The split decomposition of a tridiagonal pair

Kazumasa Nomura a,*, Paul Terwilliger b

a College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Kohnodai, Ichikawa 272-0827, Japan
b Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706, USA

Received 14 December 2006; accepted 17 January 2007
Available online 20 February 2007
Submitted by R.A. Brualdi

Abstract

Let \(\mathbb{K} \) denote a field and let \(V \) denote a vector space over \(\mathbb{K} \) with finite positive dimension. We consider a pair of linear transformations \(A : V \to V \) and \(A^* : V \to V \) that satisfy (i)–(iv) below:

(i) Each of \(A, A^* \) is diagonalizable.
(ii) There exists an ordering \(V_0, V_1, \ldots, V_d \) of the eigenspaces of \(A \) such that \(A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \) for \(0 \leq i \leq d \), where \(V_{-1} = 0, V_{d+1} = 0 \).
(iii) There exists an ordering \(V^*_0, V^*_1, \ldots, V^*_\delta \) of the eigenspaces of \(A^* \) such that \(AV^*_i \subseteq V^*_{i-1} + V^*_i + V^*_{i+1} \) for \(0 \leq i \leq \delta \), where \(V^*_{-1} = 0, V^*_\delta+1 = 0 \).
(iv) There is no subspace \(W \) of \(V \) such that both \(AW \subseteq W, A^*W \subseteq W \), other than \(W = 0 \) and \(W = V \).

We call such a pair a tridiagonal pair on \(V \). In this note we obtain two results. First, we show that each of \(A, A^* \) is determined up to affine transformation by the \(V_i \) and \(V^*_i \). Secondly, we characterize the case in which the \(V_i \) and \(V^*_i \) all have dimension one. We prove both results using a certain decomposition of \(V \) called the split decomposition.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 05E35; 05E30; 33C45; 33D45

Keywords: Leonard pair; Tridiagonal pair; \(q \)-Racah polynomial; Orthogonal polynomial

* Corresponding author.
E-mail addresses: knomura@pop11.odn.ne.jp (K. Nomura), terwilli@math.wisc.edu (P. Terwilliger).

0024-3795/S - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2007.01.028
1. Introduction

Throughout this note \(\mathbb{K} \) will denote a field and \(V \) will denote a vector space over \(\mathbb{K} \) with finite positive dimension. Let \(\text{End}(V) \) denote the \(\mathbb{K} \)-algebra of all \(\mathbb{K} \)-linear transformations from \(V \) to \(V \).

For \(A \in \text{End}(V) \) and for a subspace \(W \subseteq V \), we call \(W \) an eigenspace of \(A \) whenever \(W \neq 0 \) and there exists \(\theta \in \mathbb{K} \) such that \(W = \{ v \in V | Av = \theta v \} \). We say \(A \) is diagonalizable whenever \(V \) is spanned by the eigenspaces of \(A \). We now recall the notion of a tridiagonal pair.

Definition 1.1 ([1]). By a tridiagonal pair on \(V \) we mean an ordered pair of elements \(A, A^* \) taken from \(\text{End}(V) \) that satisfy (i)–(iv) below:

(i) Each of \(A, A^* \) is diagonalizable.
(ii) There exists an ordering \(V_0, V_1, \ldots, V_d \) of the eigenspaces of \(A \) such that
\[
A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \quad (0 \leq i \leq d),
\]
where \(V_{-1} = 0, V_{d+1} = 0 \).
(iii) There exists an ordering \(V_0^*, V_1^*, \ldots, V_\delta^* \) of the eigenspaces of \(A^* \) such that
\[
AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \quad (0 \leq i \leq \delta),
\]
where \(V_{-1}^* = 0, V_{\delta+1}^* = 0 \).
(iv) There is no subspace \(W \) of \(V \) such that both \(AW \subseteq W, A^*W \subseteq W \), other than \(W = 0 \) and \(W = V \).

Note 1.2. It is a common notational convention to use \(A^* \) to represent the conjugate-transpose of \(A \). We are not using this convention. In a tridiagonal pair \(A, A^* \) the linear transformations \(A \) and \(A^* \) are arbitrary subject to (i)–(iv) above.

We refer the reader to [1–3] for background on tridiagonal pairs.

Referring to Definition 1.1 we have \(d = \delta \) [1, Lemma 4.5]; we call this common value the diameter of \(A, A^* \). For \(0 \leq i \leq d \) the dimensions of \(V_i \) and \(V_i^* \) coincide; we denote this common value by \(\rho_i \), and observe that \(\rho_i \neq 0 \). The sequence \(\rho_0, \rho_1, \ldots, \rho_d \) is symmetric and unimodal; i.e. \(\rho_i = \rho_{d-i} \) for \(0 \leq i \leq d \) and \(\rho_i = \rho_{i-1} \) for \(1 \leq i \leq d/2 \) [1, Corollaries 5.7, 6.6]. We call the vector \((\rho_0, \rho_1, \ldots, \rho_d) \) the shape of \(A, A^* \). By a Leonard pair we mean a tridiagonal pair with shape \((1, 1, \ldots, 1) \) [5, Definition 1.1]. See [5–7] for background information on Leonard pairs.

In this note we obtain the following two results. Let \(A, A^* \) denote a tridiagonal pair from Definition 1.1. First, we show that each of \(A, A^* \) is determined up to affine transformation by the \(V_i \) and \(V_i^* \). Secondly, we characterize the Leonard pairs among the tridiagonal pairs. We prove both results using a certain decomposition of the underlying vector space called the split decomposition [1, Section 4].

2. The split decomposition

In this section we recall the split decomposition [1, Section 4]. We start with a comment. Referring to Definition 1.1, since \(V_0, V_1, \ldots, V_d \) are the eigenspaces of \(A \) and since \(A \) is diagonalizable we have
\[
V = V_0 + V_1 + \cdots + V_d \quad \text{(direct sum)}.
\]
Similarly
\[V = V_0^* + V_1^* + \cdots + V_d^* \] (direct sum).
(2)

For \(0 \leq i \leq d \) define
\[U_i = (V_0^* + V_1^* + \cdots + V_i^*) \cap (V_i + V_{i+1} + \cdots + V_d). \]
(3)

By [1, Theorem 4.6],
\[V = U_0 + U_1 + \cdots + U_d \] (direct sum),
(4)

and for \(0 \leq i \leq d \) both
\[U_0 + U_1 + \cdots + U_i = V_0^* + V_1^* + \cdots + V_i^*, \]
(5)
\[U_i + U_{i+1} + \cdots + U_d = V_i + V_{i+1} + \cdots + V_d. \]
(6)

For \(0 \leq i \leq d \) let \(\theta_i \) (resp. \(\theta_i^* \)) denote the eigenvalue of \(A \) (resp. \(A^* \)) associated with the eigenspace \(V_i \) (resp. \(V_i^* \)). Then by [1, Theorem 4.6] both
\[(A - \theta_i I) U_i \subseteq U_{i+1}, \]
(7)
\[(A^* - \theta_i^* I) U_i \subseteq U_{i-1}, \]
(8)
where \(U_{-1} = 0 \) and \(U_{d+1} = 0 \). The sequence \(U_0, U_1, \ldots, U_d \) is called the split decomposition of \(V \) [1, Section 4].

3. A subalgebra of \(\text{End}(V) \)

The following subalgebra of \(\text{End}(V) \) will be useful to us. Referring to Definition 1.1, let \(D \) denote the subalgebra of \(\text{End}(V) \) generated by \(A \). In what follows we often view \(D \) as a vector space over \(\mathbb{K} \). The dimension of this vector space is \(d + 1 \) since \(A \) is diagonalizable with \(d + 1 \) eigenspaces. Therefore \(\{ A^i | 0 \leq i \leq d \} \) is a basis for \(D \). There is another basis for \(D \) that is better suited to our purpose. To define it we use the following notation. Let \(\mathbb{K}[\lambda] \) denote the \(\mathbb{K} \)-algebra of all polynomials in an indeterminate \(\lambda \) that have coefficients in \(\mathbb{K} \). For \(0 \leq i \leq d \) we define \(\tau_i \in \mathbb{K}[\lambda] \) by
\[\tau_i = (\lambda - \theta_0)(\lambda - \theta_1) \cdots (\lambda - \theta_{i-1}). \]
(9)

We note that \(\tau_i \) is monic with degree \(i \). Therefore \(\{ \tau_i(A) | 0 \leq i \leq d \} \) is a basis for \(D \). Combining (7) and (9) we find
\[\tau_i(A) U_0 \subseteq U_i \quad (0 \leq i \leq d). \]
(10)

The following lemma is a variation on [1, Lemma 6.5]; we give a short proof for the convenience of the reader.

Lemma 3.1. Referring to Definition 1.1, for all nonzero \(u \in V_0^* \) and nonzero \(X \in D \), we have \(X u \neq 0 \).

Proof. It suffices to show that the vector spaces \(D \) and \(Du \) have the same dimension. We saw earlier that \(\{ \tau_i(A) | 0 \leq i \leq d \} \) is a basis for \(D \). We show that \(\{ \tau_i(A)u | 0 \leq i \leq d \} \) is a basis for \(Du \). By (4), (10), and since \(U_0 = V_0^* \), this will hold if we can show \(\tau_i(A)u \neq 0 \) for \(0 \leq i \leq d \). Let \(i \) be given and suppose \(\tau_i(A)u = 0 \). We will obtain a contradiction by displaying a subspace \(W \)
of V that violates Definition 1.1(iv). Observe that $i \neq 0$ since $\tau_0 = 1$ and $u \neq 0$; therefore $i \geq 1$.

By (9) and since $\tau_i(A)u = 0$ we find $u \in V_0 + V_1 + \cdots + V_{i-1}$, so

$$
u \in V_0^* \cap (V_0 + V_1 + \cdots + V_{i-1}).$$

(11)

Define

$$W_r = (V_0^* + V_1^* + \cdots + V_r^*) \cap (V_0 + V_1 + \cdots + V_{i-r-1})$$

(12)

for $0 \leq r \leq i - 1$ and put

$$W = W_0 + W_1 + \cdots + W_{i-1}. \quad (13)$$

We show W violates Definition 1.1(iv). Observe that $W \neq 0$ since the nonzero vector $u \in W_0$ by (11) and since $W_0 \subseteq W$. Next we show $W \neq V$. By (12), for $0 \leq r \leq i - 1$ we have

$$W_r \subseteq V_0^* + V_1^* + \cdots + V_r^* \subseteq V_0^* + V_1^* + \cdots + V_{i-1}^*.$$

By this and (13) we find

$$W \subseteq V_0^* + V_1^* + \cdots + V_{i-1}^* \subseteq V_0^* + V_1^* + \cdots + V_{d-1}^*.$$

Combining this with (2) and using $V_d^* \neq 0$ we find $W \neq V$. We now show $AW \subseteq W$. To this end, we show that $(A - \theta_{i-r-1}I)W_r \subseteq W_{r+1}$ for $0 \leq r \leq i - 1$, where $W_i = 0$. Let r be given. From the construction we have

$$(A - \theta_{i-r-1}I) \sum_{h=0}^{i-r-1} V_h = \sum_{h=0}^{i-r-2} V_h. \quad (14)$$

By Definition 1.1(iii) we have

$$(A - \theta_{i-r-1}I) \sum_{h=0}^{r} V_h^* \subseteq \sum_{h=0}^{r+1} V_h^*. \quad (15)$$

Combining (14) and (15) we find $(A - \theta_{i-r-1}I)W_r \subseteq W_{r+1}$ as desired. We have shown $AW \subseteq W$. We now show $A^*W \subseteq W$. To this end, we show that $(A^* - \theta_r^*I)W_r \subseteq W_{r-1}$ for $0 \leq r \leq i - 1$, where $W_{-1} = 0$. Let r be given. From the construction we have

$$(A^* - \theta_r^*I) \sum_{h=0}^{r-1} V_h^* = \sum_{h=0}^{r-2} V_h^*. \quad (16)$$

By Definition 1.1(ii) we have

$$(A^* - \theta_r^*I) \sum_{h=0}^{i-r-1} V_h \subseteq \sum_{h=0}^{i-r} V_h. \quad (17)$$

Combining (16) and (17) we find $(A^* - \theta_r^*I)W_r \subseteq W_{r-1}$ as desired. We have shown $A^*W \subseteq W$. We have now shown that $W \neq 0$, $W \neq V$, $AW \subseteq W$, $A^*W \subseteq W$, contradicting Definition 1.1(iv). We conclude $\tau_i(A)u \neq 0$ and the result follows. \Box

4. Each of A, A^* is determined by the eigenspaces

Let the tridiagonal pair A, A^* be as in Definition 1.1. In this section we show that each of A, A^* is determined up to affine transformation by the eigenspaces V_i, V_i^*. Our main result is based on the following proposition.

Proposition 4.1. Referring to Definition 1.1, assume \(d \geq 1 \). Then the following (i), (ii) are equivalent for all \(X \in \mathrm{End}(V) \).

(i) \(X \in \mathcal{D} \) and \(XV_0^* \subseteq V_0^* + V_1^* \).
(ii) There exist scalars \(r, s \in \mathbb{K} \) such that \(X = rA + sI \).

Proof. (i) \(\Rightarrow \) (ii): Assume \(X \neq 0 \); otherwise the result is trivial. Pick a nonzero \(u \in V_0^* \) and note that \(u \in U_0 \) by (5). We have \(Xu \in V_0^* + V_1^* \) by assumption so

\[
Xu \in U_0 + U_1 \tag{18}
\]

in view of (5). Recall \(\{ \tau_i(A) | 0 \leq i \leq d \} \) is a basis for \(\mathcal{D} \). We assume \(X \in \mathcal{D} \) so there exist \(\alpha_i \in \mathbb{K} \) \((0 \leq i \leq d)\) such that

\[
X = \sum_{i=0}^{d} \alpha_i \tau_i(A). \tag{19}
\]

We show \(\alpha_i = 0 \) for \(2 \leq i \leq d \). Suppose not and define \(\eta = \max\{i | 2 \leq i \leq d, \alpha_i \neq 0\} \). We will obtain a contradiction by showing

\[
0 \neq U_\eta \cap (U_0 + U_1 + \cdots + U_{\eta-1}). \tag{20}
\]

Note that \(\tau_\eta(A)u \neq 0 \) by Lemma 3.1 and \(\tau_\eta(A)u \in U_\eta \) by (10). Also by (19) we find \(\tau_\eta(A)u \) is in the span of \(Xu \) and \(\tau_0(A)u, \tau_1(A)u, \ldots, \tau_{\eta-1}(A)u \); combining this with (10) and (18) we find \(\tau_\eta(A)u \) is contained in \(U_0 + U_1 + \cdots + U_{\eta-1} \). By these comments \(\tau_\eta(A)u \) is a nonzero element in \(U_\eta \cap (U_0 + U_1 + \cdots + U_{\eta-1}) \) and (20) follows. Line (20) contradicts (4) and we conclude \(\alpha_i = 0 \) for \(2 \leq i \leq d \). Now \(X = \alpha_1 \tau_1(A) + \alpha_0 I \). Therefore \(X = rA + sI \) with \(r = \alpha_1 \) and \(s = \alpha_0 - \alpha_1 \theta_0 \).

(ii) \(\Rightarrow \) (i): Immediate from Definition 1.1(iii). \(\square \)

The following is our first main theorem.

Theorem 4.2. Let \(A, A^* \) denote a tridiagonal pair on \(V \), with eigenspaces \(V_i, V_i^* \) \((0 \leq i \leq d)\) as in Definition 1.1. Let \(A', A'^* \) denote a second tridiagonal pair on \(V \), with eigenspaces \(V_i', V_i'^* \) \((0 \leq i \leq d)\) as in Definition 1.1. Assume \(V_i = V_i' \) and \(V_i^* = V_i'^* \) for \(0 \leq i \leq d \). Then \(\text{Span}\{A, I\} = \text{Span}\{A', I\} \) and \(\text{Span}\{A^*, I\} = \text{Span}\{A'^*, I\} \).

Proof. Assume \(d \geq 1 \); otherwise the result is clear. Let \(\mathcal{D} \) (resp. \(\mathcal{D}' \)) denote the subalgebra of \(\text{End}(V) \) generated by \(A \) (resp. \(A' \)). Since \(V_i = V_i' \) for \(0 \leq i \leq d \) we find \(\mathcal{D} = \mathcal{D}' \) so \(A' \in \mathcal{D} \). Applying Proposition 4.1 to the tridiagonal pair \(A, A^* \) (with \(X = A' \)), there exist \(r, s \in \mathbb{K} \) such that \(A' = rA + sI \). Note that \(r \neq 0 \); otherwise \(A' = sI \) has a single eigenspace which contradicts \(d \geq 1 \). It follows that \(\text{Span}\{A, I\} = \text{Span}\{A', I\} \). Similarly we find \(\text{Span}\{A^*, I\} = \text{Span}\{A'^*, I\} \). \(\square \)

5. A characterization of the Leonard pairs

In this section we obtain a characterization of the Leonard pairs among the tridiagonal pairs. This characterization is based on the notion of the switching element of a Leonard pair [4]. We briefly recall this notion. Let the tridiagonal pair \(A, A^* \) be as in Definition 1.1, and assume the corresponding shape is \((1, 1, \ldots, 1)\) so that \(A, A^* \) is a Leonard pair. For \(0 \leq i \leq d \) let \(E_i \) denote
the element of $\text{End}(V)$ such that $(E_i - \delta_{ij}I) V_j = 0$ for $0 \leq j \leq d$. We observe (i) $E_i E_j = \delta_{ij}E_i$ ($0 \leq i, j \leq d$); (ii) $\sum_{i=0}^{d} E_i = I$; (iii) $A = \sum_{i=0}^{d} \theta_i E_i$. We further observe that E_0, E_1, \ldots, E_d is a basis for D. We define

$$S = \sum_{r=0}^{d} \frac{\phi_d \phi_{d-1} \cdots \phi_{d-r+1}}{\varphi_1 \varphi_2 \cdots \varphi_r} E_r,$$

where $\varphi_1, \varphi_2, \ldots, \varphi_d$ (resp. $\phi_1, \phi_2, \ldots, \phi_d$) is the first split sequence (resp. second split sequence) for A, A^* [5, Definitions 3.10, 3.12]. The element S is called the switching element for A, A^* [4, Definition 5.1].

The switching element has the following property.

Theorem 5.1 ([4, Theorem 6.7]). Let A, A^* denote a Leonard pair on V and let S denote the switching element for A, A^*. Let V_i, V_i^* be as in Definition 1.1, and let \mathcal{D} denote the subalgebra of $\text{End}(V)$ generated by A. Then for $X \in \text{End}(V)$ the following (i), (ii) are equivalent.

(i) X is a scalar multiple of S.
(ii) $X \in \mathcal{D}$ and $X V_0^* \subseteq V_d^*$.

The following is our second main result.

Theorem 5.2. Referring to Definition 1.1, let \mathcal{D} denote the subalgebra of $\text{End}(V)$ generated by A. Then the following (i), (ii) are equivalent.

(i) There exists a nonzero $X \in \mathcal{D}$ such that $X V_0^* \subseteq V_d^*$.
(ii) The pair A, A^* is a Leonard pair.

Proof. (i) \Rightarrow (ii): Recall $\{\tau_i(A)|0 \leq i \leq d\}$ is a basis for \mathcal{D}. Therefore there exist scalars $\alpha_0, \alpha_1, \ldots, \alpha_d$ in \mathbb{K}, not all zero, such that

$$X = \sum_{i=0}^{d} \alpha_i \tau_i(A). \tag{21}$$

Fix a nonzero $u \in V_0^*$. Then $Xu \in V_d^*$ so $(A^* - \theta_d^* I) Xu = 0$. In this equation we evaluate X using (21), rearrange terms, and use $A^* u = \theta_0^* u$ to find

$$0 = (A^* - \theta_d^* I) Xu = \sum_{i=0}^{d} \alpha_i (A^* - \theta_d^* I) \tau_i(A) u + \sum_{i=0}^{d} \alpha_i (A^* - \theta_i^* I) \tau_i(A) u = \sum_{i=0}^{d} \alpha_i \theta_i^* \tau_i(A) u + \sum_{i=0}^{d} \alpha_i (A^* - \theta_i^* I) \tau_i(A) u = \sum_{i=0}^{d} \alpha_i \theta_i^* \tau_i(A) u + \alpha_i+1(A^* - \theta_i^* I) \tau_{i+1}(A) u.$$
In the above line, for $0 \leq i \leq d - 1$ the summand at i is contained in U_i in view of (8) and (10), so this summand is 0 in view of (4). Therefore

$$\alpha_i \left(\theta_i - \theta_d \right) \tau_i(A) u + \alpha_{i+1} \left(A^* - \theta_{i+1} \right) \tau_{i+1}(A) u = 0 \quad (0 \leq i \leq d - 1).$$

(22)

Suppose for the moment that there exists an integer i ($0 \leq i \leq d - 1$) such that $\alpha_{i+1} = 0$. Then $\alpha_i \left(\theta_i - \theta_d \right) \tau_i(A) u = 0$ by (22). But $\tau_i(A) u \neq 0$ by Lemma 3.1 and $\theta_i \neq \theta_d$ since $\theta_0, \theta_1, \ldots, \theta_d$ are distinct, so $\alpha_i = 0$. Therefore $\alpha_{i+1} = 0$ implies $\alpha_i = 0$ for $0 \leq i \leq d - 1$. By this and since $\alpha_0, \alpha_1, \ldots, \alpha_d$ are not all zero, there exists an integer j ($0 \leq j \leq d$) such that $\alpha_i = 0$ for $0 \leq i \leq j - 1$ and $\alpha_i \neq 0$ for $j \leq i \leq d$. Define

$$W = \text{Span}\{ \tau_j(A) u, \tau_{j+1}(A) u, \ldots, \tau_d(A) u \}.$$

We show that W is nonzero and invariant under each of A, A^*. Observe that $W \neq 0$ since W contains $\tau_d(A) u$, and this vector is nonzero by Lemma 3.1. Observe that $AW \subseteq W$, since using (9) we find $(A - \theta_I) \tau_i(A) u = \tau_{i+1}(A) u$ for $j \leq i \leq d - 1$ and $(A - \theta_d) \tau_d(A) u = 0$. Observe that $A^* W \subseteq W$, since by (22) the product $(A^* - \theta_i I) \tau_i(A) u = 0$ for $i = j$ and a scalar multiple of $\tau_{i-1}(A) u$ for $j + 1 \leq i \leq d$. We have now shown that W is nonzero and invariant under each of A, A^*. Therefore $W = V$ in view of Definition 1.1(iv). We can now easily show that A, A^* is a Leonard pair. By construction the dimension of W is at most $d + 1$. Also, using (1) the dimension of V is $\sum_{i=0}^d \rho_i$, so this dimension is at least $d + 1$ with equality if and only if $\rho_i = 1$ for $0 \leq i \leq d$. By these comments and since $W = V$ we find V has dimension $d + 1$ and $\rho_i = 1$ for $0 \leq i \leq d$. Therefore the pair A, A^* is a Leonard pair.

(ii) \Rightarrow (i): Apply Theorem 5.1 with $X = S$, where S is the switching element of A, A^*. \square

References