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We present first calculations of the fluctuating gluon distribution in a proton as a function of impact 
parameter and rapidity employing the functional Langevin form of the JIMWLK renormalization group 
equation. We demonstrate that when including effects of confinement by screening the long range 
Coulomb field of the color charges, the evolution is unitary. The large-x structure of the proton, 
characterized by the position of three valence quarks, retains an effect on the proton shape down to 
very small values of x. We determine the dipole scattering amplitude as a function of impact parameter 
and dipole size and extract the rapidity evolution of the saturation scale and the proton radius at fixed 
QCD coupling.
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1. Introduction

High energy hadronic and nuclear scattering experiments at the 
Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Col-
lider (LHC), as well as deeply inelastic scattering (DIS) and exclu-
sive diffractive processes in electron–proton and electron–heavy-
ion collisions require a good understanding of the high-energy 
limit of QCD, in particular the parton saturation regime [1–8].

In the high energy limit the eikonal propagation of a colored 
probe is determined by the Wilson lines, the path-ordered ex-
ponentials of the hadron’s color field. The color glass condensate 
(CGC) framework provides an effective field theory description of 
high-energy QCD, which can be formulated entirely in terms of the 
Wilson lines. The Wilson lines are treated as stochastic variables 
and their distribution characterizes the properties of the hadronic 
target when probed at a given energy.

The energy dependence of this distribution is described by the 
JIMWLK renormalization group equation [9,10]. It can be derived 
by successively integrating out quantum fluctuations at lower and 
lower Bjorken x and including them in the effective theory by 
renormalizing the statistical distribution.

The JIMWLK equation was formulated as a non-linear stochastic 
process in [11]. This functional Langevin form provides an intuitive 
picture of the physical processes involved as one evolves towards 
higher energy, and is particularly well suited for numerical imple-
mentations. First numerical solutions of the JIMWLK equation were 
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presented in [12,13]. Further numerical studies including running 
coupling effects were conducted in [14–16].

So far, all explicit solutions of the JIMWLK equation have as-
sumed infinitely large and homogeneous nuclei. In this work we 
introduce for the first time an explicit impact parameter depen-
dence and study the small x evolution of the gluon distribution in 
a finite size proton. This will allow for the calculation of the spatial 
substructure of the proton at high energies, including fluctuations 
in coordinate space, which are potentially of great importance for 
the interpretation of recent RHIC and LHC results on p/d–A and 
high-multiplicity p–p collisions [17–21].

Generally, for finite size nuclei, a particular problem of the 
JIMWLK equation becomes apparent – due to the presence of long 
range Coulomb fields, the size of the nucleus will grow exponen-
tially as we evolve towards small x [22–25]. This has dramatic 
consequences because it leads to a violation of unitarity and con-
finement. The Froissart bound [26,27] requires that the total in-
elastic cross section for the scattering of two hadrons fulfills

σ < πd2 ln2(s/s0), (1)

where d is a typical hadronic size scale, s is the center of mass 
energy squared, and y = ln(s/s0) is the rapidity. This relation is 
fulfilled only when the energy dependence of the hadron radius 
Rh is ∼ d ln(s/s0) or weaker.

As discussed in Refs. [22,23], the apparent problem with the 
JIMWLK equation is the absence of confinement effects in the evo-
lution kernel. While the (perturbative) JIMWLK kernel allows for 
successive gluon radiation at large distance scales, confinement ef-
fects should suppress such emissions and slow down the growth 
of the hadron.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2014.10.068
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:sschlichting@bnl.gov
mailto:bschenke@bnl.gov
http://dx.doi.org/10.1016/j.physletb.2014.10.068
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.10.068&domain=pdf


314 S. Schlichting, B. Schenke / Physics Letters B 739 (2014) 313–319
In this work we will account for confinement effects on a phe-
nomenological level by introducing a modification of the JIMWLK 
kernel, which leads to an exponential suppression of large distance 
gluon emission via an effective mass term. In this case the proton 
grows only linearly with rapidity, respecting the Froissart bound. 
We discuss effects of the modification on the evolution of the sat-
uration scale and the effective proton radius.

For the description of a proton at high energies, we model the 
initial configuration at moderately small x by assuming that gluon 
distributions are concentrated around sampled valence quark po-
sitions. We then study how JIMWLK evolution modifies the trans-
verse spatial structure of the gluon distribution. We quantify the 
proton size and the saturation scale, as well as their evolution 
speeds, via the dipole scattering amplitude.

This letter is organized as follows. In Section 2 we introduce 
the Langevin form of the JIMWLK equation and the modification 
of the kernel used to regulate the infrared physics. In Section 3
we discuss details of the numerical implementation. We present 
numerical results on the spatial structure of a single proton in 
Section 4, discuss features of the dipole scattering amplitude in 
Section 5, and extract the saturation scale and proton radius as a 
function of rapidity in Section 6. We conclude in Section 7.

2. Langevin form of the JIMWLK equation

The evolution equation of the probability distribution of the 
Wilson lines to leading logarithmic accuracy (αs ln(1/x)) can be 
written as a functional Fokker–Planck equation [11]. It can be re-
expressed as a functional Langevin equation for the Wilson lines 
themselves [28]:

d

dY
V x = V x

(
ita)[∫

z

εab,i
x,z ξb

z,i(Y ) + σ a
x

]
, (2)

where x and z are two-dimensional vectors in the transverse 
plane. The Wilson line V is a unitary matrix and ta are the SU (Nc)

generators in the fundamental representation. i = 1, 2 is a trans-
verse spatial index, and a, b ∈ {1, . . . , N2

c − 1} are the color indices. 
We used the shorthand notation 

∫
z = ∫

d2z.
The terms in square brackets in (2) can be interpreted as a 

stochastic random noise term and a deterministic drift term. The 
random noise is Gaussian and local in transverse coordinate, color, 
and rapidity: 〈ξb

z,i(Y )〉 = 0 and

〈
ξa

x,i(Y )ξb
y, j

(
Y ′)〉 = δabδi jδ

(2)
xy δ

(
Y − Y ′). (3)

The coefficient of the random noise is given by

εab,i
x,z =

(
αs

π2

)1/2

K i
x−z

[
1 − U †

xUz
]ab

, (4)

where U is the Wilson line in the adjoint representation, and the 
vector kernel is

K i
r = ri/r2. (5)

The “drift term” is given by

σ a
x = −i

αs

2π2

∫
x

Sx−z tr
[
T aU †

xUz
]
, (6)

with the scalar kernel Sr = 1/r2 and T a a generator in the adjoint 
representation.

In the numerical solution of Eq. (2) a discrete rapidity step will 
be employed. For one step of size dY , the change in the Wilson 
line is given by
V x(Y + dY ) = V x(Y )exp

{
ita

∫
z

εab,i
x,z ξb

z,i

√
dY + σ a

x dY

}
. (7)

The delta-function in rapidity δ(Y − Y ′) in (3) becomes a Kro-
necker-Delta divided by the magnitude of the timestep: δ(Ym −
Yn) → δm,n/dY , which is removed from the normalization of the 
noise. This leads to the appearance of 

√
dY in the first term in the 

exponential in Eq. (7).
In [16] the following simpler form of the Langevin step was 

derived:

V x(Y + dY ) = exp

{
−i

√
αsdY

π

∫
z

Kx−z · (V zξ z V †
z
)}

× V x(Y )exp

{
i

√
αsdY

π

∫
z

Kx−z · ξ z

}
, (8)

where ξ z = (ξa
z,1ta, ξa

z,2ta). By allowing multiplication of the Wilson 
line from the left and right, the rapidity step can be written with 
only a stochastic term. As noted in [16] this makes the numeri-
cal evaluation significantly more efficient, since no adjoint Wilson 
lines need to be computed. In the limit dY → 0 the update step (8)
is exactly equivalent to the original one (7). The difference appears 
at order O(dY 3/2), which has been neglected in the derivation of 
both expressions [16,28].

As discussed above, the rapidity evolution will lead to expo-
nential growth of the total inelastic cross section with rapidity. 
To tame this behavior we need to model the effect of confine-
ment and constrain the kernel (5) at large distance scales. A simple 
method is to include an exponential screening as already suggested 
in [22]. We implement this in practice by introducing an effective 
mass scale m on the order of ΛQCD which modifies the kernel ac-
cording to

K(mod)
r = m|r|K1

(
m|r|)Kr. (9)

Here K1(x) is the modified Bessel function of the second kind. 
The limiting behavior is such that at small arguments xK1(x) =
1 + O(x2) and no modifications of the kernel occur, whereas for 
large arguments K1(x) = √

π/(2x)e−x decays exponentially. This 
modification breaks gauge invariance, however, it allows for a sys-
tematic analysis of the effect of the mass term. We will discuss 
the dependence of the saturation scale and the proton radius on 
its value below.

3. Numerical implementation

We follow previous works [12,14–16] in the numerical imple-
mentation of the JIMWLK equation and first discretize the trans-
verse space on a spatial lattice with N⊥ × N⊥ points, where ad-
jacent lattice points are separated by the lattice spacing a⊥ . The 
Wilson lines V x as well as the stochastic fields ξ x are defined on 
the points x = (x1, x2) with x1/2 = 0, · · · , N⊥ − 1 of the transverse 
lattice. We employ the formulation of the JIMWLK equation in (8), 
which only involves the vector kernel K.

We employ periodic boundary conditions in the transverse 
plane for all dynamical fields, which as discussed previously [12]
greatly reduces the computational expense, because Fourier accel-
eration can be employed. We emphasize that even though we will 
be interested in the evolution of a finite size proton where trans-
lation invariance is explicitly broken, the use of periodic boundary 
conditions does not pose any additional problems. We find that, as 
long as the kernel decays sufficiently fast at large distance scales 
and the physical extent of the proton is small compared to the lat-
tice size, (unphysical) contributions from across the lattice bound-
ary are suppressed by several orders of magnitude.
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We solve the lattice version of Eq. (8) numerically by perform-
ing a series of updates in dY according to the following procedure: 
We first generate the stochastic fields ξ x at each lattice point and 
subsequently perform the color rotations V zξ z V †

z to obtain the ar-
gument of the left hand side exponential. We then perform the 
two convolutions with the kernel, which for a lattice with peri-
odic boundary conditions can be performed in Fourier space at 
cost of order N2⊥ log(N2⊥), which is significantly more efficient than 
the direct implementation in coordinate space, which scales as N4⊥ . 
Finally, we perform the matrix exponential by use of analytic ma-
trix diagonalization formulae [29] and compute the Wilson lines at 
the next rapidity step. This procedure is then repeated to obtain 
the evolution over a finite rapidity interval.

Within this framework observables can be computed in a 
straightforward way as functionals of the Wilson lines at any 
given Y [12,14–16]. When converting the results to physical units, 
the scale of the lattice computation is set by the proton ra-
dius Rp � 1 fm.1 If not stated otherwise, the results presented in 
this paper are obtained for N⊥ = 2048 lattices with physical size 
N⊥a⊥ = 8.53 fm, lattice spacing a⊥ = 4.167 × 10−3 fm, and rapid-
ity step size dY = 3.33 × 10−3. We will consider a fixed coupling 
constant αs = 0.3 for simplicity and comment on expected modifi-
cations due to running coupling effects.

4. Evolution of a single proton

When studying the energy evolution of a single proton, we start 
at some moderately small value of x = x0, where the evolution be-
comes dominated by the gluon degrees of freedom. We thus need 
a parametrization of the initial Wilson line configurations of a pro-
ton at x0, which in principle could be constrained by DIS data. 
Within this exploratory study, we refrain from performing actual 
fits to experimental data and instead consider different parameters 
within a simple model of the proton.

Our approach is motivated by the phenomenologically success-
ful constituent quark model [31,32] and amounts to sampling a 
distribution of moderately small x gluons around the large x con-
stituent quarks. In practice we first sample the positions �xCQ =
(xCQ, zCQ) of the three large x constituent quarks according to a 
three dimensional Gaussian distribution inside the proton, such 
that

〈�x2
CQ

〉 = R2
p. (10)

We then initialize the Wilson lines according to a color neutral 
distribution of randomly distributed color charges ρa(x) inside the 
constituent quarks, which we think of as corresponding to the glu-
ons radiated off the constituent quarks between x ∼ 1 and the 
initial value of x = x0.

We divide this large x region into N0
Y = 100 intervals, such that 

the initial Wilson lines are given by [33]

V 0(x) =
N0

Y∏
i=1

exp

(
−ig

ρ
Yi
a (x)ta

∇2⊥ + m2

)
(11)

where ∇2⊥ = ∂i∂
i and m ∼ ΛQCD is the same effective mass scale 

as in Eq. (9), which regulates the infrared behavior of the Coulomb 
tails. We consider a Gaussian distribution of the color charges 
ρ

Yi
a (x), which – following standard McLerran–Venugopalan type 

models [3] – we take as uncorrelated between points (x and y) 

1 The precise value of Rp can be fixed by fitting experimental data on DIS cross 
sections within our model. We expect Rp to be close to the gluonic radius (see e.g. 
[30]).
in the transverse plane, different colors, and different rapidity in-
tervals (Yi and Y j), i.e.,

g2〈ρYi
a (x)ρ

Y j

b (y)
〉 = (g2μ0 RCQ)2

N0
Y

S

(
x + y

2

)

× δabδYi Y j δ
(2)(x − y). (12)

While this ansatz is theoretically justified for large nuclei [3], one 
expects non-Gaussian correlations to become more relevant for 
smaller systems, such as the proton. Indeed, modifications to the 
MV model ansatz improve the agreement with experimental data 
from DIS and p + p collisions [34,35]. Since a first principles un-
derstanding of these correlations is missing and we are not trying 
to achieve a detailed fit to experimental data in this work, we 
will not consider corrections to the Gaussian distribution of color 
charges. We note however that non-local and non-Gaussian corre-
lations will be introduced by the JIMWLK evolution.

The spatial distribution of the color charge density S(
x+y

2 ) is 
centered around the constituent quarks according to

S(x) = 3

2π R2
CQ

NCQ∑
n=1

exp

(
− 3

2R2
CQ

(
x − x(n)

CQ

)2
)

(13)

and normalized to the number of constituent quarks NCQ =∫
d2x S(x) = 3. The radius of the “gluon cloud” around the con-

stituent quark is set to RCQ = Rp/3 in the following. We will vary 
the confinement scale m in (9) and (11) as well as the dimension-
less parameter g2μ0 RCQ in (12), which controls the initial degree 
of non-linearity of the subsequent small x evolution.2 If not stated 
otherwise results are presented for mRp = 3 and g2μRp = 30.

We first study the small x evolution of the spatial sub-structure 
of a single proton. In Fig. 1, we present the result for 
(tr[1 −
V (x)])/Nc in a single configuration at different rapidity intervals. 
This quantity is the simplest way to characterize the distribution 
of the gluon field in transverse space. The proton’s position and 
average initial radius is given by the larger circle while initial po-
sitions of “constituent quarks” are marked by the smaller circles of 
radius Rp/3 in all plots.

The structure of the initial gluon distribution (�Y = 0) is dom-
inated by the three “constituent quark” positions but also shows 
additional gluon field fluctuations. We observe that after evolution 
to �Y = 3, 6, and even 9, there is still a noticeable imprint of the 
larger x structure on the gluon field distribution.

This result demonstrates for the first time that even at very 
high energies and rapidities, the shape of the gluon distribution in 
a proton can fluctuate significantly. This can have important effects 
on multi-particle production and correlations in high-multiplicity 
p + p and p + heavy-ion collisions. Both initial state correlations 
as discussed in [36–40] and final state collective effects (see [41]) 
can be strongly affected by the fluctuating structure of the gluon 
distribution.

5. Dipole scattering amplitude

A natural way to characterize the gluon distribution of the pro-
ton is via the scattering amplitude of a color singlet dipole with 
charges at points x and y

D(x,y) = 1

Nc
Re

[
tr

〈
1 − V †(x)V (y)

〉]
. (14)

2 We find that for typical values of m considered here, values of g2μ0 RCQ ∼ 1
or less initially correspond to a linear evolution (BFKL regime), whereas non-linear 
evolution effects and gluon saturation are immediately important for g2μ0 RCQ ∼ 10
or greater.
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Fig. 1. Transverse profile of a single proton configuration at four different intervals dY of the evolution. The different panels show a contour plot of the real part of the trace 
of the Wilson line 
(tr[1 − V (x, y)])/Nc as a function of the transverse coordinates x and y. The small (large) circles show the position and size of the three constituent 
quarks (the proton).

Fig. 2. Dipole scattering amplitude as a function of impact parameter |b| and dipole size |r| measured at three different intervals �Y of the evolution. While the dominant 
support is at small impact parameter |b| � Rp for hadronic size dipoles |r| � Rp, one also observes a band around |r| � 2|b| for larger impact parameters.
In the following we will express the dipole amplitude D as a func-
tion of the impact parameter b = (x + y)/2, measured relative to 
the center of mass of the constituent quarks, and the dipole size 
(and orientation) r = x − y.

The dipole scattering amplitude averaged over Nconf = 64 con-
figurations and the orientations of b and r, D(|b|, |r|), is shown 
in Fig. 2 with |b| and |r| in units of the proton radius Rp. Three 
different rapidity values are shown in three separate plots.

The strongest support of the dipole amplitude resides in the 
region of small impact parameters |b|, close to the center of the 
proton. The behavior at small values of |r| is similar to the case of 
infinite nuclei. Starting from |r| = 0, where the dipole amplitude 
vanishes by definition, one observes a rise towards larger values 
of |r|, where the dipole amplitude reaches a maximum for |r| ∼ Rp. 
While initially at �Y = 0, this maximum value is below unity, it 
quickly approaches the saturation bound (D = 1) as the rapidity 
evolution proceeds.

The drop of the dipole amplitude for values of the dipole size 
|r| � Rp (and small |b|) occurs when the points x and y both fall 
outside the effective proton radius, i.e., outside the region of co-
ordinate space where the Wilson lines are significantly different 
from unity. Further, we find that for dipoles of size |r| � Rp, the 
dipole amplitude is maximal around |r| � 2|b|. This has been ob-
served previously in [23–25] and can be easily understood, as in 
this configuration there are certain angular orientations for which 
one end of the dipole lies in the center of the proton, where on 
average V differs maximally from unity.

While the decrease of the dipole amplitude for large |r| is nat-
ural for scattering off a finite size target, it is also clear that the 
simple dipole model for DIS cross sections cannot be employed for 
large size dipoles. Corrections to this description, which will mod-
ify the behavior of the cross section at large |r|, can result from 
confinement effects that are not included here. For instance in the 
full theory new quark anti-quark pairs will be formed as one in-
creases the dipole size |r| beyond the size scale 1/ΛQCD. At small 
impact parameter |b| this effect will lead to large scattering cross 
sections even at large values of |r|. We leave the inclusion of these 
Fig. 3. Dipole scattering amplitude as a function of dipole size |r| at fixed impact 
parameter |b| < 0.2Rp measured at four different intervals �Y of the evolution. 
The thin lines show the result for Nconf = 64 different initial configurations and 
illustrate the magnitude of event-by-event fluctuations. The points correspond to 
the average over initial configurations.

effects to future work, where cross sections for electron–proton 
scattering will be computed.

In Fig. 3 we show the dipole scattering amplitude D as a func-
tion of dipole size |r| at fixed impact parameter |b| < 0.2Rp, mea-
sured at four different intervals �Y of the evolution. We show the 
variation of D configuration-by-configuration by plotting as narrow 
lines results for 64 individual initial configurations. The average is 
shown by the points. We note that the variance of the distribu-
tion is largest at the smallest �Y . The fluctuations are dominated 
by the positions of the “constituent quarks” that may or may not 
be located at |b| < 0.2Rp in a given configuration. Differences be-
tween different configurations are still large at �Y = 4 and even 
�Y = 8, in line with our findings in Fig. 1. Only as we evolve to-
wards very large �Y the variance is reduced, indicating that gluon 
distributions in the proton at very small x are more universal. Fluc-
tuations of the dipole amplitude then translate into fluctuations of 
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Fig. 4. Dipole scattering amplitude as a function of impact parameter |b| for a 
hadronic size dipole with 0.4 < |r|/Rp < 0.6 measured at four different intervals 
�Y of the evolution. The thin lines show the result for Nconf = 64 different initial 
configurations. The points correspond to the average over initial configurations. The 
dashed line illustrates the exponential decay of the Dipole amplitude.

the typical momentum scale Q , which can have important effects 
for the calculation of observables in hadronic collisions [42].

We note again that the drop of the dipole scattering ampli-
tude at large |r| � Rp happens because we allow a single dipole 
to stretch larger than typical hadronic sizes. In a complete, non-
perturbative theory this cannot happen – confinement effects 
would cause pair production, strongly modifying the dipole cross 
section at large |r|.

Fig. 4 shows the dipole scattering amplitude as a function of 
impact parameter |b| for a dipole of hadronic size 0.4 < |r|/Rp <

0.6 measured at four different intervals �Y of the evolution. Again, 
one can see a rather wide spread around the average, gener-
ated mainly by the “constituent quark” fluctuations, especially at 
small �Y . At larger �Y almost all configurations have reached 
saturation at small |b|. At large |b| the dipole amplitude falls off 
exponentially, because of the exponential regulator we introduced 
in Eqs. (9) and (11). The growth of the proton with increasing �Y
is nicely visible. We will analyze this growth in more detail in the 
following section.

6. Saturation and unitarity

We have demonstrated in the previous section that saturation 
is reached for impact parameters |b| � Rp and large enough �Y . 
Here we analyze the growth of the typical momentum scale Q , 
defined via

D
(|b| < 0.2Rp, |r| = 1/Q

) = e−1, (15)

for various sets of parameters. We chose a smaller reference value 
D(|r| = 1/Q ) = e−1 than the usual D(|r| = √

2/Q s) = e−1/2 [14,
43], to be able to define a characteristic scale Q even in situations 
where saturation is not yet reached. Nevertheless, Q can be gen-
erally interpreted as the saturation scale Q s when considering that 
confinement effects will lead to large cross sections as |r| → ∞ at 
any value of �Y , as discussed above.

In Fig. 5 we demonstrate the exponential growth of Q ∝
exp(λαs�Y ) and extract the exponent λ � 1.4, which is largely 
independent of the value of the confinement scale m since the 
high-energy evolution of the saturation scale is governed by short 
distance physics. This value of λ is consistent with the result re-
ported in [12] for fixed coupling JIMWLK evolution in an infinite 
size nucleus using similar values of a⊥ .
Fig. 5. Characteristic momentum scale Q as a function of the ultraviolet evolution 
variable �S = αs�Y for different sets of parameters g2μ0 Rp and mRp. The gray 
band illustrates the exponential growth of Q (�Y )/Q 0 ∝ exp(λαs�Y ) with λ � 1.4.

Fig. 6. Effective proton radius Reff as a function of the infrared evolution variable 
�S I R = αs�Y /(mRp) for different sets of parameters g2μ0 Rp and mRp. The gray 
band illustrates the linear growth of Reff(�Y )/Rp ∝ Γ αs�Y /(mRp) with Γ � 1.2.

The inclusion of running coupling will slow down the growth 
of Q according to [44–46]

d log(Q 2)

dY
∝ αs(Q ). (16)

This generally reduces the effective value of λ [12,15], making it 
more compatible with deeply inelastic scattering data [47,48].

Similarly, we can quantify the growth of the proton in impact 
parameter space by introducing an effective proton radius Reff for 
fixed |r|/Rp ≈ 0.5 according to

D
(|b| = Reff,0.4 < |r|/Rp < 0.6

) = 0.01. (17)

The rapidity evolution of the effective proton radius Reff is shown 
in Fig. 6 for various sets of parameters. Since the evolution is gov-
erned by the modified kernel in Eq. (9), which features an expo-
nential decrease at large distance scales, we expect a linear growth 
of the effective proton radius in rapidity. Moreover, we expect the 
slope to be inversely proportional to the mass parameter [22]:

Reff(�Y )/Rp ∝ Γ αs�Y /(mRp). (18)

When plotted as a function of the infrared evolution parameter 
αs�Y /(mRp), we find that the data for different values of the pa-
rameters indeed show the same linear rise. We also determine the 
dimensionless slope parameter Γ � 1.2, which is independent of 
the mass scale mRp. Moreover, since the large distance behavior 
is clearly controlled by the mass scale, a fixed scale of order m
should be the relevant scale for the coupling constant in (18). We 
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therefore expect only minor modifications of the qualitative behav-
ior in (18) due to running coupling effects (as long as the coupling 
constant is regularized in the infrared).

As discussed above, the linear growth of the proton radius with 
�Y observed in Fig. 6 saturates the Froissart bound. The viola-
tion of unitarity due to the emission of long range Coulomb fields, 
which is present in the case without an infrared regulator, is there-
fore avoided.

7. Conclusion

We have presented an exploratory study of the spatial structure 
of the proton at high energies. We start from a model of the large 
x structure of the proton defining gluon distributions around con-
stituent quark positions and determine the fixed coupling rapidity 
evolution from solutions to the Langevin form of the JIMWLK func-
tional renormalization group equations. We introduce an infrared 
regulator that prevents the long range emission of gluons and the 
violation of unitarity.

An important result of our study is that the large x structure of 
the proton affects its shape at higher energies (small x). Even after 
evolution over ∼9 units of rapidity the initial shape still affects the 
gluon distribution.

We presented results for the dipole scattering amplitude 
as a function of impact parameter and dipole size. Event-by-
event fluctuations of this quantity are large at large x and 
become smaller with decreasing x. We quantified effects of sat-
uration and the growth of the proton using the dipole scatter-
ing amplitude: The saturation scale grows exponentially Q s ∼
exp(λαs�Y ), with λ � 1.4, the radius increases linearly with ra-
pidity as Reff(�Y )/Rp ∝ Γ αs�Y /(mRp), with Γ � 1.2.

Our findings have important implications for the physics of 
deeply inelastic scattering and hadronic collisions. If collective ef-
fects are relevant in high multiplicity p + A collisions, the detailed 
shape of the proton plays an important role. In fact, the study 
of azimuthal anisotropies of particle spectra produced in p + A 
collisions then carry information on the fluctuating shape of the 
proton. Here, we provide the first theoretical description of the 
fluctuating shape of the proton at high energies. These initial con-
figurations can then be implemented in classical Yang–Mills sim-
ulations of the initial gluon fields in p + A collisions followed by 
fluid dynamic evolution as in [41].

More detailed analyses of deeply inelastic scattering observ-
ables within this model and fits to experimental data including 
running coupling effects are important future steps. The fluctua-
tions included in our calculation can have important effects for 
the description of not only p + A and p + p collisions, but also 
for electron–proton collisions at current experiments and a future 
electron–ion collider. Even and odd azimuthal anisotropies could 
emerge from such a proton structure in electron–proton collisions 
(see e.g. [49]). Whether rare fluctuations as discussed in [50] can 
be captured within our model needs to be investigated.

The presented calculations are a first step towards an event 
generator for electron–proton and electron–ion collisions at high 
collision energies.
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