temperature and that every thermodynamical process that takes
place in the mixture satisfies the Clausius—-Duhem inequality. At the end of that work, they presented as an application the
interaction between the temperature field  and the porosity fields u and w in a homogeneous and isotropic mixture. In this
case, and after some considerations, the equations which govern the fields u, w and 6 in the absence of body loads are given
by the system

P1Ug — dqq AU — dqp Aw—bn Aut —bqut—l-a(u—w) —k1 AO —ﬂ19 =0 inf2 x (0, OO),
pzwn—auAu—azzAw—b]zAut—bzzAwt—a(u—w)—szQ—ﬂze:O in 2 x (0,00),
cOy — Kk AB + ki Aug + ky Aw; + Brur + Bowy, =0 in 2 x (0, 00), (1.1)
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where £2 is a bounded domain of R® with smooth boundary 32. The function u = u(x, t) (and w = w(x, t)) represents
the fraction field of a constituent and & = 6 (x, t) the difference of temperature between the actual state and a reference
temperature. We consider the following initial and boundary conditions

u(x, 0) = uo, us (x,0) = uy, w(x, 0) = wo, we (X, 0) = wy, 0(x,0) =0y in$2

ux,t) =ux, t) = wk, t) = wkx,t) =0x,t) =0(x,t) =0 onads2. (1.2)

We assume that ps, p2, ¢, k, and « are positive constants. Since coupling is considered, we consider (87 + B3) (k3 + k3) #
0, but the sign of B; or k; (i = 1, 2) does not matter in the analysis. The matrix A = (a;) is symmetric and positive
definite and B = (b;) # 0 is symmetric and non-negative definite, that is, a;; > 0, aj1a — afz > 0, by; > 0and
bi1byy — b%z > 0. Our purpose in this work is to investigate the stability of the solutions to the system (1.1)-(1.2). The
asymptotic behavior, as t — 00, of solutions to the equations of linear thermoelasticity has been studied by many authors.
Obviously, to get these stability results, we consider several restrictions on the constitutive coefficients. In this sense, this
system of equations does not intend to model the general problem. We refer to the book of Liu and Zheng [4] for a general
survey on these topics. However, we recall that very few contributions have been addressed to study the time behavior
of the solutions of nonclassical elastic theories. In this direction we mention the works [3,5-7]. In [8], the authors treat
a similar problem for a one-dimensional mixture modeling temperature and porosity and prove the exponential decay of
solutions. We note that we cannot expect that this system always decays in a exponential way. For instance, in case that
B1+ B2 =0,ki+k, =0, pp (@11 +as2) = p1 (a12 +azz) and by; + b12 = b2 + by, = 0 we can obtain solutions of the form
u = w and & = 0. These solutions are undamped and do not decay to zero. These are very particular cases, but we will see
that there are some other cases where the solutions decay, but the decay is not so fast to be controlled by an exponential. Our
main result is to obtain conditions over the coefficients of the system (1.1) to ensure the exponential stability as well as the
analyticity of the semigroup associated with (1.1)-(1.2). We follow the same line of reasoning adopted in the papers [5,6].
This paper is organized as follows. Section 2 outlines briefly the well-posedness of the system is established. In Section 3, we
show the exponential stability of the corresponding semigroup provided that certain conditions are guaranteed. In Section 4,
we treat the analyticity of the semigroup. In the last Section 5 we show, for some cases, the lack of exponential stability of
the semigroup. Throughout this paper C is a generic constant.

2. The existence of the global solution
In this section, we use the semigroup approach to show the well-posedness of the system. We introduce the face space
H = Hy(2) x Hy(2) x [*(22) x [*(£2) x [*(£2) equipped with the inner product given by
(U1, wi, vy, M1, 01), (U2, w2, V2, N2, 62)) 5 = a11 (Vy, Vip) + az (Vwy, Vwy)

+ap ((Vug, Vwy) + (Vwy, Vi) + a (ug — wy, Uz — wyz) + p1 (v, v2) + p2 (01, n2) + € (01, 62)

where (u, v) = f_Q uv dx, and the induced norms | - | and || - || % which are equivalent to the usual norms in L?(£2) and #,
respectively. We also consider the linear operator 4 : D(A) C H — H

v
n
u 1 o B
w — A(anu+apw +byv+bpn+k0) — —Ww—w)+—0
1 P1 P1
A= 1 o B2
n — A(apu+apw +bpv+bpn+ko)+ —Ww—w)+—0
e} 02 P2 P2
1
— Ak O —kiv—kyn) — ﬁv—&n
c c c

whose domain D () is the subspace of J¢ consisting of vectors (u, v, w, n, ) suchthatv, n, 6 € H(} (£2), kO@—kiv—kyn €
Hz(Q), a1]u+012w+b11v+b12 7’]—'—](] 0 e HZ(Q), and appu—+axpw +b]21)+b22 7’]+k2 0 e H2 (.Q)The system (11)—(12) can
be rewritten as the following initial value problem %U(t) = AU(t), U(0) = Upforallt > OwithU(t) = (u, w, u,, wy, )7
and Uy = (ug, wo, U1, w1, 6)7, and the T is used to denote the transpose. We can show that the operator +4 is densely
definite, dissipative, that is, Re (AU, U), < 0, forallU € D(+4), and 0 belongs to the resolvent set of .+, denoted by p(+4)
(see [6]). Therefore, using the Lumer-Phillips theorem we conclude that the operator 4 generates a Cy-semigroup S, (t) of
contractions on the space #. The following theorem follows.

Theorem 2.1. For any Uy € #, there exists a unique solution U(t) = (u, w, u;, we, 0) of (1.1)-(1.2) satisfying u, w
C([0, oo[: Hy(£2)) NC([0, oo[: L*(£2)), 6 € C([0, ool: [*(£2)) NL*(J0, oo[: HL(£2)).If Uy € D(A) thenu, w € C'([0, 0o
HJ(£2)) N C%([0, oo[: L*(£2)), 0 € C([0, oo[: H} (£2)) N C'([0, ool: L?(£2)), and

€
[:

aritt 4 apw + byy u + by we + ki 6 € C([0, oo[: H*(2))
1ol 4 A w + biy U + by we + kp & € C([0, oo[: H*(£2))
k0 — kyu, —kyw, € C([0, oo[: H*(£2)).
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3. Exponential stability

We denote by Cp the Poincaré constant. To simplify the notation in the product, in the next theorems we consider

- a(b12+b11) (p1 b12—p2b11) : : : : :
Y T CTTL I Ty ST E S S ey spumreey oo Our main tool is the following theorem established in [9] (see also [10,11]).

Theorem 3.1. Let §(t) be a Cy-semigroup of contractions of linear operators on a Hilbert space X with infinitesimal generator
A. Then §(t) is exponentially stable if, and only if, iR C p(A) and

limsup || GAI — A4)7! ||£(X) < 00. (3.1)
I

[—o00
Our starting point in order to show the exponential stability is the following lemma

Lemma 3.2. We suppose that one of the following items holds.

(@) Bab11 = Bib1z, Bab1o = Biba, and kyb1y # kib1y, o1 kab1z # kibay;
(b) Z is not an eigenvalue of the operator —A;
(C) ,31 = le, ﬁz = ka, o 75 0, and o< é, and kzb]] 7é k]b]z, or kzb]z 7é k]bzz.

Then iR C p (A).

Proof. We show this result by a contradiction argument. Following the arguments given in [4] (see also Ref. [8]), the proof
consists of the following steps:

Step 1. Since 0 € p (), for any real number A with |AA~!|| < 1, the linear bounded operator iAA~! — I is invertible.
Therefore i\l — A = A(iAA~! —1I) is invertible and its inverse belongs to .£(#), that is, iA € p(xA). Moreover, || (it] —A) 1|
is a continuous function of A in the interval (—[lA~"(|7", [|A 7" 7).

Step 2.1f sup {|| Al — A4) ']l = [A] < [lAT'I7'} = M < oo, then for [Ag| < [47'[ 7" and A € R such that [ — Ao| <
M=, we have || (A—Ag)(iXol —#4) 1| < 1, therefore the operator il] —A = (il — ) (I4+i(A—Xo) (iXg] —A)~") isinvertible
withits inverse in £ (), thatis, i € p(-4).Since Ao is arbitrary we can conclude that {i A : [A| < A"+ M~} C p(A)
and the function || i\l — 4)~!| is continuous in the interval (—[|A ™"~ = M~ A7 |7t + M71).

Step 3. It follows from item (3.1) that if iR C p(A) is not true, then there exists @ € R with ||[A~!||™' < || such
that {ix : |A] < |w|} C p(4A) and sup {||(i)J — A7 A < |a)|} = o0. Therefore, there exists a sequence of real
numbers (A,),eny With A, — o when v — oo and |A,| < |w]|, for all v € N, and sequences of vector functions
U, = (u,, wy,, v, 0y, 6,) € DA),F, = (f,,8,h,,pv,q,) € H,such that (ir,] — A)U, = F, and ||U, ||z = 1, for
allv e N,and F, — 0in # when v — oo. Hence,

Re((i Al — AUy, Up)ge = bur|Vuu|? + by |V, |* 4 2b1aRe(Voy, Vi) + V6, > - 0 asv — oo;

Case I. If B is positive definite: k|V8,|*> + gi—;vaUF + SZ—anvF — 0, then lim,_,  ||U,||% = O.
Case I1. If B is singular. We suppose b; > 0 (the case b;; = 0 and by, > 0 is similar), we obtain

1
K|VO,|* + r|v(bllvu +bypn)? >0 asv — oo. (3.2)
11

It follows that 6, — 0 and by;v, + bz, — 0in HO1 (£2). Since (u,),ey and (w,), ey are sequences bounded in
H(} (£2), there exist subsequences, still denoted by (u,)yey and (w,),en, such that u, — u and w, — w in [*(£2). It
follows that v, — v, n, — 5 and by;v, + b1z 7, — b11v + b1z nin [?(£2), and by (3.2) we have by;v + b1y = 0
and by1u 4+ bipw = 0. On the other hand,

i)\uplvv - A(alluv + apw, + bllvu + blva + k19\)) + a(uv - wv) - ,3191) = p1hv —- 0 in L2~ (33)
We apply the basic energy estimate, and by compactness arguments we conclude that the sequence (au, +
appw, + byvy, + biany + ki6,),eny converge in H(} (£2). In a similar way we have the same convergence of
(ar2uy + ax w, + b1z vy + by ny + k2 6,) . Therefore, using (3.2) we obtain that (a;;u, + a; w,),ey and
(a2 uy + az wy)yen converge in H(}(Q). Since (ay) is positive definite, it follows thatu, — u, w, - w, v, —
v, 0, — ninH)(£2).

(a) Using the Cauchy-Schwarz and Young inequalities we get
1
7 IVlavs +kon)* < (legul + 2l Ie6y] + C lbiav, + buom ) kavy + komul + 1% V6,
Since the sequence (kjv, 4 k21,),cy is bounded in 12(£2), using (3.2) we conclude that k; v, + k, 7, — 0in H(} (£2), and

then kv + k, n = 0. Since kq b1y # ko bq1, we have, bj;v + b;;p = 0and byju + bjw = 0, thatu = w =v =n=0.
Therefore, lim,_, o ||U,||% = 0 and we have a contradiction.
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(b) It results that p; w?u+a;; Au+ap Aw —o (u—w) = 0and p; W?w + aiy Au+ay Aw +o (u—w) = 0in [2(£2).
On the other hand, it results by byqv + b1 7 = 0and by;u + bjw = 0, thatu = —g” w. Thus w verifies — Aw = Zw, and
it follows that w = 0and u = v = n = 0.1f b; = 0, by b11v + b1 » = 0 and byju —i—blzw = 0,weobtainthatu=v =0
and then ay; Aw + aw = 0. Using the hypothesis we conclude that w = 0 and n = 0. Therefore lim,_, o ||U,| % = 0 and
we have a contradiction.

(c) We use similar arguments to show that v = n = 0, and then lim,_ ||U,]l% =0. O

Theorem 3.3. Under the hypothesis of Lemma 3.2, the Cy-semigroup 8 ,4(t) is exponentially stable, that is, there exist positive
constants M and p such that || 8,4 (t) || cz) < M exp(—put).

Proof. In view of Theorem 3.1 and Lemma 3.2 it is sufficient to prove (3.1). Given A € Rand F = (f, g, h,p,q) € #, let
U= (u,w,v, n, 8) € D(A) be the solution of (i — A)U = F. That is,

ilu—v=f inHj(2), and iAw—n=g inH,(£2) (3.4)

iApv — A(aju+apw +byyv+bpn+ki0)+a(w—w)— B0 =ph inLZ(.Q) (3.5)

iA P21 — AlaU 4 apw + bipv 4+ bpn 4k 0) —a (u—w) — B0 = pop Inl*(2) (3.6)

iAcO + v+ Pan— A0 —kiv—kyn) =cq in 2(2). (3.7)
Since Re((iAl — A)U, U)y = Re(F, U) 4, there exists a positive constant C such that

IV6OI? + |V (b11v + bia m)[* < C[IFll4 U, . (3.8)

Taking the inner product of (3.5) with u and (3.6) with w, adding these identities, using (3.4), the Young and Cauchy-Schwarz
inequalities, we obtain

detA
2ap

detA
|Vul* + ?IVWI2 < p1lvl? + p2Anl? + CIVOL (IVul + [Vw|) + |V (bigv + b )| [Vul + o1 (0] If]
11

+ IR [ul) + [V(b12v + boa )| [Vw| + p2 (In] Ig] + [Pl [w]) - (3.9)

(a) Multiplying (3.7) by (kyv + k, 1), integrating over £2 and using the Gauss Theorem, Young and Cauchy-Schwarz
inequalities, and (3.8), we obtain

IV (kv 4k )I? < C 1O, A (k1 + ke )| + ClIF L l|U ] - (3.10)

Multiplying Egs. (3.5) and (3.6) by kyu/0; and kyw/p, respectively, adding the result, taking the inner product of 6 with
iA(kqv + ky ); in L2(£2) and by (3.8), it follows that

{0, Ai (kyv +ka )| < CIVO (IVul + [Vw() + C IF |l 1U]l se- (3.11)
Substituting (3.11) in (3.10), since k1b1 # kybq1, and using (3.8) we conclude that

IVol? +Vn[? < CIVOI (IVul + [Vwl) + C [IFllse U] - (3.12)

(3.8),(3.9)and (3.12) we obtain |Vu|?> + |Vw|?> < C ||F||,;€ |U]l . Using (3.8) and (3.12) we get || iAl — 4) ~'F|| < C ||F|| %.
(b) From (3. 5)and(3 8) we obtain |V (bjju+b1aw)|?> < C||U|l# ||F|l 5, for |A| > 1.Performing the inner product between
(3.5)and u, v 1nH (£2), and using b 7> = b11bx, we get

By

1
[Vul* + [Vw|? < C <IV(bnv + b2 MUl + ULl Fllse + U115, +

1

Il 1Al

Combining (3.8), the inner product of (3.5) with u, and (3.6) with w, respectively, and using (3.13) we obtain

(1 IM) lUllse < CIIF|l%, for [A| > 1.Thus ||[(iAx] — A)~'F|l4 < C||F|ls when |A| is large enough. Since the function
A ||GAI — A)‘1||£(ﬂ) is continuous, we conclude.

(c) By similar arguments taking the inner product in L? (£2) of (3.7) with kyv 4k, 1, using (81, B2) = o (k1, k2),and (3.11)
we conclude |V (kjv + k; n)|? < C|VO| (|IVu| 4+ |[Vw|) + C||U|| lIF|l . Since kq b1z # ky b11, we obtain (3.12). O

”UHJ{’”F”J{> . (3.13)

4. Analyticity

We recall the following result (see [4]): Let 8(t) be a Cp-semigroup of contractions of linear operators in a Hilbert space
X with infinitesimal generator +. Suppose that iR C p(-A). Then, 4(t) is analytic if and only if lim sup;, |, o [IA (AT —
A) | s00g < oo. It follows from Lemma 3.2 that the imaginary axis is contained in p(+). In the next theorem of this
section, we will show that there is a positive constant C, independent on A, such that |A| ||iA] — 4A)7!|| < C, VA € R.



888 M.S. Alves et al. / Applied Mathematics Letters 25 (2012) 884-889

Theorem 4.1. Suppose that item (a) or (c) of Lemma 3.2 occurs. Then the semigroup 8.4 (t) is analytic.

Proof. Given A € RandF = (f,g,h,p,q) € #,letU = (u, w, v, n, 9) € D(A) be the solution of (i\]l — A)U = F.In
Theorem 3.3 we proved (see (3.8) and (3.12)) that there exists C > 0 such that

VO + |Vul® + [Vw|* + [Vol? + [Vi|* < CIIF |l ]|U |l . (4.1)
Since Im((iAl — A)U, U) 5 = Im(F, U) 5 we have )»||U||§{, < |Im{AU, U) 3| + |U|| 5| F || 5, with

Im(AU, U)s = 2ilm (ay; (Vv, Vu) + a2 (Vo, Vw) + @ (v — n,u — w) + a2 (Vn, Vu)
+ax (Vn, Vw) — B1 (0, v) — B2 (0, n) + k2 (VO, Vi) + k1 (VO, V). (42)

By (4.1)-(4.2) we conclude that [Im(AU, U) s| < C|[F|l|U |l %, and then A|[U]|%, < C|[F |l |U ||, for all » € R. The proof is
complete. O

5. About the lack of exponential stability

In this section we will show that there are cases where the lack of exponential stability of the semigroup occur. To show
the lack of exponential stability we will show that the condition (3.1) of Theorem 3.1 does not hold. To do this, it is sufficient
to show the existence of sequences F, € # and £, € R such that (F,),cy is bounded, |£,| — oo and ||(i&,] —4)'F,|| — oo
when v — oo. We denote by ¢, € H(} (£2)NH?(£2) and A, € R the sequences of eigenvectors and eigenvalues, respectively,
02f the operator —A, thatis, —A¢, = X, ¢, in £2, with A, - 0o as v — oo and such that (¢,),cy is a orthonormal basis of
L°(£2).

Theorem 5.1. Suppose that pybii(ai1biz — apb11) = pibia (@2 b1y — a2 bi2), kabyy = kybyz, kabiz = kybap and
B1b12 = B, byy. Additionally, we assume that a;1b1; — a2bq11 have the same sign that bq,. Then 8, /(t) is not exponentially
stable.

Proof. First of all, we assume that by, # 0and by, + by # 0.Foreach v € N, we take F, = (0, 0, apl_lgov, bpz_lgov, 0) € #,
with a, b € R, and we denote by U, = (u,, w,, v,, 1,, 6,) the solution of the resolvent equation (iAl — A)U, = F,, A € R.
For each v € N, the solutions of the resolvent equation are of the form u, = A, ¢,, w, = B, ¢, and 6, = C, ¢,. Thus, we
get the system

v, = iAl,, Ny = iAw,, (5.1)
—p1A%A, + Ay(@r1 + iAb11)A, + Ay (@12 + iAb12)B, 4 A, kiC, + (A, — B)) — BiC, =a, (5.2)
—p2A°By + Ay (ara + iAb12)A, + A, (a2 + iby)B, + A,kaCy — a(A, — B,) — BoC, = b, (5.3)
(ch + k3,)Cy + i (Br — kido)Ay + iA(Bs — kahy)B, = O. (5.4)
Multiplying (5.2) by by, and (5.3) by by, subtracting the results we get
ay1biy — apbi) Ay
<—)LZ + (@b — duzbin) ) (01b12Ay — pab11By) + a(biz + b11)(Ay — B,)
p1b12
+ [Ay(k1b1z — k2b11) — (B1b12 — B2b11)]1C, = abyz — bbyy. (5.5)
Taking a = @ and b = —« in (5.3) and (5.4), respectively, we obtain
(a11b12 — a1ab11)A
(—AZ + ”p L ) (ibizAy = p2buBy) + a(bia + bin) (A — By) = a(bia + b (5.6)
1b12
Taking A = &, = /%ku, it results by (5.6) that A, = 1 + B,. Replacing in (5.4) we get C, = —% —
i&v[(B1+B2)—(k1+ky) Av] : H _ Py+iry 6 Qy
AT fﬁic‘gv 22l B, Replacing in (5.2), we have B, = m where

P, = (p1&2 —an ) (K222 4+ 2€2) — c &2 (ki Ay — B1)?,
Q= —k(ky Ay — B> — byy (K> 12 + P &E]),
Ry = [=pi&) + (@i + a)h ] (*A] 4+ ¢*60) — &) (kidy — 1) [B1 + B2 — (ki + k)],
So = (b1t + b)) (K2 A2+ 2 E2) + k (B1 — kiay) [Br + B2 — (ki + k) Ay
We conclude that lim,_, », [|7, ]| = lim,_,  &,|B,| = co and therefore

lim ||Uy| % = oo.
V—00



M.S. Alves et al. / Applied Mathematics Letters 25 (2012) 884-889 889

Now, assume that by; = 0. In this case by, = 0 and by hypothesis of the proposition we must have a; = k, = 8, = 0.
Takinga = o + 1, b = —« in (5.2) and (5.3), respectively, it follows that

—p1A%A, + Ay (ar1 + iAb1DA, + o (Ay — B,) + Ouki — B1) G = + 1 (5.7)
(=p2 2% +axry) B, —a(A, —B,)) = —a, and (icA + k A,)C, + ir(B1 — k1Ay)A, = 0. (5.8)

Taking A =&, = /%AU; in (5.7)-(5.8) we obtain B, = A, — 1. The proof of the theorem is complete. O
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