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Abstract

We prove that every distributive algebraic lattice with at most ℵ1 compact elements is isomorphic to the
normal subgroup lattice of some group and to the submodule lattice of some right module. The ℵ1 bound is
optimal, as we find a distributive algebraic lattice D with ℵ2 compact elements that is not isomorphic to the
congruence lattice of any algebra with almost permutable congruences (hence neither of any group nor of
any module), thus solving negatively a problem of E.T. Schmidt from 1969. Furthermore, D may be taken
as the congruence lattice of the free bounded lattice on ℵ2 generators in any non-distributive lattice variety.

Some of our results are obtained via a functorial approach of the semilattice-valued ‘distances’ used
by B. Jónsson in his proof of Whitman’s Embedding Theorem. In particular, the semilattice of compact
elements of D is not the range of any distance satisfying the V-condition of type 3/2. On the other hand,
every distributive 〈∨,0〉-semilattice is the range of a distance satisfying the V-condition of type 2. This can
be done via a functorial construction.
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201/03/P140. The second author was partially supported by grants GAUK 448/2004/B-MAT and GAČR 201/03/0937.
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Introduction

Representing algebraic lattices as congruence lattices of algebras often gives rise to very
hard open problems. The most well-known of those problems, the Congruence Lattice Prob-
lem, usually abbreviated CLP, asks whether every distributive algebraic lattice is isomorphic to
the congruence lattice of some lattice, see the survey paper [22]. This problem has been solved re-
cently by the third author in [26]. For algebraic lattices that are not necessarily distributive, there
are several deep results, one of the most remarkable, due to W.A. Lampe [13], stating that every
algebraic lattice with compact unit is isomorphic to the congruence lattice of some groupoid.
This result is further extended to join-complete, unit-preserving, compactness preserving maps
between two algebraic lattices [14].

Although some of our methods are formally related to Lampe’s, for example, the proof of
Theorem 7.1 via Proposition 2.6, we shall be concerned only about distributive algebraic lattices.
This topic contains some not so well-known but also unsolved problems, as, for example, whether
every distributive algebraic lattice is isomorphic to the congruence lattice of an algebra in some
congruence-distributive variety.

If one drops congruence-distributivity, then one would expect the problems to become easier.
Consider, for example, the two following problems:

CGP. Is every distributive algebraic lattice isomorphic to the normal subgroup lattice of some
group?

CMP. Is every distributive algebraic lattice isomorphic to the submodule lattice of some module?

The problem CGP was originally posed for finite distributive (semi)lattices by E.T. Schmidt
as [19, Problem 5]. A positive solution was provided by H.L. Silcock, who proved in particu-
lar that every finite distributive lattice D is isomorphic to the normal subgroup lattice of some
finite group G (see [20]). P.P. Pálfy proved later that G may be taken finite solvable (see [16]).
However, the general question seemed open until now. Similarly, the statement of CMP has been
communicated to the authors by Jan Trlifaj, and nothing seemed to be known about the general
case.

A common feature of the varieties of all groups and of all modules over a given ring is that
they are congruence-permutable, for example, any two congruences of a group are permutable.
Thus both CGP and CMP are, in some sense, particular instances of the following question:

CPP. (See [19, Problem 3].) Is every distributive algebraic lattice isomorphic to the congruence
lattice of some algebra with permuting congruences?

Although the exact formulation of [19, Problem 3] asked whether every Arguesian algebraic
lattice is isomorphic to the congruence lattice of an algebra with permutable congruences, it was
mentioned there that even the distributive case was open. Meanwhile, the Arguesian case was
solved negatively by M.D. Haiman [9,10], however, the distributive case remained open.
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Recall that an algebra A has almost permutable congruences (see [21]), if a ∨ b = ab ∪
ba, for all congruences a,b ∈ ConA (where the notation ab stands for the usual composition
of relations). The three-element chain is an easy example of a lattice with almost permutable
congruences but not with permutable congruences. On the other hand, it is not difficult to verify
that every almost congruence-permutable variety of algebras is congruence-permutable. The last
two authors of the present paper obtained in [21] negative congruence representation results of
distributive semilattices by lattices with almost permutable congruences, but nothing was said
there about arbitrary algebras with permutable congruences. Furthermore, our attempts based on
the “uniform refinement properties” introduced in that paper failed, as these properties turned
out to be quite lattice-specific.

In the present paper, we introduce a general framework that makes it possible to extend the
methods of [21] to arbitrary algebras, and thus solving CPP—and, in fact, its generalization to
algebras with almost permutable congruences—negatively. Hence, both CGP and CMP also have
negative solutions. In fact, the negative solution obtained in CGP for groups extends to loops, as
the variety of all loops is also congruence-permutable. Another byproduct is that we also get a
negative solution for the corresponding problem for lattice-ordered groups, see also Problem 1.

Our counterexample is the same as in [18] and in [21], namely the congruence lattice of a
free lattice with at least ℵ2 generators in any non-distributive variety of lattices. We also show
that the size ℵ2 is optimal, by showing that every distributive algebraic lattice with at most ℵ1
compact elements is isomorphic to the submodule lattice of some module, and also to the normal
subgroup lattice of some locally finite group, see Theorems 4.1 and 5.3. We also prove that every
distributive algebraic lattice with at most countably many compact elements is isomorphic to the
�-ideal lattice of some lattice-ordered group, see Theorem 6.3.

In order to reach our negative results, the main ideas are the following.

(1) Forget about the algebraic structure, just keep the partition lattice representation.
(2) State a weaker “uniform refinement property” that settles the negative result.

For Point (1), we are looking for a very special sort of lattice homomorphism of a given
lattice into some partition lattice, namely, the sort that is induced, as in Proposition 1.2, by a
semilattice-valued distance, see Definition 1.1. For a 〈∨,0〉-semilattice S and a set X, an S-
valued distance on X is a map δ :X ×X → S satisfying the three usual statements characterizing
distances (see Definition 1.1). Every such δ induces a map ϕ from S to the partition lattice of X

(see Proposition 1.2), and if δ satisfies the so-called V-condition, then ϕ is a join-homomorphism.
Furthermore, the V-condition of type n says that the equivalences in the range of ϕ are pairwise
(n+1)-permutable. Those “distances” have been introduced by B. Jónsson for providing a simple
proof of Whitman’s Theorem that every lattice can be embedded into some partition lattice, see
[11] or Theorems IV.4.4 and IV.4.8 in [6].

While it is difficult to find a suitable notion of morphism between partition lattices, it is easy
to do such a thing with our distances, see Definition 1.1. This makes it possible to define what it
means for a commutative diagram of 〈∨,0〉-semilattices to have a lifting, modulo the forgetful
functor, by distances. In particular, we prove, in Theorem 7.2, that the cube Dac considered in
[21, Section 7] does not have a lifting by any diagram of V-distances “of type 3/2,” that is, the
equivalences in the ranges of the corresponding partition lattice representations cannot all be
almost permutable. This result had been obtained only for lattices in [21].

The original proof of Theorem 7.2 was our main inspiration for getting a weaker “uniform
refinement property,” that we denote here by WURP= (see Definition 2.1). First, we prove that
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if δ :X × X → S is an S-valued V-distance of type 3/2 with range generating S, then S satisfies
WURP= (see Theorem 2.3). Next, we prove that for any free lattice F with at least ℵ2 genera-
tors in any non-distributive variety of lattices, the compact congruence semilattice Conc F does
not satisfy WURP= (see Corollary 3.8). Therefore, ConF is not isomorphic to ConA, for any
algebra A with almost permutable congruences (see Corollary 3.7).

On the positive side, we explain why all previous attempts at finding similar negative results
for representations of type 2 (and above) failed. We prove, in particular, that for every distributive
〈∨,0〉-semilattice S, there exists a surjective V-distance δS :XS × XS � S of type 2, which,
moreover, depends functorially on S (see Theorem 7.1). In particular, the diagram D
� considered
in [23], which is not liftable, with respect to the congruence lattice functor, in any variety whose
congruence lattices satisfy a non-trivial identity, is nevertheless liftable by V-distances of type 2.

Basic concepts

For elements x and y in an algebra A, we denote by ΘA(x, y), or Θ(x,y) if A is understood,
the least congruence of A that identifies x and y. Furthermore, in case A is a lattice, we put
Θ+

A (x, y) = ΘA(x ∧ y, x). We denote by ConA (respectively, Conc A) the lattice (respectively,
semilattice) of all compact (i.e., finitely generated) congruences of A.

For join-semilattices S and T , a join-homomorphism μ :S → T is weakly distributive
(see [24]), if for every c ∈ S and a, b ∈ T , if μ(c) � a ∨ b, then there are x, y ∈ S such that
c � x ∨ y, μ(x) � a, and μ(y) � b.

A diagram in a category C is a functor D :I → C, for some category I . For a functor
F :A→ C, a lifting of D with respect to F is a functor Φ :I → A such that the composition
F ◦ Φ is naturally equivalent to D.

For a set X and a natural number n, we denote by [X]n the set of all n-elements subsets of X,
and we put [X]<ω = ⋃

([X]n | n < ω). The following statement of infinite combinatorics can be
found in C. Kuratowski [12].

The Kuratowski Free Set Theorem. Let n be a positive integer and let X be a set. Then
|X| � ℵn iff for every map Φ : [X]n → [X]<ω, there exists U ∈ [X]n+1 such that u /∈ Φ(U \ {u}),
for any u ∈ U .

As in [18,24], only the case n = 2 will be used.
We identify every natural number n with the set {0,1, . . . , n − 1}, and we denote by ω the set

of all natural numbers.

1. V-distances of type n

Definition 1.1. Let S be a 〈∨,0〉-semilattice and let X be a set. A map δ :X × X → S is an
S-valued distance on X, if the following statements hold:

(i) δ(x, x) = 0, for all x ∈ X.
(ii) δ(x, y) = δ(y, x), for all x, y ∈ X.

(iii) δ(x, z) � δ(x, y) ∨ δ(y, z), for all x, y, z ∈ X.

The kernel of δ is defined as {〈x, y〉 ∈ X×X | δ(x, y) = 0}. The V-condition on δ is the following
condition:
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For all x, y ∈ X and all a,b ∈ S such that δ(x, y) � a ∨b, there are n ∈ ω \ {0} and z0 = x, z1,
. . . , zn+1 = y such that for all i � n, δ(zi, zi+1) � a in case i is even, while δ(zi, zi+1) � b in
case i is odd.

In case n is the same for all x, y, a, b, we say that the distance δ satisfies the V-condition of
type n, or is a V-distance of type n.

We say that δ satisfies the V-condition of type 3/2, or is a V-distance of type 3/2, if for
all x, y ∈ X and all a,b ∈ S such that δ(x, y) � a ∨ b, there exists z ∈ X such that either
(δ(x, z) � a and δ(z, y) � b) or (δ(x, z) � b and δ(z, y) � a).

We say that a morphism from λ :X × X → A to μ :Y × Y → B is a pair 〈f,f 〉, where
f :A → B is a 〈∨,0〉-homomorphism and f :X → Y is a map such that f (λ(x, y)) =
μ(f (x), f (y)), for all x, y ∈ X. The forgetful functor sends λ :X × X → A to A and 〈f,f 〉
to f .

Denote by EqX the lattice of all equivalence relations on a set X. For a positive integer n,
we say as usual that α,β ∈ EqX are (n + 1)-permutable, if γ0γ1 · · ·γn = γ1γ2 · · ·γn+1, where
γk is defined as α if k is even and as β if k is odd, for every natural number k. In particular,
2-permutable is the same as permutable. With every distance is associated a homomorphism to
some EqX, as follows.

Proposition 1.2. Let S be a 〈∨,0〉-semilattice and let δ :X × X → S be an S-valued distance.
Then one can define a map ϕ :S → EqX by the rule

ϕ(a) = {〈x, y〉 ∈ X × X
∣∣ δ(x, y) � a

}
, for all a ∈ S.

Furthermore,

(i) the map ϕ preserves all existing meets.
(ii) If δ satisfies the V-condition, then ϕ is a join-homomorphism.

(iii) If the range of δ join-generates S, then ϕ is an order-embedding.
(iv) If the distance δ satisfies the V-condition of type n, then all equivalences in the range of ϕ

are pairwise (n + 1)-permutable.

Any algebra gives rise to a natural distance, namely the map 〈x, y〉 �→ Θ(x,y) giving the
principal congruences.

Proposition 1.3. Let n be a positive integer and let A be an algebra with (n + 1)-permutable
congruences. Then the semilattice Conc A of compact congruences of A is join-generated by the
range of a V-distance of type n.

Proof. Let δ :A × A → Conc A be defined by δ(x, y) = ΘA(x, y), the principal congruence
generated by 〈x, y〉, for all x, y ∈ A. The assumption that A has (n+ 1)-permutable congruences
means exactly that δ is a V-distance of type n. �

Of course, A has almost permutable congruences if and only if the canonical distance ΘA :A×
A → Conc A satisfies the V-condition of type 3/2.



P. Růžička et al. / Journal of Algebra 311 (2007) 96–116 101
We shall focus attention on three often encountered varieties all members of which have per-
mutable (i.e., 2-permutable) congruences:

– The variety of all right modules over a given ring R. The congruence lattice of a right mod-
ule M is canonically isomorphic to the submodule lattice SubM of M . We shall denote by
Subc M the 〈∨,0〉-semilattice of all finitely generated submodules of M .

– The variety of all groups. The congruence lattice of a group G is canonically isomorphic to
the normal subgroup lattice NSubG of G. We shall denote by NSubc G the 〈∨,0〉-semilat-
tice of all finitely generated normal subgroups of G.

– The variety of all �-groups (i.e., lattice-ordered groups), see [1]. The congruence lattice of an
�-group G is canonically isomorphic to the lattice Id� G of all convex normal �-subgroups,
or �-ideals, of G. We shall denote by Id�

c G the 〈∨,0〉-semilattice of all finitely generated
�-ideals of G.

Hence we obtain immediately the following result.

Corollary 1.4.

(i) Let M be a right module over any ring R. Then Subc M is join-generated by the range of a
V-distance of type 1 on M .

(ii) Let G be a group. Then NSubc G is join-generated by the range of a V-distance of type 1
on G.

(iii) Let G be an �-group. Then Id�
c G is join-generated by the range of a V-distance of type 1

on G.

The V-distances corresponding to (i), (ii), and (iii) above are, respectively, given by δ(x, y) =
(x − y)R, δ(x, y) = [xy−1] (the normal subgroup of G generated by xy−1), and δ(x, y) =
G(xy−1) (the �-ideal of G generated by xy−1).

The assignments M �→ Subc M , G �→ NSubc G, and G �→ Id�
c G can be canonically extended

to direct limits preserving functors to the category of all 〈∨,0〉-semilattices with 〈∨,0〉-homo-
morphisms.

2. An even weaker uniform refinement property

The following infinitary axiom WURP= is a weakening of all the various “uniform refinement
properties” considered in [18,21,24]. Furthermore, the proof that follows, aimed at obtaining
Theorem 3.6, is very similar to the proofs of [18, Theorem 3.3] and [21, Theorem 2.1].

Definition 2.1. Let e be an element in a 〈∨,0〉-semilattice S. We say that S satisfies WURP=(e),
if there exists a positive integer m such that for all families 〈ai | i ∈ I 〉 and 〈bi | i ∈ I 〉 of elements
of S such that e � ai ∨ bi for all i ∈ I , there are a m-sequence 〈Iu | u < m〉 of subsets of I such
that

⋃
(Iu | u < m) = I and a family 〈ci,j | 〈i, j 〉 ∈ I ×I 〉 of elements of S such that the following

statements hold:

(i) ci,j � ai ∨ aj and ci,j � bi ∨ bj , for all u < m and all i, j ∈ Iu.
(ii) e � aj ∨ bi ∨ ci,j , for all u < m and all i, j ∈ Iu.

(iii) ci,k � ci,j ∨ cj,k , for all i, j, k ∈ I .

Say that S satisfies WURP=, if S satisfies WURP=(e) for all e ∈ S.
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The following easy lemma is instrumental in the proof of Corollary 3.7.

Lemma 2.2. Let S and T be 〈∨,0〉-semilattices, let μ :S → T be a weakly distributive 〈∨,0〉-
homomorphism, and let e ∈ S. If S satisfies WURP=(e), then T satisfies WURP=(μ(e)).

Theorem 2.3. Let S be a 〈∨,0〉-semilattice and let δ :X × X → S be a V-distance of type 3/2
with range join-generating S. Then S satisfies WURP=.

Proof. Let e ∈ S. As S is join-generated by the range of δ, there are a positive integer n and
elements x�, y� ∈ X, for � < n, such that e = ∨

(δ(x�, y�) | � < n). For all i ∈ I and all � < n,
from δ(x�, y�) � ai ∨ bi and the assumption on δ it follows that there exists zi,� ∈ X such that

either δ(x�, zi,�) � ai and δ(zi,�, y�) � bi ,

or δ(x�, zi,�) � bi and δ(zi,�, y�) � ai .
(2.1)

For all i ∈ I and all � < n, denote by P(i, �) and Q(i, �) the following statements:

P(i, �): δ(x�, zi,�) � ai and δ(zi,�, y�) � bi;
Q(i, �): δ(x�, zi,�) � bi and δ(zi,�, y�) � ai .

We shall prove that m = 2n is a suitable choice for witnessing WURP=(e). So let U denote the
powerset of n, and put

Iu = {
i ∈ I

∣∣ (∀� ∈ u) P (i, �) and (∀� ∈ n \ u) Q(i, �)
}
, for all u ∈ U.

We claim that I = ⋃
(Iu | u ∈ U). Indeed, let i ∈ I , and put u = {� < n | P(i, �)}. It follows from

(2.1) that Q(i, �) holds for all � ∈ n \ u, whence i ∈ Iu. Now we put

ci,j =
∨(

δ(zi,�, zj,�)
∣∣ � < n

)
, for all i, j ∈ I,

and we prove that the family 〈ci,j | 〈i, j 〉 ∈ I × I 〉 satisfies the required conditions, with respect
to the family 〈Iu | u ∈ U 〉 of 2n subsets of I . So, let i, j, k ∈ I . The inequality ci,k � ci,j ∨ cj,k

holds trivially.
Now suppose that i, j ∈ Iu, for some u ∈ U .
Let � < n. If � ∈ u, then

δ(zi,�, zj,�) � δ(zi,�, x�) ∨ δ(x�, zj,�) � ai ∨ aj ,

δ(x�, y�) � δ(x�, zj,�) ∨ δ(zj,�, zi,�) ∨ δ(zi,�, y�) � aj ∨ ci,j ∨ bi ,

while if � ∈ n \ u,

δ(zi,�, zj,�) � δ(zi,�, y�) ∨ δ(y�, zj,�) � ai ∨ aj ,

δ(x�, y�) � δ(x�, zi,�) ∨ δ(zi,�, zj,�) ∨ δ(zj,�, y�) � bi ∨ ci,j ∨ aj ,
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whence both inequalities δ(zi,�, zj,�) � ai ∨ aj and δ(x�, y�) � aj ∨ bi ∨ ci,j hold in any case.
Hence ci,j � ai ∨ aj and e � aj ∨ bi ∨ ci,j . Exchanging x and y in the argument leading to the
first inequality also yields that ci,j � bi ∨ bj . �
Corollary 2.4. Let A be an algebra with almost permutable congruences. Then Conc A satisfies
WURP=.

Remark 2.5. In case the distance δ satisfies the V-condition of type 1, the statement WURP=
in Theorem 2.3 can be strengthened by taking m = 1 in Definition 2.1. Similarly, if A is an
algebra with permutable congruences, then Conc A satisfies that strengthening of WURP=. In
particular, as any group, respectively any module, has permutable congruences, both NSubc G,
for a group G, and Subc M , for a module M , satisfy the strengthening of WURP= obtained by
taking m = 1 in Definition 2.1.

As we shall see in Theorem 3.6, not every distributive 〈∨,0〉-semilattice can be join-generated
by the range of a V-distance of type 3/2. The situation changes dramatically for type 2. It is
proved in [8] that any modular algebraic lattice is isomorphic to the congruence lattice of an
algebra with 3-permutable congruences. This easily implies the following result; nevertheless,
we provide a much more direct argument, which will be useful for the proof of Theorem 7.1.

Proposition 2.6. Any distributive 〈∨,0〉-semilattice is the range of some V-distance of type 2.

Proof. Let S be a distributive 〈∨,0〉-semilattice. We first observe that the map μS :S × S → S

defined by the rule

μS(x, y) =
{

x ∨ y, if x �= y,

0, if x = y
(2.2)

is a surjective S-valued distance on S. Now suppose that we are given a surjective S-valued
distance δ :X × X → S, and let x, y ∈ X and a,b ∈ S such that δ(x, y) � a ∨ b. Since S is
distributive, there are a′ � a and b′ � b such that δ(x, y) = a′ ∨ b′. We put X′ = X ∪ {u,v},
where u and v are two distinct outside points, and we extend δ to a distance δ′ on X′ by
putting δ′(z, u) = δ(z, x) ∨ a′ and δ′(z, v) = δ(z, y) ∨ a′, for all z ∈ X, while δ′(u, v) = b′.
It is straightforward to verify that δ′ is an S-valued distance on X′ extending δ. Furthermore,
δ′(x,u) = a′ � a, δ′(u, v) = b′ � b, and δ′(v, y) = a′ � a. Iterating this construction transfi-
nitely, taking direct limits at limit stages, yields an S-valued V-distance of type 2 extending δ. �
3. Failure of WURP= in Conc F , for F free bounded lattice

The main proof of the present section, that is, the proof of Theorem 3.6, follows the lines
of the proofs of [18, Theorem 3.3] and [21, Corollary 2.1]. However, there are a few necessary
changes, mainly due to the new “uniform refinement property” not being the same as the pre-
viously considered ones. As the new result extends to any algebra, and not only lattices (see
Corollary 3.7), we feel that it is still worthwhile to show the main lines of the proof in some
detail.

From now on until Lemma 3.5, we shall fix a non-distributive lattice variety V . For every
set X, denote by BV (X) (or B(X) in case V is understood) the bounded lattice in V freely gener-
ated by chains si < ti , for i ∈ X. Note that if Y is a subset of X, then there is a unique retraction
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from B(X) onto B(Y ), sending each si to 0 and each ti to 1, for every i ∈ X \ Y . Thus, we shall
often identify B(Y ) with the bounded sublattice of B(X) generated by all si and ti (i ∈ Y ). More-
over, the above mentioned retraction from B(X) onto B(Y ) induces a retraction from Conc B(X)

onto Conc B(Y ). Hence, we shall also identify Conc B(Y ) with the corresponding subsemilattice
of Conc B(X).

Now we fix a set X such that |X| � ℵ2. We denote, for all i ∈ X, by ai and bi the compact
congruences of B(X) defined by

ai = Θ(0, si) ∨ Θ(ti,1); bi = Θ(si, ti). (3.1)

In particular, note that ai ∨ bi = 1, the largest congruence of B(X).
Now, towards a contradiction, suppose that there are a positive integer n, a decomposition

X = ⋃
(Xk | k < n), and a family 〈ci,j | 〈i, j 〉 ∈ X×X〉 of elements of Conc B(X) witnessing the

statement that Conc B(X) satisfies WURP=(1), where 1 denotes the largest congruence of B(X).
We pick k < n such that |Xk| = |X|. By “projecting everything on B(Xk)” (as in [21, p. 224]),
we might assume that Xk = X.

Since the Conc functor preserves direct limits, for all i, j ∈ X, there exists a finite sub-
set F({i, j}) of X such that both ci,j and cj,i belong to Conc B(F ({i, j})). By Kuratowski’s
Theorem, there are distinct elements 0, 1,2 of X such that 0 /∈ F({1,2}), 1 /∈ F({0,2}), and
2 /∈ F({0,1}). Denote by π : B(X) � B({0,1,2}) the canonical retraction. For every i ∈ {0,1,2},
denote by i′ and i′′ the other two elements of {0,1,2}, arranged in such a way that i′ < i′′. We
put d i = (Conc π)(ci′,i′′), for all i ∈ {0,1,2}.

Applying the semilattice homomorphism Conc π to the inequalities satisfied by the ele-
ments ci,j yields

d0 ⊆ a1 ∨ a2,b1 ∨ b2; d1 ⊆ a0 ∨ a2,b0 ∨ b2; d2 ⊆ a0 ∨ a1,b0 ∨ b1; (3.2)

d0 ∨ a2 ∨ b1 = d1 ∨ a2 ∨ b0 = d2 ∨ a1 ∨ b0 = 1; (3.3)

d1 ⊆ d0 ∨ d2. (3.4)

As in [18, Lemma 2.1], it is not hard to prove the following.

Lemma 3.1. The congruence d i belongs to Conc B({i′, i′′}), for all i ∈ {0,1,2}.

Since V is a non-distributive variety of lattices, it follows from a classical result of lattice
theory that V contains as a member some lattice M ∈ {M3,N5}. Decorate the lattice M with
three 2-element chains xi < yi (for i ∈ {0,1,2}) as in [18], which we illustrate on Fig. 1.

The relevant properties of these decorations are summarized in the two following straightfor-
ward lemmas.

Fig. 1. The decorations of M3 and N5.
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Lemma 3.2. The decorations defined above satisfy the following inequalities:

x0 ∧ y1 � x1; y1 � x1 ∨ y0; x1 ∧ y0 � x0; y0 � x0 ∨ y1;
x1 ∧ y2 � x2; y2 � x2 ∨ y1; x2 ∧ y1 � x1; y1 � x1 ∨ y2,

but y2 � x2 ∨ y0.

Lemma 3.3. The sublattice of M generated by {xi′, xi′′ , yi′, yi′′ } is distributive, for all
i ∈ {0,1,2}.

Now we shall denote by D be the free product (i.e., the coproduct) of two 2-element chains,
say u0 < v0 and u1 < v1, in the variety of all distributive lattices. The lattice D is diagrammed
on Fig. 2.

The join-irreducible elements of D are u0, u1, v0, v1, u′
0 = u0 ∧ v1, u′

1 = u1 ∧ v0, and w =
v0 ∧ v1. Since D is finite distributive, its congruence lattice is finite Boolean, with seven atoms
p = ΘD(p∗,p), for p ∈ J(D) (where p∗ denotes the unique lower cover of p in D), that is,

u0 = Θ+
D(u0, v1); u1 = Θ+

D(u1, v0);
v0 = Θ+

D(v0, u0 ∨ v1); v1 = Θ+
D(v1, u1 ∨ v0);

u′
0 = Θ+

D(u0 ∧ v1, u1); u′
1 = Θ+

D(u1 ∧ v0, u0);
w = ΘD

(
(u0 ∧ v1) ∨ (u1 ∧ v0), v0 ∧ v1

)
.

For all i ∈ {0,1,2}, let πi : B({i′, i′′}) → D be the unique lattice homomorphism sending si′
to u0, ti′ to v0, si′′ to u1, ti′′ to v1. Furthermore, denote by ρ : B({0,1,2}) → M the unique lattice
homomorphism sending si to xi and ti to yi (for all i ∈ {0,1,2}); denote by ρi the restriction
of ρ to B({i′, i′′}).

We shall restate [18, Lemma 3.1] here for convenience.

Fig. 2. The distributive lattice D.
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Lemma 3.4. Let L be any distributive lattice, let a, b, a′, b′ be elements of L. Then the equality
Θ+

L (a, b) ∩ Θ+
L (a′, b′) = Θ+

L (a ∧ a′, b ∨ b′) holds.

Now we put ei = (Conc πi)(d i ), for all i ∈ {0,1,2}.

Lemma 3.5. The containments e− ⊆ ei ⊆ e+ hold for all i ∈ {0,1,2}, where we put

e− = Θ+
D(u0 ∧ v1, u1) ∨ Θ+

D(v1, u1 ∨ v0),

e+ = Θ+
D(u0 ∧ v1, u1) ∨ Θ+

D(v1, u1 ∨ v0) ∨ Θ+
D(u1 ∧ v0, u0) ∨ Θ+

D(v0, u0 ∨ v1).

Proof. Applying Conc πi to the inequalities (3.2) and (3.3) yields the following inequalities:

ei ⊆ Θ(0, u0) ∨ Θ(0, u1) ∨ Θ(v0,1) ∨ Θ(v1,1), (3.5)

ei ⊆ Θ(u0, v0) ∨ Θ(u1, v1), (3.6)

ei ∨ Θ(0, u1) ∨ Θ(v1,1) ∨ Θ(u0, v0) = 1. (3.7)

By using Lemma 3.4 and the distributivity of ConD, we obtain, by meeting (3.5) and (3.6), the
inequality ei ⊆ e+. On the other hand, by using (3.7) together with the equality

Θ(0, u1) ∨ Θ(v1,1) ∨ Θ(u0, v0) = u0 ∨ u1 ∨ u′
1 ∨ v0 ∨ w

(see Fig. 2), we obtain that e− = u′
0 ∨ v1 ⊆ ei . �

Now, for all i ∈ {0,1,2}, it follows from Lemma 3.3 that there exists a unique lattice homo-
morphism ϕi :D → M such that ϕi ◦ πi = ρi . Since Conc is a functor, we get from this and from
Lemma 3.5 that for all i ∈ {0,1,2},

(Conc ρ)(d i )

= (Conc ϕi)(ei ) ⊆ (Conc ϕi)(e
+)

= (Conc ϕi)
(
Θ+(u0 ∧ v1, u1) ∨ Θ+(v1, u1 ∨ v0) ∨ Θ+(u1 ∧ v0, u0) ∨ Θ+(v0, u0 ∨ v1)

)
= Θ+(xi′ ∧ yi′′ , xi′′) ∨ Θ+(yi′′ , xi′′ ∨ yi′) ∨ Θ+(xi′′ ∧ yi′ , xi′) ∨ Θ+(yi′ , xi′ ∨ yi′′), (3.8)

while

(Conc ρ)(d i ) = (Conc ϕi)(ei ) ⊇ (Conc ϕi)(e
−)

= (Conc ϕi)
(
Θ+(u0 ∧ v1, u1) ∨ Θ+(v1, u1 ∨ v0)

)
= Θ+(xi′ ∧ yi′′, xi′′) ∨ Θ+(yi′′, xi′′ ∨ yi′). (3.9)

In particular, we obtain, using Lemma 3.2,

(Conc ρ)(d0) = 0,

(Conc ρ)(d2) = 0,
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while

(Conc ρ)(d1) ⊇ Θ+(x0 ∧ y2, x2) ∨ Θ+(y2, x2 ∨ y0) �= 0.

On the other hand, by applying Conc ρ to (3.4), we obtain that

(Conc ρ)(d1) ⊆ (Conc ρ)(d0) ∨ (Conc ρ)(d2),

a contradiction. Therefore, we have proved the following theorem.

Theorem 3.6. Let V be any non-distributive variety of lattices, let X be any set such that
|X| � ℵ2. Denote by BV (X) the free product in V of X copies of a two-element chain with a
least and a largest element added. Then Conc BV (X) does not satisfy WURP= at its largest
element.

A “local” version of Theorem 3.6 is presented in Theorem 7.2.
Observe that Conc BV (X), being the semilattice of compact congruences of a lattice, is dis-

tributive.
As in [18, Corollary 4.1], we obtain the following.

Corollary 3.7. Let L be any lattice that admits a lattice homomorphism onto a free bounded lat-
tice in the variety generated by either M3 or N5 with ℵ2 generators. Then Conc L does not satisfy
WURP=. In particular, there exists no V-distance of type 3/2 with range join-generating Conc L.
Hence there is no algebra A with almost permutable congruences such that ConL ∼= ConA.

Proof. The first part of the proof goes like the proof of [18, Corollary 4.1], using Lemma 2.2.
The rest of the conclusion follows from Theorem 2.3. �
Corollary 3.8. Let V be any non-distributive variety of lattices and let F be any free (respectively,
free bounded) lattice with at least ℵ2 generators in V . Then there exists no V-distance of type 3/2
with range join-generating Conc F . In particular, there is no algebra A with almost permutable
congruences such that ConF ∼= ConA.

By using Corollary 1.4, we thus obtain the following.

Corollary 3.9. Let V be a non-distributive variety of lattices, let F be any free (respectively, free
bounded) lattice with at least ℵ2 generators in V , and put D = ConF —a distributive, algebraic
lattice with ℵ2 compact elements. Then there is no module M (respectively, no group G, no
�-group G) such that Subc M ∼= D (respectively, NSubG ∼= D, Id� G ∼= D).

Hence, not every distributive algebraic lattice is isomorphic to the submodule lattice of some
module, or to the normal subgroup lattice of some group. However, our proof of this negative
result requires at least ℵ2 compact elements. As we shall see in Sections 4 and 5, the ℵ2 bound
is, in both cases of modules and groups, optimal.
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4. Representing distributive algebraic lattices with at most ℵ1 compact elements as
submodule lattices of modules

In this section we deal with congruence lattices of right modules over rings.

Theorem 4.1. Every distributive 〈∨,0〉-semilattice of size at most ℵ1 is isomorphic to the sub-
module lattice of some right module.

Proof. Let S be a distributive 〈∨,0〉-semilattice of size at most ℵ1. If S has a largest element,
then it follows from the main result of [25] that S is isomorphic to the semilattice Idc R of all
finitely generated two-sided ideals of some (unital) von Neumann regular ring R.

In order to reduce ideals to submodules, we use a well-known trick. As R is a bimodule over
itself, the tensor product R = Rop ⊗ R can be endowed with a structure of (unital) ring, with
multiplication satisfying (a ⊗b) · (a′ ⊗b′) = (a′a)⊗ (bb′) (both a′a and bb′ are evaluated in R).
Then R is a right R-module, with scalar multiplication given by x · (a ⊗ b) = axb, and the
submodules of RR are exactly the two-sided ideals of R. Hence, Subc RR = Idc R ∼= S.

In case S has no unit, it is an ideal of the distributive 〈∨,0,1〉-homomorphism S′ = S ∪ {1}
for a new largest element 1. By the previous paragraph, S′ ∼= Subc M for some right module M ,
hence S ∼= Subc N where N is the submodule of M consisting of those elements x ∈ M such that
the submodule generated by x is sent to an element of S by the isomorphism Subc M ∼= S′. �

The commutative case is quite different. For example, for a commutative von Neumann reg-
ular ring R, if IdR is finite, then, as it is distributive and complemented, it must be Boolean.
In particular, the three-element chain is not isomorphic to the ideal lattice of any commutative
von Neumann regular ring. Even if regularity is removed, not every finite distributive lattice is
allowed. For example, one can prove the following result: A finite distributive lattice D is iso-
morphic to the submodule lattice of a module over some commutative ring iff D is isomorphic to
the ideal lattice of some commutative ring, iff D is a product of chains. In particular, the square
2 × 2 with a new bottom (respectively, top) element added is not isomorphic to the submodule
lattice of any module over a commutative ring.

5. Representing distributive algebraic lattices with at most ℵ1 compact elements as
normal subgroup lattices of groups

Every non-abelian simple group is “neutral” in the sense of [3]. Hence, the direction (1)⇒ (5)
in [3, Theorem 8.5] yields the following well-known result, which holds despite the failure of
congruence-distributivity in the variety of all groups.

Lemma 5.1. Let n < ω and let 〈Gi | i < n〉 be a finite sequence of simple non-abelian
groups. Then the normal subgroups of

∏
i<n Gi are exactly the trivial ones, namely the prod-

ucts of the form
∏

i<n Hi , where Hi is either Gi or {1Gi
}, for all i < n. Consequently,

NSub(
∏

i<n Gi) ∼= 2n.

We denote by F the class of all finite products of alternating groups of the form An, for n � 5.
For a group homomorphism f :G → H , we denote by NSubf : NSubG → NSubH the 〈∨,0〉-
homomorphism that with any normal subgroup X of G associates the normal subgroup of H

generated by f [X]. The following square amalgamation result is crucial. It is an analogue for
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groups of [7, Theorem 1] (for lattices) or [25, Theorem 4.2] (for regular algebras over a division
ring).

Lemma 5.2. Let G0, G1, G2 be groups in F and let f1 :G0 → G1 and f2 :G0 → G2 be group
homomorphisms. Let B be a finite Boolean semilattice, and, for i ∈ {1,2}, let gi : NSubGi → B

be 〈∨,0〉-homomorphisms such that

g1 ◦ NSubf1 = g2 ◦ NSubf2. (5.1)

Then there are a group G in F , group homomorphisms gi :Gi → G, for i ∈ {1,2}, and an
isomorphism α : NSubG → B such that g1 ◦f1 = g2 ◦f2 and α ◦ NSubgi = gi for all i ∈ {1,2}.

Outline of proof. We follow the lines of the proofs of [7, Theorem 1] or [25, Theorem 4.2].
First, by decomposing B as a finite power of 2, observing that F is closed under finite direct
products, and using Lemma 5.1, we reduce to the case where B = 2, the two-element chain.
Next, denoting by h the 〈∨,0〉-homomorphism appearing on both sides of (5.1), we put G′

0 =
{x ∈ G0 | h([x]) = 0} (where [x] denotes, again, the normal subgroup generated by x), and,
similarly, G′

i = {x ∈ Gi | gi ([x]) = 0}, for i ∈ {1,2}. So G′
i is a normal subgroup of Gi , for all

i ∈ {0,1,2}, and replacing Gi by Gi/G′
i makes it possible to reduce to the case where both g1

and g2 separate zero while both f1 and f2 are group embeddings.
Hence the problem that we must solve is the following: given group embeddings fi :G0 ↪→

Gi , for i ∈ {1,2}, we must find a finite, simple, non-abelian group G with group embeddings
gi :Gi ↪→ G such that g1 ◦ f1 = g2 ◦ f2. By the positive solution of the amalgamation problem
for finite groups (see [15, Section 15]), followed by embedding the resulting group into some
alternating group with index at least 5, this is possible. �

Now every distributive 〈∨,0〉-semilattice of size at most ℵ1 is the direct limit of some direct
system of finite Boolean 〈∨,0〉-semilattices and 〈∨,0〉-homomorphisms; furthermore, we may
assume that the indexing set of the direct system is a 2-ladder, that is, a lattice with zero where
every interval is finite and every element has at most two immediate predecessors. Hence, by
imitating the method of proof used in [7, Theorem 2] or [25, Theorem 5.2], it is not difficult to
obtain the following result.

Theorem 5.3. Every distributive 〈∨,0〉-semilattice of size at most ℵ1 is isomorphic to the finitely
generated normal subgroup semilattice of some group which is a direct limit of members of F .

Reformulating the result in terms of algebraic lattices rather than semilattices, together with
the observation that all direct limits of groups in F are locally finite, gives the following.

Corollary 5.4. Every distributive algebraic lattice with at most ℵ1 compact elements is isomor-
phic to the normal subgroup lattice of some locally finite group.

6. Representing distributive algebraic lattices with at most ℵ0 compact elements as �-ideal
lattices of �-groups

The variety of �-groups is quite special, as it is both congruence-distributive and congruence-
permutable. The following lemma does not extend to the commutative case (for example, Z × Z
cannot be embedded into any simple commutative �-group).
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Lemma 6.1. Every �-group can be embedded into some simple �-group.

Proof. It follows from [17, Corollary 5.2] that every �-group G embeds into an �-group H in
which any two positive elements are conjugate. In particular, H is simple. �

The following result is a “one-dimensional” analogue for �-groups of Lemma 5.2.

Lemma 6.2. For any �-group G, any finite Boolean semilattice B , and any 〈∨,0〉-homomorphism
f : Id�

c G → B , there are an �-group H , an �-homomorphism f :G → H , and an isomorphism
α : Id�

c H → B such that f = α ◦ Id�
c f .

Proof. Suppose first that B = 2. Observing that I = {x ∈ G | f (G(x)) = 0} is an �-ideal of G,
we let H be any simple �-group extending G/I (see Lemma 6.1), we let f :G → H be the
composition of the canonical projection G � G/I with the inclusion map G/I ↪→ H , and we
let α : Id�

c H → 2 be the unique isomorphism.
Now suppose that B = 2n, for a natural number n. For each i < n, we apply the result of the

paragraph above to the ith component f i : Id�
c G → 2 of f , getting a simple �-group Hi , an �-

homomorphism fi :G → Hi , and the isomorphism αi : Id�
c Hi → 2. Then we put H = ∏

i<n Hi ,
f :x �→ 〈fi(x) | i < n〉, and we let α : Id�

c H → 2n be the canonical isomorphism. �
Theorem 6.3. Every distributive at most countable 〈∨,0〉-semilattice is isomorphic to the semi-
lattice of all finitely generated �-ideals of some �-group.

Equivalently, every distributive algebraic lattice with (at most) countably many compact ele-
ments is isomorphic to the �-ideal lattice of some �-group.

Proof. It follows from [2, Theorem 3.1] (see also [4, Theorem 6.6]) that every distributive
at most countable 〈∨,0〉-semilattice S can be expressed as the direct limit of a sequence
〈Bn | n < ω〉 of finite Boolean semilattices, with all transition maps f n :Bn → Bn+1 and
limiting maps gn :Bn → S being 〈∨,0〉-homomorphisms. We fix an �-group G0 with an
isomorphism α0 : Id�

c G0 � B0. Suppose having constructed an �-group Gn with an isomor-
phism αn : Id�

c Gn → Bn. Applying Lemma 6.2 to f n ◦ αn, we obtain an �-group Gn+1, an
�-homomorphism fn :Gn → Gn+1, and an isomorphism αn+1 : Id�

c Gn+1 → Bn+1 such that
f n ◦ αn = αn+1 ◦ Id�

c fn. Defining G as the direct limit of the sequence

G0
f0

G1
f1

G2
f2 · · · ,

an elementary categorical argument yields an isomorphism from Id�
c G onto the direct limit S of

the sequence 〈Bn | n < ω〉. �
7. Functorial representation by V-distances of type 2

Observe that the argument of Proposition 2.6 is only a small modification (with a more simple-
minded proof) of B. Jónsson’s proof that every modular lattice has a type 2 representation, see
[11] or [6, Theorem IV.4.8]. It follows from Corollary 3.7 that “type 2” cannot be improved
to “type 1.” In view of Proposition 1.2, this is somehow surprising, as every distributive lattice
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has an embedding with permutable congruences into some partition lattice. This illustrates the
observation that one can get much more from a distance than from an embedding into a partition
lattice.

We shall now present a strengthening of Proposition 2.6 that shows that the construction can
be made functorial. We introduce notations for the following categories:

(1) S , the category of all distributive 〈∨,0〉-semilattices with 〈∨,0〉-embeddings.
(2) D, the category of all surjective distances of the form δ :X × X � S with kernel the iden-

tity and S a distributive 〈∨,0〉-semilattice, with morphisms (see Definition 1.1) of the form
〈f,f 〉 : 〈X,λ〉 → 〈Y,μ〉 with both f and f one-to-one.

(3) D2, the full subcategory of D consisting of all V-distances of type 2.

Furthermore, denote by Π :D → S the forgetful functor (see Definition 1.1).

Theorem 7.1. There exists a direct limits preserving functor Φ :S → D2 such that the composi-
tion Π ◦ Φ is equivalent to the identity.

Hence the functor Φ assigns to each distributive 〈∨,0〉-semilattice S a set XS together with a
surjective S-valued V-distance δS :XS × XS � S of type 2.

Proof. The proof of Proposition 2.6 depends of the enumeration order of a certain transfinite
sequence of quadruples 〈x, y,a,b〉, which prevents it from being functorial. We fix this by ad-
joining all such quadruples simultaneously, and by describing the corresponding extension. So,
for a distance δ :X × X → S, we put S− = S \ {0}, and

H(δ) = {〈x, y,a,b〉 ∈ X × X × S− × S− ∣∣ δ(x, y) = a ∨ b
}
.

For ξ = 〈x, y,a,b〉 ∈ H(δ), we put x0
ξ = x, x1

ξ = y, aξ = a, and bξ = b. Now we put X′ = X ∪
{ui

ξ | ξ ∈ H(δ) and i ∈ {0,1}}, where the elements ui
ξ are pairwise distinct symbols outside X.

We define a map δ′ :X′ × X′ → S by requiring δ′ to extend δ, with value zero on the diagonal,
and by the rule

δ′(ui
ξ , u

j
η

) =
{ |i − j | · bξ , if ξ = η,

aξ ∨ aη ∨ δ(xi
ξ , x

j
η ), if ξ �= η,

δ′(ui
ξ , z

) = δ′(z,ui
ξ

) = δ
(
z, xi

ξ

) ∨ aξ ,

for all ξ , η ∈ H(δ), all i, j ∈ {0,1}, and all z ∈ X.
It is straightforward, though somewhat tedious, to verify that δ′ is an S-valued distance on X′,

that it extends δ, and that its kernel is the identity of X′ in case the kernel of δ is the identity of X

(because the semilattice elements aξ and bξ are non-zero). Furthermore, if S is distributive, then
every V-condition problem for δ of the form δ(x, y) � a ∨ b can be refined to a problem of the
form δ(x, y) = a′ ∨b′, for some a′ � a and b′ � b (because S is distributive), and such a problem
has a solution of type 2 for δ′. Namely, in case both a′ and b′ are non-zero (otherwise the problem
can be solved in X), put ξ = 〈x, y,a′,b′〉, and observe that δ′(x,u0

ξ ) = a′, δ′(u0
ξ , u

1
ξ ) = b′, and

δ′(u1
ξ , y) = a′.
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Hence, if we put 〈X0, δ0〉 = 〈X,δ〉, then 〈Xn+1, δn+1〉 = 〈(Xn)
′, (δn)

′〉 for all n < ω, and
finally X = ⋃

(Xn | n < ω) and δ = ⋃
(δn | n < ω), the pair Ψ (〈X,δ〉) = 〈X,δ〉 is an S-valued

V-distance of type 2 extending 〈X,δ〉. Every morphism 〈f,f 〉 : 〈X,λ〉 → 〈Y,μ〉 in S extends
canonically to a morphism 〈f ′,f 〉 : 〈X′, λ′〉 → 〈Y ′,μ′〉 (the underlying semilattice map f is the
same), by defining

f ′(ui
ξ

) = ui
f ξ , for all ξ ∈ H(λ) and all i < 2,

where we put, of course,

f 〈x, y,a,b〉 = 〈
f (x), f (y),f (a),f (b)

〉
, for all 〈x, y,a,b〉 ∈ H(λ).

Hence, by an easy induction argument, 〈f,f 〉 extends canonically to a morphism Ψ (〈f,f 〉) =
〈f ,f 〉 : 〈X,λ〉 → 〈Y ,μ〉, and the correspondence 〈f,f 〉 �→ 〈f ,f 〉 is itself a functor. As the
construction defining the correspondence 〈X,δ〉 �→ 〈X′, δ′〉 is local, the functor Ψ preserves
direct limits.

It remains to find something to start with, to which we can apply Ψ . A possibility is to use
the distance μS , given by (2.2), introduced in the proof of Proposition 2.6. The correspondence
S �→ μS defines a functor, in particular, if f :S ↪→ T is an embedding of distributive 〈∨,0〉-semi-
lattices, then the equality μT (f (x), f (y)) = f (μS(x, y)) holds, for all x, y ∈ S. The desired
functor Φ is given by Φ(S) = Ψ (〈S,μS〉), for any distributive 〈∨,0〉-semilattice S. �

In contrast with the result of Theorem 7.1, we shall isolate a finite, “combinatorial” reason for
the forgetful functor from V-distances of type 3/2 to distributive 〈∨,0〉-semilattices not to admit
any left inverse. By contrast, we recall that for V-distances of type 2, the corresponding result
is positive, see Theorem 7.1. In order to establish the negative result, we shall use the example
Dac of [21, Section 7], and extend the corresponding result from lattices with almost permutable
congruences to arbitrary V-distances of type 3/2.

We recall that Dac is the (commutative) cube of finite Boolean semilattices represented on
Fig. 3, where P(X) denotes the powerset algebra of a set X and e, f , g, h0, h1, and h2 are the
〈∨,0〉-homomorphisms (and, in fact, 〈∨,0,1〉-embeddings) defined by their values on atoms as
follows:

e(1) = {0,1},

f :
{ {0} �→ {0,1},

{1} �→ {2,3}, g:
{ {0} �→ {0,2},

{1} �→ {1,3},

h0:

⎧⎪⎪⎨
⎪⎪⎩

{0} �→ {0,4,7},
{1} �→ {3,5,6},
{2} �→ {2,5,6},
{3} �→ {1,4,7},

h1:

⎧⎪⎪⎨
⎪⎪⎩

{0} �→ {0,4,5,7},
{1} �→ {1,4,6,7},
{2} �→ {2,5,6,7},
{3} �→ {3,4,5,6},

h2:

⎧⎪⎪⎨
⎪⎪⎩

{0} �→ {0,4,6},
{1} �→ {1,5,7},
{2} �→ {3,5,7},
{3} �→ {2,4,6},

Theorem 7.2. The diagram Dac has no lifting, with respect to the forgetful functor, by distances,
surjective at level 0 and satisfying the V-condition of type 3/2 at level 1.
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Fig. 3. The cube Dac, unliftable by V-distances of type 3/2.

Fig. 4. A commutative diagram of semilattice-valued distances.

Proof. Suppose that the diagram of Fig. 3 is lifted by a diagram of distances, with distances
λ :X × X → 2, λi :Xi × Xi → P(2), μi :Yi × Yi → P(4), and μ :Y × Y → P(8), for all i ∈
{0,1,2}, see Fig. 4.

We assume that λ is surjective and that λi is a V-distance of type 3/2, for all i ∈ {0,1,2}.
Denote by fU,V the canonical map from U to V given by this lifting, for U below V among
X, X0, X1, X2, Y0, Y1, Y2, Y . After having replaced each of those sets U by its quotient by the
kernel of the corresponding distance, and then by its image in Y under fU,Y , we may assume
that fU,V is the inclusion map from U into V , for all U below V among X, X0, X1, X2, Y0, Y1,
Y2, Y .

Since λ is surjective, there are x, y ∈ X such that λ(x, y) = 1. For all i ∈ {0,1,2},
λi(x, y) = e

(
λ(x, y)

) = e(1) = {0,1} = {0} ∪ {1},
thus, since λi satisfies the V-condition of type 3/2, there exists zi ∈ Xi such that

either λi(x, zi) = {0} and λi(zi, y) = {1} (
say, P(i)

)
,

or λi(x, zi) = {1} and λi(zi, y) = {0} (
say, Q(i)

)
.

(7.1)

So we have eight cases to consider, according to which combination of P and Q occurs in (7.1)
for i ∈ {0,1,2}. In each case, we shall obtain the inequality

μ(z0, z2) � μ(z0, z1) ∪ μ(z1, z2), (7.2)

which will contradict the triangular inequality for μ.
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Case 1. P(0), P(1), and P(2) hold. Then μ2(z0, x) = f λ0(x, z0) = {0,1} and μ2(x, z1) =
g(λ1(x, z1)) = {0,2}, whence μ2(z0, z1) ⊆ {0,1,2}. Similarly, replacing x by y in the argu-
ment above, μ2(z0, y) = f λ0(z0, y) = {2,3} and μ2(y, z1) = g(λ1(z1, y)) = {1,3}, whence
μ2(z0, z1) ⊆ {1,2,3}. Therefore, μ2(z0, z1) ⊆ {1,2}. On the other hand, from μ2(x, z0) ∪
μ2(z0, z1) = μ2(x, z1) ∪ μ2(z0, z1) the converse inclusion follows, whence μ2(z0, z1) = {1,2}.
Similar computations yield that μ1(z0, z2) = μ0(z1, z2) = {1,2}.

Hence, we obtain the equalities

μ(z0, z1) = h2μ2(z0, z1) = {1,3,5,7},
μ(z0, z2) = h1μ1(z0, z2) = {1,2,4,5,6,7},
μ(z1, z2) = h0μ0(z1, z2) = {2,3,5,6}.

Observe that 4 belongs to μ(z0, z2) but not to μ(z0, z1) ∪ μ(z1, z2).

Case 2. P(0), P(1), and Q(2) hold. As in Case 1, we obtain

μ2(z0, z1) = {1,2} and μ1(z0, z2) = μ0(z1, z2) = {0,3},

thus μ(z0, z1) = {1,3,5,7}, μ(z0, z2) = {0,3,4,5,6,7}, and μ(z1, z2) = {0,1,4,7}, which con-
firms (7.2) and thus causes a contradiction.

Case 3. P(0), Q(1), and P(2) hold. We obtain

μ2(z0, z1) = μ0(z1, z2) = {0,3} and μ1(z0, z2) = {1,2},

thus μ(z0, z1) = {0,2,4,6}, μ(z0, z2) = {1,2,4,5,6,7}, and μ(z1, z2) = {0,1,4,7}.

Case 4. P(0), Q(1), and Q(2) hold. We obtain

μ2(z0, z1) = μ1(z0, z2) = {0,3} and μ0(z1, z2) = {1,2},

thus μ(z0, z1) = {0,2,4,6}, μ(z0, z2) = {0,3,4,5,6,7}, and μ(z1, z2) = {2,3,5,6}.

Case 5. Q(0), P(1), and P(2) hold. We obtain

μ2(z0, z1) = μ1(z0, z2) = {0,3} and μ0(z1, z2) = {1,2},

thus μ(z0, z1) = {0,2,4,6}, μ(z0, z2) = {0,3,4,5,6,7}, and μ(z1, z2) = {2,3,5,6}.

Case 6. Q(0), P(1), and Q(2) hold. We obtain

μ2(z0, z1) = μ0(z1, z2) = {0,3} and μ1(z0, z2) = {1,2},

thus μ(z0, z1) = {0,2,4,6}, μ(z0, z2) = {1,2,4,5,6,7}, and μ(z1, z2) = {0,1,4,7}.
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Case 7. Q(0), Q(1), and P(2) hold. We obtain

μ2(z0, z1) = {1,2} and μ1(z0, z2) = μ0(z1, z2) = {0,3},

thus μ(z0, z1) = {1,3,5,7}, μ(z0, z2) = {0,3,4,5,6,7}, and μ(z1, z2) = {0,1,4,7}.

Case 8. Q(0), Q(1), and Q(2) hold. We obtain

μ2(z0, z1) = μ1(z0, z2) = μ0(z1, z2) = {1,2},

thus μ(z0, z1) = {1,3,5,7}, μ(z0, z2) = {1,2,4,5,6,7}, and μ(z1, z2) = {2,3,5,6}.

In all cases, we obtain a contradiction. �
A “global” version of Theorem 7.2 is presented in Theorem 3.6.
The following corollary extends [21, Theorem 7.1] from lattices to arbitrary algebras.

Corollary 7.3. The diagram Dac has no lifting, with respect to the congruence lattice functor, by
algebras with almost permutable congruences.

About other commonly encountered structures, we obtain the following.

Corollary 7.4. The diagram Dac has no lifting by groups with respect to the NSub functor, and
no lifting by modules with respect to the Subc functor.

The following example offers a significant difference between the situations for groups and
modules.

Example 7.5. The diagonal map 2 ↪→ 22 has no lifting, with respect to the Sub functor, by
modules over any ring. Indeed, suppose that A ↪→ B × C is such a lifting, with A, B , and C

simple modules. Projecting on B and on C yields that A is isomorphic to a submodule of both B

and C, whence, by simplicity, A, B , and C are pairwise isomorphic. But then, B × C ∼= B × B

has the diagonal as a submodule, so its submodule lattice cannot be isomorphic to 22.
By contrast, every square of finite Boolean 〈∨,0〉-semilattices can be lifted, with respect to

the NSub functor, by groups, see Lemma 5.2.

8. Open problems

Although we do know that the negative result of Corollary 3.8 applies to �-groups (for every
�-group has permutable congruences), we do not know whether the positive results proved here
for modules (Theorem 4.1) or for groups (Theorem 5.3) extend to �-groups. The problem is that
the class of all �-groups does not satisfy the amalgamation property, see [17, Theorem 3.1], so
the proof of Lemma 5.2 cannot be used in this context, and so we do not know how to extend
Theorem 6.3 to the first uncountable level.

Problem 1. Is every distributive algebraic lattice with ℵ1 compact elements isomorphic to the
�-ideal lattice of some �-group?
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Our next question is related to the functor Φ obtained in the statement of Theorem 7.1.

Problem 2. Does there exist a functor Φ as in Theorem 7.1 that sends finite semilattices to
distances with finite underlying sets?

That is, can we assign functorially (with respect to 〈∨,0〉-embeddings), to each finite distrib-
utive 〈∨,0〉-semilattice S, a surjective V-distance 〈XS, δS〉 of type 2 with δS :XS × XS � S and
XS finite?
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