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SUMMARY

It is believed that Mdm2 suppresses p53 in two ways: transcriptional inhibition by direct binding, and
degradation via its E3 ligase activity. To study these functions physiologically, we generated mice
bearing a single-residue substitution (C462A) abolishing the E3 function without affecting p53 bind-
ing. Unexpectedly, homozygous mutant mice died before E7.5, and deletion of p53 rescued the
lethality. Furthermore, reintroducing a switchable p53 by crossing with p53ERTAM mice surprisingly
demonstrated that the mutant Mdm2C462A was rapidly degraded in a manner indistinguishable from
that of the wild-type Mdm2. Hence, our data indicate that (1) the Mdm2-p53 physical interaction, with-
out Mdm2-mediated p53 ubiquitination, cannot control p53 activity sufficiently to allow early mouse
embryonic development, and (2) Mdm2’s E3 function is not required for Mdm2 degradation.
INTRODUCTION

The transcription factor p53 responds to DNA damage and

other cellular stressors by inducing cell cycle arrest or ap-

optosis, thereby playing a critical role in tumor suppres-

sion. It is well established that Mdm2 is the major negative

regulator of the tumor suppressor p53, yet the mechanism

by which Mdm2 suppresses p53 remains inadequately

understood. The prevailing view of Mdm2-mediated p53

inhibition is that Mdm2 suppresses p53 via a ‘‘dual’’ mech-

anism—Mdm2 binds to and masks p53’s N-terminal

transactivation domain, directly interfering with p53’s
Ca
ability to recruit basal transcriptional machinery (Momand

et al., 1992; Oliner et al., 1993; Thut et al., 1997), and/or

promotes ubiquitin-mediated degradation of p53 (Haupt

et al., 1997; Honda et al., 1997; Kubbutat et al., 1997).

Studies supporting the masking mechanism include

findings that mutations in the transactivation domain of

p53 that impair its binding with components of the tran-

scription machinery also disrupt its binding with Mdm2

(Lin et al., 1994), suggesting that Mdm2 and the basal

transcription factors competitively interact with overlap-

ping sequences in p53 (reviewed in Ko and Prives,

1996). In addition, when recruited to a promoter by fusion
SIGNIFICANCE

Mdm2 is frequently amplified or overexpressed in human cancers, many of which lack mutations in the p53 tumor
suppressor gene; thus, it is believed that Mdm2 overexpression is functionally equivalent to p53 mutation. Current
dogma holds that Mdm2 binding alone is sufficient to block p53’s transcriptional activity. In contrast, our in vivo
data show that Mdm2 binding does not adequately repress p53, at least not to an extent allowing mouse embryo
development. Furthermore, we show that Mdm2 autodegradation is not the principle mechanism for Mdm2 deg-
radation in vivo. Our in vivo evidence calls for a revision to current dogma regarding Mdm2’s regulation of both p53
and itself.
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with a heterologous Gal4 DNA-binding domain, Mdm2 is

capable of repressing basal transcription via a sequence,

comprising Mdm2 residues 50–222, that appears to be

separate from its p53-binding site (Thut et al., 1997). Nota-

bly, this inhibitory domain overlaps with an Mdm2 domain

at residues 102–222 that is required for binding with

the transcription cofactor p300/CBP (Grossman et al.,

1998), suggesting that Mdm2 could interfere with p53

transcription through interaction with these cofactors,

given that p300/CBP augments p53 transcriptional activ-

ity by promoting acetylation of p53 C-terminal lysine resi-

dues. Intriguingly, these C-terminal acetylation sites of

p53 are also essential for Mdm2-induced ubiquitination

and subsequent degradation of p53, thus indicating a po-

tential connection between p53 transcriptional function

and Mdm2-induced ubiquitination. However, it has not

been shown whether Mdm2-p53 binding alone is suffi-

cient, or whether Mdm2-mediated ubiquitination is also

required, for Mdm2 to repress p53.

Mdm2-mediated p53 ubiquitination and degradation

have drawn significant attention in recent years. Mdm2

belongs to a large family of RING finger ubiquitin ligases.

The RING finger motif is characterized by a group of con-

served cysteine and histidine residues that form a cross-

brace structure upon binding of two zinc ions. This struc-

ture interacts with E2 ubiquitin-conjugating enzymes and

facilitates ubiquitination of bound substrates. Mdm2’s

ligase activity is completely abolished by mutations at

any of the eight cysteine and histidine residues involved

in zinc coordination, and it can also be inhibited by a metal

chelator, indicating a requirement for the correct zinc-

dependent folding of the RING finger. It is now generally

accepted that Mdm2 is the principal p53 ubiquitin ligase

(Yang et al., 2004). Mice with targeted deletion of the

Mdm2 gene die during early embryonic development,

and this lethality can be rescued by concomitant deletion

of p53, indicating that the embryonic lethality of Mdm2 null

mice is due to activation of p53 (Jones et al., 1995; Luna

et al., 1995).

Functions other than E3 ubiquitin ligase activity have

been ascribed to the Mdm2 RING domain. For example,

this region of Mdm2 can bind to RNA (Elenbaas et al.,

1996), and it also harbors a cryptic nucleolar localization

signal that is exposed under certain circumstances such

as p14ARF binding (Lohrum et al., 2000). Moreover, the

Mdm2 RING domain can bind nucleotides such as ATP,

an activity important for Mdm2 nucleolar localization

(Poyurovsky et al., 2003). Recently, it was shown that

the RING domain of Mdm2 forms a spontaneously assem-

bled supramolecular complex in solution (Poyurovsky

et al., 2007). The Mdm2 RING domain also mediates

homodimerization with itself and heterodimerization with

MDMX (Jackson and Berberich, 2000; Sharp et al.,

1999; Stad et al., 2000; Tanimura et al., 1999), findings

confirmed recently in a paper describing the NMR solution

structure of the Mdm2 RING domain dimer (Kostic et al.,

2006).

In this study, we generated and investigated mice bear-

ing a single-residue substitution, C462A, in the RING
356 Cancer Cell 12, 355–366, October 2007 ª2007 Elsevier Inc.
finger domain of Mdm2. Our mouse model reveals two

unexpected insights into the mechanism for Mdm2

RING-mediated E3 ligase activity: (1) the Mdm2-p53

physical interaction alone, without Mdm2-mediated p53

ubiquitination, is unable to suppress p53 activity; and (2)

the Mdm2 RING-mediated E3 ubiquitin ligase function is

dispensable for Mdm2 degradation.

RESULTS

Mice Homozygous for Mdm2 C462A Mutation Die
during Embryonic Development
To investigate the in vivo function of the Mdm2 RING

finger E3 ubiquitin ligase, we engineered a Cys-to-Ala

substitution at the zinc-coordinating residue C462 in

the mouse Mdm2 (equivalent to C464 in human HDM2)

(Figure 1A). This mutation, which alters a structural-crucial

zinc coordinating cysteine, has been shown to abolish

Mdm2’s E3 ubiquitin ligase activity without affecting

Mdm2-p53 binding (Geyer et al., 2000). Correct targeting

of the Mdm2 allele by a substitution of TGT > GCC in co-

don 462, which simultaneously generates an Eag1 restric-

tion site (CGGCCG), was confirmed by Southern blott-

ing (Figure 1B) and by Eag1 digestion of PCR-amplified

genomic DNA (Figure 1C) from the targeted embryonic

stem (ES) cells. The targeted allele was reconfirmed by

sequencing of the mouse genomic DNA after germline

transmission was obtained (Figure 1D). The neomycin

resistance gene was subsequently removed from the tar-

geted allele by crossing the Mdm2+/C462A heterozygous

mice with transgenic mice expressing Cre recombinase.

Mice heterozygous for the Mdm2C462A allele (Mdm2+/C462A)

appeared phenotypically normal and fertile. The Mdm2+/C462A

mice were intercrossed, and the offspring were genotyped

by PCR of genomic DNA isolated from tail biopsies. Of the

127 progeny obtained from the intercrosses, 41 (32%)

were wild-type for Mdm2 (Mdm2+/+), and 86 (68%) were

heterozygous for the targeted Mdm2 allele, in agreement

with the expected 1:2 ratio from the cross. No viable

Mdm2C462A homozygous mutant mice were detected

(Table 1), indicating that homozygosity for the targeted

Mdm2 allele (Mdm2C462A/C462A) leads to embryonic

lethality.

To determine the gestational time of the embryonic le-

thality for the Mdm2C462A/C462A mice, genomic DNA was

isolated from the yolk sacs of embryos harvested at vari-

ous gestational stages from intercrosses of Mdm2+/C462A

mice and analyzed by PCR to detect the presence of

Mdm2C462A/C462A embryos. Of the 81 embryos isolated

from embryonic day (E) 8.5 to 13.5, 19 (23%) were

Mdm2+/+, 41 (51%) were Mdm2+/C462A, and 21 (26%)

were empty deciduae or embryos at various stages of re-

absorption (Table 2). These three types of embryos fall into

a ratio of approximately 1:2:1, as expected for a heterozy-

gous intercross. We were unable to isolate DNA, without

contamination from outside tissues, from the partially re-

absorbed embryos. We believe that these reabsorbed

embryos are Mdm2C462A/C462A homozygous. Thus, the
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Figure 1. Generation of Mdm2C462A

Knockin Mice

(A) Schematic representation of the Mdm2

gene-targeting vector. The black boxes repre-

sent the last six exons of the Mdm2 gene, with

exon numbers indicated. The gray boxes of in-

termediate thickness represent vector homol-

ogy to the target locus in the chromosome.

The open boxes are the selection markers.

The triangles indicate loxP sites with orienta-

tions pointed. Southern blot analysis was

used to screen the targeted allele. BamH1 di-

gestion generates a 9.5 Kb fragment from the

wild-type allele that can be detected by probes

A and B. The targeted allele gives rise to two

BamH1 fragments of 4.8 Kb and 6.5 Kb, which

can be detected by probes A or B, respec-

tively. The clones containing the C > A mutation

on codon 462 were screened by PCR using

primers shown by arrows below exon 12 and

by digestion of the Eag1 site that was intro-

duced with the mutation. (Diagram is not to

scale.)

(B) Correctly targeted ES cells were identified by

Southern blotting using BamH1-digested DNA

and a 1 Kb DNA fragment as probe (probe A).

+/+, wild-type Mdm2 locus; +/m, Mdm2+/C462A

heterozygous locus.

(C) PCR amplification of genomic DNA from

Mdm2+/m cells using a primer set (indicated in

[A]) and confirmation of the presence of the

C462A mutation by Eag1 digestion are shown.

(D) Sequencing results of wild-type and mutant

alleles of Mdm2. Genomic DNA was isolated

from tail biopsies of three-week-old mice, am-

plified by PCR using primers shown in (A), and

then sequenced. Note that the Cys > Ala muta-

tion at codon 462 results in an Eag1 restriction

site (CGGCCG).

(E) Histological analysis of embryos harvested

from Mdm2+/m intercrosses on day 6.5 (E6.5)

and 7.5 (E7.5) of gestation. Littermate normal

and abnormal embryos are shown. AM, amnion;

DD, decidua; EC, ectoplacental cavity; ED, ec-

toderm; EP, ectoplacental cone. Scale bar,

400 mm.
Mdm2C462A/C462A embryos must have died prior to E8.5 of

gestation.

To establish a more specific timeline for the embryonic

lethality, histological analysis of embryos at E6.5–E9.5

was performed. All embryos examined at E6.5 of gesta-

tion exhibited visible embryonic architecture (Figure 1E),

although approximately one-fourth of the embryos ap-

peared somewhat smaller than the others (indicated as

‘‘abnormal’’). At E7.5, most embryos exhibited features

characteristic of normal development, including gastrula-

tion, initiation of organogenesis, differentiation of the three

germ layers (ectoderm, mesoderm, and endoderm), and

formation of the three embryonic cavities (ectoplacental,
Ca
exocoel, and amniotic). In contrast, of the 24 total dis-

sected E7.5 deciduae, 5 (21%) were found to be smaller

in size than normal E7.5 embryos and exhibited none of

the developmental features of normal E7.5 embryos

(Figure 1E); instead, the smaller embryos exhibited a

size and structure similar to that of E6.5 embryos (e.g.,

differentiation of proamniotic cavity and extraembryonic

ectoderm). Beyond E7.5, only empty cavities, but not em-

bryos, were evident from the smaller deciduae, most likely

resulting from reabsorption of abnormal embryos (data

not shown). Of the 93 deciduae examined from 11 female

mice at E6.5, E7.5, and E8.5, 27 (29%) exhibited either ab-

normal or empty embryonic architecture. The abnormal
ncer Cell 12, 355–366, October 2007 ª2007 Elsevier Inc. 357
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embryos varied in architecture, but all were smaller than

the normal littermates and failed to undergo proper

gastrulation. Hence, these results suggest that the

Mdm2C462A/C462A homozygous mutation produces devel-

opmental retardation and causes embryonic lethality prior

to E7.5 of gestation. Of note, the embryonic lethality re-

sulting from Mdm2 knockout (Mdm2�/�) happens imme-

diately after implantation, which occurs at E5.5 (Jones

et al., 1995; Luna et al., 1995). Thus, the Mdm2C462A/C462A

embryos die at a developmental stage slightly later than,

but approximately comparable to, that of Mdm2�/�

embryos.

Mdm2C462A Homozygous Embryonic Lethality Can
Be Rescued by Concomitant Deletion of p53
It has been shown previously that the embryonic lethality

of Mdm2�/�mice can be rescued by concomitant deletion

of p53, indicating that the lethality in Mdm2 null mice re-

sults from unchecked p53 function (Jones et al., 1995;

Luna et al., 1995). We therefore investigated whether the

embryonic lethality of Mdm2C462A/C462A mice was also

due to the inability of the mutant Mdm2 to suppress p53.

The Mdm2+/C462A heterozygous mice were crossed with

p53 null (p53�/�) mice to generate Mdm2+/C462A;p53+/�

mice, which were then intercrossed to generate

Mdm2C462A/C462A;p53�/� double-homozygous mice. We

successfully recovered Mdm2C462A/C462A;p53�/� mice at

the expected Mendelian ratio (Figure 2A), and the dou-

ble-homozygous mice appeared morphologically indistin-

guishable from other littermates (data not shown). Correct

targeting of the C462A codon was reconfirmed by se-

quencing of PCR-amplified genomic DNA isolated from

the Mdm2C462A/C462A;p53�/� mouse tail biopsies (Fig-

ure 2B). No homozygous Mdm2C462A/C462A mice were

Table 1. Genotypes of Mice Resulting from
Mdm2+/C462A Intercrosses

Total No. of Mice +/+ +/m m/m

127 41 (32%) 86 (68%) 0

PCR-based genotyping was performed with genomic DNA

isolated from tail biopsies. +/+, wild type Mdm2; +/m,

Mdm2+/C462A; m/m, Mdm2C462A/C462A.
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obtained with a heterozygous p53 background

(Mdm2C462A/C462A;p53+/�), indicating that heterozygosity

of p53 is not sufficient to rescue the embryonic lethality

of Mdm2C462A/C462A mice. To demonstrate that the

C462A mutation does not have aberrant consequences

on Mdm2 gene expression, we isolated mouse embryonic

fibroblasts (MEFs) from littermate embryos and compared

the expression of Mdm2 mRNA by semiquantitative RT-

PCR. Mdm2 mRNA was expressed at equivalent levels

in each of the three p53 null MEFs, which expressed

Figure 2. Crossing with p53 Null Mice Rescues Mdm2m/m

Homozygous Embryonic Lethality

(A) Genotyping of mice born from Mdm2+/m;p53+/� mouse inter-

crosses. Genomic DNA was isolated from tail biopsies of three-

week-old mice. For Mdm2 genotyping, DNA was PCR amplified with

primers shown in Figure 1A and digested with Eag1. For p53 geno-

typing, the DNA was amplified using primers specific for mutant and

wild-type alleles (information from The Jackson Laboratory). m/m,

Mdm2C462A/C462A homozygous locus.

(B) DNA sequencing of PCR amplified tail biopsy DNA from Mdm2m/m;

p53�/� homozygous mice.

(C) Analysis of Mdm2 gene expression. Total RNA was isolated from

passage 1 MEFs and analyzed by RT-PCR (upper panel). Actin was

coamplified as a loading control.
Table 2. Genotypes of Embryos Resulting from Mdm2+/C462A Intercrosses

Genotyped

Gestational Age Total No. of Embryos +/+ +/C462A No. of Reabsorptions

E13.5 13 3 7 3

E12.5 5 2 2 1

E11.5 7 2 4 1

E10.5 16 3 9 4

E9.5 17 4 8 5

E8.5 23 5 11 7

Total 81 19 41 21

PCR-based genotyping was performed with genomic DNA isolated from embryos at the indicated gestational days.
.
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less Mdm2 than the wild-type MEFs (Figure 2C), due to

a lack of the Mdm2-transactivator p53. Thus, the

Mdm2C462A/C462A homozygous embryonic lethality can

be rescued by concomitant deletion of p53. These results

indicate that the Mdm2 RING E3 ubiquitin ligase function

is critically important for Mdm2 suppression of p53

in vivo, at least during early embryonic development.

Endogenous Mdm2C462A Is Fully Capable of
Interacting with p53 but Not Sufficient
to Suppress p53 Function
The embryonic lethality caused by the Mdm2C462A homo-

zygous mutation, along with the rescue of the lethality by

deletion of p53, indicates that the mutant Mdm2, although

most likely capable of interacting with p53, is unable to

control p53 activity sufficiently to allow early embryonic

development. Previous in vitro studies have shown that

the C462A mutation does not affect the Mdm2-p53 inter-

action (Honda and Yasuda, 2000). The early embryonic

lethality of the mutant mice, however, barred us from ad-

dressing this issue directly in our mouse model. To solve

this problem, we took advantage of a newly developed

knockin mouse model in which the endogenous p53

gene is replaced by one encoding p53ERTAM (p53ER

thereafter), a fusion protein containing a full-length p53

fused C-terminally with the hormone-binding domain of

a modified estrogen receptor. The p53 activity in the mice

and MEFs can be rapidly switched between wild-type

and knockout states by administration and withdrawal of

4-hydroxytamoxifen (4-OHT) (Christophorou et al., 2005).

Because previous studies have shown that, under an

Mdm2 null background, two copies of the p53ERTAM allele

(p53ER/ER) could cause embryonic lethality (Ringshausen

et al., 2006), we therefore bred p53ER/� mice into an

Mdm2C462A/C462A background and isolated MEFs from

Mdm2C462A/C462A;p53ER/�embryos. To determine the abil-

ity of p53ER to respond to 4-OHT in the Mdm2C462A/C462A;

p53ER/� MEFs, we cultured early-passage cells (passage

2) in either the presence or absence of 4-OHT. We then

assayed the expression of p53ER and two protein

products of the p53 target genes, Mdm2 and p21, at dif-

ferent time points after administration of 4-OHT. We

used Mdm2+/+;p53ER/� MEFs (also passage 2) as con-

trols. In the absence of 4-OHT (Figure 3A, lanes 1 and 6),

Mdm2C462A protein was expressed at a low level, similar

to that of wild-type Mdm2, and p21 expression was unde-

tectable, consistent with the p53 null status of the MEFs.

On the other hand, the p53ER protein level was higher in

the Mdm2C462A/C462A;p53ER/�MEFs than in the Mdm2+/+;

p53ER/�MEFs, most likely due to lack of E3 activity of the

Mdm2C462A protein. Upon 4-OHT treatment, the expres-

sion of Mdm2 was increased in both the Mdm2C462A/C462A;

p53ER/� and the Mdm2+/+;p53ER/� MEFs, indicating the

activation of p53ER, and this increase was considerably

higher in the Mdm2C462A/C462A;p53ER/� MEFs than in the

Mdm2+/+;p53ER/� MEFs (Figure 3A, Mdm2 panel). In the

presence of 4-OHT, p53 was decreased in the Mdm2+/+;

p53ER/� MEFs, due to expression of Mdm2, but was un-

changed or slightly increased in the Mdm2C462A/C462A;
C

p53ER/� MEFs (Figure 3A, p53 panel), indicating that the

mutant Mdm2C462A cannot degrade p53. This is consis-

tent with studies by other mouse models showing that

Mdm2 is responsible for p53 degradation in vivo (Francoz

et al., 2006; Toledo et al., 2006). Judging by a significantly

high level of p21 activation in the Mdm2C462A/C462A;p53ER/�

MEFs (Figure 3A, p21 panel), it is apparent that p53ER was

activated even in the presence of high levels of the

Mdm2C462A protein. This is consistent with our hypothesis

that the Mdm2C462A/C462A mutant mouse embryos died

Figure 3. Mdm2C462A Mutant Protein Remains Fully Capable

of Interacting with p53 but Is Unable to Suppress p53

Transcriptional Activity Sufficiently

(A) Mdm2C462A mutant is incapable of suppressing p53 transcriptional

activity. Early-passage MEFs (passage 2) of Mdm2+/+;p53ER/� and

Mdm2m/m;p53ER/� were prepared from embryos (E13.5) obtained by

breeding p53ER/� mice into both Mdm2+/+ and Mdm2m/m back-

grounds. Cells were treated with ethanol (0 hr) or 100 nM of 4-hydroxy-

tamoxifen (4-OHT) for the indicated lengths of time. The levels of

Mdm2, p53ER, p21, and Actin were analyzed by western blotting.

(B) Mdm2C462A mutant protein binds p53, L5, and L11. Mdm2+/+;

p53ER/� and Mdm2m/m;p53ER/� MEFs were treated with 100 nM

4-OHT for 24 hr. Cell extracts were immunoprecipitated with Mdm2

antibodies (2A10) and analyzed by western blotting with indicated

antibodies. Loading control represents approximately 5% of cell lysate

used for IP.

(C) The p53-binding activity of the Mdm2C462A mutant is similar to that

of wild-type Mdm2. MEFs of indicated genotype were infected with

retroviruses expressing a murine temperature-sensitive p53 (tsp53)

mutant, p53A135V. Cells were selected with puromycin and maintained

at 39.5�C. Cell extracts were prepared after cells were cultured for

24 hr at 32�C and were immunoprecipitated with goat polyclonal

anti-p53 antibody (FL-393, Santa Cruz) and analyzed by western blot-

ting. Loading control represents approximately 5% of cell lysate used

for IP.
ancer Cell 12, 355–366, October 2007 ª2007 Elsevier Inc. 359



Cancer Cell

Inactivation of Mdm2’s RING E3 Activity in Mouse
from unchecked p53 activity. These data also suggest

that the Mdm2-p53 interaction, in the absence of Mdm2-

mediated p53 ubiquitination, cannot sufficiently suppress

p53’s transactivation activity, at least toward the p21

gene.

To ascertain that the in vivo Mdm2C462A protein is able

to interact physically with p53, whole-cell lysates, in the

presence of 4-OHT, were isolated and analyzed for

Mdm2’s interaction with p53ER, and with ribosomal pro-

teins L5 and L11 as controls, by immunoprecipitation-

coupled western blotting (IP-western) (Figure 3B). The

p53ER protein, as well as L5 and L11, was clearly coimmu-

noprecipitated along with the Mdm2C462A protein, and the

levels of coimmunoprecipitated proteins correlated quan-

titatively with the levels of the proteins in the lysates. To

determine the relative competence of the Mdm2-p53

interaction, we established cells stably expressing a tem-

perature-sensitive p53 (tsp53) point mutant, p53A135V (Mi-

chalovitz et al., 1990), in Mdm2C462A/C462A;p53�/� MEFs,

using a retroviral infection procedure. The tsp53 protein,

carrying a substitution from alanine to valine at position

135, is inactive at 39�C, therefore allowing the MEFs to

grow. The tsp53-expressing MEFs were cultured at 39�C

to reach 80% confluence and then shifted to 32�C to re-

sume wild-type p53 structure and activity. We chose

two established cell lines expressing the same levels of

tsp53 to facilitate comparison of its binding activity to

Mdm2 and Mdm2C462A. The p53-Mdm2 interaction was

then analyzed by IP-western, using comparable protein

levels of ectopic p53A135V and endogenous Mdm2 in the

Mdm2C462A/C462A;p53�/� and the Mdm2+/+;p53�/� MEFs.

As shown in Figure 3C, p53A135V was able to precipi-

tate comparable amounts of wild-type and mutant

Mdm2C462A protein. Thus, the mutant Mdm2C462A protein

is fully capable of interacting physically with p53.

Mdm2 RING E3 Activity Is Required for p53
Degradation but Not Mdm2 Degradation
under Physiological Conditions
Previous studies have shown that mutations in the Mdm2

RING finger domain lead to stabilization of not only p53

but also Mdm2 itself, indicating that the Mdm2 RING E3

ubiquitin ligase function is essential for promoting Mdm2

autodegradation. With the creation of Mdm2C462A knockin

mice, we wished to revisit the role of the Mdm2 RING

E3 ligase in regulating protein stability of p53 and Mdm2

itself under physiological conditions. We intercrossed

Mdm2+/C462A;p53�/� mice to isolate three types of lit-

termate p53 null MEFs (Mdm2+/+, Mdm2+/C462A, and

Mdm2C462A/C462A). Under normal culturing conditions

(DMEM + 10% FBS, 37�C, and 5% CO2), all three types

of MEFs grew rapidly and became immortal without un-

dergoing replication crisis, consistent with their p53 null

status. We did not find obvious changes in the growth

properties of the Mdm2C462A/C462A;p53�/� MEFs as com-

pared to either Mdm2+/+;p53�/� or Mdm2+/C462A;p53�/�

MEFs (data not shown). Blotting with anti-p53 antibody

confirmed the p53 null status of the MEFs (Figure 4A,

p53 panel). To assess Mdm2 protein expression, we iso-
360 Cancer Cell 12, 355–366, October 2007 ª2007 Elsevier Inc.
lated whole-cell lysates from early-passage (passage 2)

MEFs and determined the levels of Mdm2 by western blot-

ting. Surprisingly, the levels of Mdm2 protein were essen-

tially identical among the three p53 null MEFs and were

lower than that of wild-type MEFs (Figure 4A, Mdm2

panel). This is unexpected because, if the RING E3 is re-

quired for Mdm2 degradation, the mutant Mdm2C462A pro-

tein should accumulate in the Mdm2C462A/C462A;p53�/�

MEFs, and the Mdm2C462A protein level should be higher

in the Mdm2C462A/C462A;p53�/� MEFs than in the

Mdm2+/C462A;p53�/� and Mdm2+/+;p53�/� MEFs. To di-

rectly compare protein stability between the wild-type

Mdm2 and the Mdm2C462A mutant, we carried out a

protein half-life assay using early-passage (passage 2)

Mdm2+/+;p53�/� and Mdm2C462A/C462A;p53�/� MEFs.

Consistently, the half-life was essentially identical be-

tween the wild-type and the RING mutant Mdm2; in both

cases the half-life was about 20 min (Figure 4B), indicating

that the Mdm2 RING E3 is not required for Mdm2 degra-

dation, at least under p53 null and low-Mdm2 conditions.

To assess potential effects of p53 on Mdm2 protein sta-

bility, p53 competence was restored in Mdm2+/+;p53ER/�

and Mdm2C462A/C462A;p53ER/� MEFs by administration of

4-OHT to transactivate Mdm2 gene expression and to

achieve physiologically high levels of Mdm2 protein.

Twenty-four hours after p53 function restoration, the

half-life of Mdm2 was determined. In the presence of ac-

tivated p53ER, both the wild-type Mdm2 and the

Mdm2C462A mutant were degraded equally rapidly, and

their half-lives of approximately 20 min (Figure 4C) were

essentially identical to those measured in MEFs without

p53 (Figure 4B), even though the Mdm2C462A protein

was expressed to a very high level (as shown in Figure 3A).

These data further suggest that high levels of Mdm2C462A

in the 4-OHT-treated Mdm2C462A/C462A;p53ER/�MEFs are

due to activation of p53ER but not stabilization of Mdm2.

In contrast, the p53ER protein was rapidly degraded, with

a half-life of 30 min, only in the Mdm2+/+;p53ER/� MEFs,

but was essentially undegradable in the Mdm2C462A/C462A;

p53�/� MEFs, which is consistent with the steady-state

levels of p53ER in the two cells shown in Figure 3A.

Thus, under physiological conditions, the Mdm2 RING

E3 is required for p53 degradation, but not for Mdm2

degradation.

This conclusion is paradoxical to numerous in vitro

studies showing that mutations in the Mdm2 RING finger

result in stabilization of both p53 and Mdm2. To rule out

the possibility that the process of generating the Mdm2

RING mutant mice may have elicited an alternative

Mdm2-destabilizing mechanism leading to Mdm2C462A

mutant degradation, we ectopically expressed both the

wild-type and the RING mutant Mdm2 in the

Mdm2C462A/C462A;p53�/� MEFs and determined the half-

life of the ectopic Mdm2. To distinguish ectopic Mdm2

from endogenous Mdm2, we used human HDM2 and

the Mdm2C462A equivalent HDM2C464A mutant for the

transfection and examined the ectopic protein by the

HDM2-specific antibody 4B11. Notably, consistent with

previous in vitro studies, only the wild-type, but not the
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Figure 4. Mdm2 RING-Mediated E3 Ubiquitin Ligase Activity Is Dispensable for Mdm2 Degradation

(A) Mdm2 protein levels are similar in Mdm2+/+;p53�/� and Mdm2m/m;p53�/�MEFs. Total protein was isolated from passage 1 MEFs with indicated

genotypes and analyzed by western blotting.

(B) Both Mdm2 and Mdm2C462A proteins degrade similarly in Mdm2+/+;p53�/� and Mdm2m/m;p53�/� MEFs. Early-passage (P2) MEFs were treated

with cycloheximide (50 mg/ml) and chased for the indicated times. The levels of Mdm2 were analyzed by western blotting. Actin served as a loading

control. The amount of Mdm2 remaining at each time point was quantified by densitometry, normalized relative to the amount of Actin, and plotted to

the right. The experiments were repeated with MEFs prepared from four different sets of embryos. Error bars represent the mean ± SD of four

independent experiments.

(C) Both Mdm2 and Mdm2C462A proteins degrade similarly in Mdm2+/+;p53ER/� and Mdm2m/m;p53ER/�MEFs. Early-passage (P2) MEFs of indicated

genotype were treated with 100 nM of 4-OHT for 24 hr and analyzed identically as in (B). The amount of Mdm2 and p53ER remained at each time point

was quantified by densitometry, normalized relative to the amount of Actin, and plotted to the right.

(D) Ectopically expressed HDM2C464A RING mutant protein is resistant to degradation. Mdm2m/m;p53�/� MEFs were transfected with plasmid DNA

expressing HDM2 or HDM2C464A along with a GFP plasmid. Twenty-four hours after transfection, the cells were treated with cycloheximide (50 mg/ml)

and chased for the indicated times. Ectopically expressed HDM2 and HDM2C464A were detected by HDM2-specific antibody 4B11. GFP was de-

tected by anti-GFP antibody and served as transfection efficiency control. The amount of HDM2 remaining at each time point was quantified by den-

sitometry, normalized relative to the amount of GFP, and plotted to the right.
RING mutant, HDM2 was rapidly degraded in the

Mdm2C462A/C462A;p53�/� MEFs. The half-life of the wild-

type HDM2 was similar to that of endogenous Mdm2, at

about 20 min, whereas the RING mutant HDM2 was resis-

tant to degradation (Figure 4D). Thus, the data indicate

that the Mdm2 RING E3 function is required for degrada-

tion of ectopically overexpressed Mdm2, but not for

endogenously expressed Mdm2.

DNA Damage Induces Destabilization of Mdm2
Regardless of Mdm2 RING E3 Function
Previous studies have shown that Mdm2’s half-life de-

creases after cells are treated with DNA-damaging agents

(Stommel and Wahl, 2004). To determine whether the en-

dogenous Mdm2C462A mutant protein is also sensitive to

DNA damage and subsequent rapid degradation, we treated
Ca
early-passage Mdm2+/+;p53�/� and Mdm2C462A/C462A;

p53�/� MEFs with 10 Gy gamma irradiation followed by

a protein half-life assay. Consistent with a previous in vitro

study, the half-life of wild-type Mdm2 was shortened after

cells were exposed to gamma irradiation, from 20 min in

untreated cells to approximately 5 min in treated cells

(Figure 5A). Importantly, the half-life of the Mdm2C462A

mutant protein was also decreased from 20 min to about

5 min after gamma irradiation, an effect indistinguishable

from that seen in the wild-type Mdm2 under DNA damage

conditions. To assess DNA damage-induced destabiliza-

tion of Mdm2 in the presence of p53, we first restored

p53 function in Mdm2+/+;p53ER/� and Mdm2C462A/C462A;

p53ER/� MEFs by administration of 4-OHT. We then

treated the cells with 10 Gy gamma irradiation and deter-

mined the half-life of both Mdm2 and p53 (Figure 5B).
ncer Cell 12, 355–366, October 2007 ª2007 Elsevier Inc. 361



Cancer Cell

Inactivation of Mdm2’s RING E3 Activity in Mouse
Figure 5. DNA Damage Induces Destabilization of Mdm2 Regardless of Mdm2 RING E3 Function

(A) Mdm2 and Mdm2C462A were similarly destabilized in Mdm2+/+;p53�/� and Mdm2m/m;p53�/�MEFs after gamma irradiation. Early-passage (pas-

sage 2) MEFs of indicated genotypes were treated with 10 Gy of gamma irradiation. Three hours after treatment, the cells were analyzed for Mdm2

half-life as described above. The percentage of Mdm2 protein remaining at each time point was quantified by densitometry, normalized relative to the

amount of Actin, and plotted to the right.

(B) Mdm2 and Mdm2C462A were destabilized and p53ER was stabilized in Mdm2+/+;p53ER/� and Mdm2m/m;p53ER/� in a similar manner after gamma

irradiation. Early-passage (passage 2) MEFs of indicated genotypes were assayed for Mdm2 and p53ER half-life in a way identical to that in (A).
Consistently, in spite of the presence of active p53ER,

which induces expression of Mdm2, both the wild-type

and RING mutant Mdm2 were rapidly degraded after

gamma irradiation, with a half-life of less than 10 min for

each protein. In contrast, the p53ER protein was stabilized

after gamma irradiation, with a half-life greater than 45

min, in the presence of either wild-type or the RING mu-

tant Mdm2. Thus, DNA damage induces destabilization

of Mdm2, regardless of Mdm2’s RING E3 ubiquitin ligase

function.

Endogenous Mdm2C462A Protein Is
Polyubiquitinated and Degraded in a
Proteasome-Dependent Manner
To determine whether ubiquitin-mediated proteolysis is in-

volved in the degradation of the Mdm2C462A mutant pro-

tein, we first examined the Mdm2 protein level after treat-

ing the Mdm2+/+;p53�/� and Mdm2C462A/C462A;p53�/�

MEFs with MG132, which blocks the 26S proteasome-

mediated proteolysis. Treating the cells with 25 mM of

MG132 for 10 hr stabilized both the wild-type and the

RING mutant Mdm2 to an equal extent (Figure 6A), indicat-

ing that ubiquitin-mediated proteolysis and the 26S pro-

teasome are involved in the degradation of Mdm2, includ-

ing the Mdm2C462A mutant. To directly demonstrate Mdm2

ubiquitination, we transiently overexpressed p53 by ade-

novirus in the Mdm2+/+;p53�/� and Mdm2C462A/C462A;

p53�/� MEFs to transactivate endogenous Mdm2 and to

achieve comparable high levels of wild-type and mutant

Mdm2 protein. We then treated the cells with MG132

and lysed them directly in hot SDS lysis buffer (hot SDS
362 Cancer Cell 12, 355–366, October 2007 ª2007 Elsevier Inc
buffer protects Ub-conjugated proteins from deubiquiti-

nation during sample preparation). To enrich the total

amount of Mdm2 protein so that polyubiquitinated spe-

cies could be detected, the cell lysates were immunopre-

cipitated with anti-Mdm2 antibody and resolved on an

SDS-PAGE gel followed by western blotting, using anti-

Mdm2 antibody. We estimate that approximately 1.5 3

107 cells (from three p100 plates) were used for each IP

sample. As shown in Figure 6B, high-molecular-weight

ladders/smears, indicative of polyubiquitinated species,

were observed in both the wild-type and the RING mutant

Mdm2, and the smears were more pronounced after

MG132 treatment (Figure 6B, Long exp), indicating that

these smears are polyubiquitinated Mdm2. Importantly,

the high-molecular-weight ladders/smears were ob-

served at equal levels for Mdm2 isolated from lysates

of both Mdm2+/+;p53�/� and Mdm2C462A/C462A;p53�/�

MEFs. We believe that the high-molecular-weight lad-

ders/smears observed in the Mdm2C462A mutant are poly-

ubiquitinated Mdm2C462A protein, because they were

identical to those from the wild-type Mdm2 and were en-

hanced by MG132 treatment. Thus, the RING mutant

Mdm2C462A can be polyubiquitinated in vivo. Finally, to

confirm that the in vivo Mdm2C462A mutant is indeed inac-

tive in promoting p53 polyubiquitination, we transiently ex-

pressed p53 in three p53 null MEFs (Mdm2�/�;p53�/�,

Mdm2+/+;p53�/�, and Mdm2C462A/C462A;p53�/�) and ex-

amined p53 polyubiquitination by a hot SDS-coupled

straight western blotting assay. As shown in Figure 6C,

a high-molecular-weight ladder of p53—indicative of

polyubiquitinated p53 species—was observed only in
.
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Mdm2+/+;p53�/� MEFs, but not in Mdm2�/�;p53�/�

and Mdm2C462A/C462A;p53�/�MEFs, indicating that the

Mdm2C462A mutant is unable to promote p53 polyubiquiti-

nation.

DISCUSSION

Mdm2 is frequently amplified/overexpressed in human

tumors, many of which lack mutations in the p53 gene

Figure 6. Mdm2C462A Mutant Protein Is Degraded through

Proteasome-Dependent Proteolysis

(A) Mdm2 and Mdm2C462A can be equally stabilized in MEFs by

MG132. Early-passage (passage 2) MEFs of Mdm2�/�;p53�/�,

Mdm2+/+;p53�/�, and Mdm2m/m;p53�/� genotypes were either

untreated or treated with 25 mM of MG132 for 10 hr. Cell lysates

were analyzed for Mdm2 by western blotting. A nonspecific band de-

tected by the Mdm2 antibody (2A10) served as a loading control.

(B) Both Mdm2 and Mdm2C462A can be polyubiquitinated in MEFs.

Early-passage (passage 2) MEFs of Mdm2+/+;p53�/� and Mdm2m/m;

p53�/� genotypes were infected with adenoviruses expressing either

GFP or human p53. Two days after infection, the cells were treated

with 20 mM of MG132 for 8 hr and cell lysates were harvested.

Mdm2 protein was immunoprecipitated with anti-Mdm2 antibody

(2A10) and analyzed by western blotting with 2A10. Both long and

short exposures are shown.

(C) Endogenous Mdm2C462A protein cannot promote p53 polyubiquiti-

nation. MEFs of Mdm2�/�;p53�/�, Mdm2+/+;p53�/�, and Mdm2m/m;

p53�/� genotypes were infected with adenovirus expressing human

p53 and treated with 20 mM of MG132 as in (B). Cell lysates were

analyzed by western blotting using antibodies to p53 (DO-1).
Ca
(Leach et al., 1993), leading to the assumption that

Mdm2 overexpression is functionally equivalent to p53

mutation (Momand et al., 1998). Our initial rationale for

generating Mdm2 RING mutant mice was to test whether

a high level of Mdm2, due to lack of self-ubiquitination and

degradation, might directly bind to and inhibit the activity

of p53, causing cancer formation in the absence of p53

mutations; such a model would recapitulate human can-

cers with Mdm2 amplification. However, knockin of the

Mdm2 RING finger mutation in the mouse resulted instead

in embryonic lethality and revealed two unexpected

insights into the Mdm2-imposed p53 repression: (1)

the Mdm2-p53 physical interaction, in the absence of

Mdm2-mediated p53 ubiquitination, cannot suppress

p53 activity sufficiently to allow mouse early embryonic

development; and (2) the Mdm2 RING-mediated E3 ubiq-

uitin ligase function is not required for Mdm2 degradation.

Our data raise questions about a widely held view of the

mechanism of Mdm2-mediated p53 inhibition, in which it

is believed that the binding of Mdm2 with p53’s N-terminal

transactivation domain interferes with p53’s interaction

with basal transcriptional machinery, blocking p53’s tran-

scriptional activity (Oliner et al., 1993; Thut et al., 1997). Al-

though we cannot rule out the possibility that the physical

interaction between Mdm2 and p53 still inhibits p53 func-

tion to a certain extent, or toward a specific set of target

genes, our study has otherwise indicated that Mdm2 bind-

ing alone, without inducing p53 ubiquitination, is unable to

suppress p53 activity in vivo, at least to a degree allowing

mouse embryos to develop. Even when expressed at

a very high level in the Mdm2C462A/C462A;p53ER/� MEFs

upon 4-OHT induction, the mutant Mdm2C462A, unlike

wild-type Mdm2, cannot suppress p53 activity, at least to-

ward p21 and Mdm2 induction (Figure 3A). This finding

suggests that Mdm2 RING E3 activity is likely the ma-

jor—if not the only—biochemical activity required to sup-

press p53, regardless of whether by direct ubiquitination

of p53 or by ubiquitination of intermediary proteins (Min-

sky and Oren, 2004). The Mdm2-mediated p53 ubiquitina-

tion could serve multiple distinct functions, such as tag-

ging p53 for proteasomal degradation, promoting p53

cytoplasmic translocation, and directly suppressing p53

transcriptional activity by, for example, blocking access

of transcription cofactors. In this regard, it is tempting to

say that the principal mechanism involved in activating

p53 upon a variety of cellular stresses could be simply to

inhibit Mdm2’s E3 ubiquitin ligase activity, thereby releas-

ing p53 from ubiquitination-mediated repression. The

notion that blocking Mdm2-induced p53 ubiquitination,

without disrupting the Mdm2-p53 interaction, could be

sufficient to release p53 activity provides a potential uni-

fied mechanism for the action of many Mdm2 inhibitors,

such as ARF and L11, whose association with Mdm2

and inhibition of the Mdm2 E3 ubiquitin ligase function

would be sufficient to activate p53 without necessarily

disrupting the Mdm2-p53 physical interaction.

Our data also call into question the role of Mdm2’s

RING-mediated E3 ubiquitin ligase function in Mdm2

self-degradation. Previous studies using in vitro ectopic
ncer Cell 12, 355–366, October 2007 ª2007 Elsevier Inc. 363
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expression systems have shown that mutations in the

Mdm2 C-terminal RING domain result in stabilization of

both p53 and Mdm2, indicating that the RING E3 is impor-

tant for Mdm2 autoubiquitination and -degradation. Using

an in vivo system, which skirts the complication of protein

overexpression, we demonstrate that the Mdm2 RING E3

is not essential for Mdm2 degradation. The findings that,

under both unstressed and genotoxically stressed condi-

tions, the Mdm2C462A mutant protein has a short half-life

indistinguishable from that seen in wild-type Mdm2

(Figures 4 and 5), and that the Mdm2C462A mutant protein

is sensitive to MG132-induced stabilization (Figure 6),

predict the existence of other ubiquitin E3s for Mdm2 deg-

radation. Consistent with this notion, a recent study has

shown that the histone acetyltransferase PCAF can nega-

tively regulate Mdm2 by promoting Mdm2 ubiquitination

and degradation (Linares et al., 2007). We do not rule

out that Mdm2 autoubiquitination may occur when the

protein is expressed at extremely high levels, or that the

C462A point mutation itself may cause unforeseen effects

on protein stability. However, given the stark deviation

between the in vitro and in vivo results for Mdm2 autode-

gradation revealed by the Mdm2C462A mutant knockin,

alternative mechanisms for Mdm2 ubiquitination and deg-

radation, including PCAF-induced degradation, warrant

further investigation with an in vivo system.

The finding that inhibiting Mdm2-induced p53 ubiquiti-

nation, while retaining Mdm2-p53 binding, results in em-

bryonic lethality has intriguing implications. It has been

demonstrated that Mdm2 and Mdm4 (a.k.a. Mdmx) inter-

act with each other via their respective RING domains,

and that the Mdm2 RING finger mutation disrupts

Mdm2-Mdm4 binding (Kawai et al., 2003). We have not

determined whether, under physiological conditions, the

Mdm2C462A mutant protein can interact with Mdm4.

Whether the Mdm2-Mdm4 interaction is essential for acti-

vating Mdm2’s E3 ubiquitin ligase activity toward p53, and

whether Mdm2-mediated p53 ubiquitination plays any

role in determining p53’s decision between growth arrest

and apoptosis, remain interesting questions that can now

be addressed with the Mdm2 RING mutant mouse model.

EXPERIMENTAL PROCEDURES

Generation of Mdm2C462A Mutant Mice

Murine 129/Sv genomic DNA containing the last six exons (7–12) of

Mdm2 was a gift from Dr. Lozano (University of Texas, M.D. Anderson

Cancer Center). The targeting vector was constructed in a PGK neo

vector. A cysteine to alanine substitution was introduced in codon

462 using site-directed mutagenesis, and a new Eag1 restriction site

was generated at the same time. The final construct was sequenced

using overlapping primers. Electroporation of 129/Sv-derived AB2.2

ES cells was performed by the UNC Animal Models Core Facility.

DNA isolated from 192 G418-resistant ES colonies was subjected to

BamH1 digestion followed by Southern blotting analysis using a probe

covering intron 9 between exons 9 and 10. Positive clones were further

confirmed for the presence of the C462A substitution by PCR amplifi-

cation of genomic DNA using primers flanking exon 12, followed by

Eag1 digestion. Two positive clones were injected into C57BL/6 blas-

tocysts, and the blastocysts were transferred into pseudopregnant

CD1 female recipients. The resulting chimeric males were mated
364 Cancer Cell 12, 355–366, October 2007 ª2007 Elsevier Inc
with C57BL/6 females. Germline transmissions were confirmed by

Southern blotting and PCR analysis.

Mouse Breeding, Maintenance, and Genotyping

Eleven chimeric mice generated from ES cells were mated with

C57BL/6 females. The progeny agouti mice were genotyped by PCR

and Eag1 digestion to screen for germline transmission. The germ-

line-transmitted Mdm2+/C462A heterozygous mice were crossed with

EIIa-Cre transgenic mice (The Jackson Laboratory) to delete the neo-

mycin selection marker and were backcrossed to C57BL/6 mice for

four generations and maintained on a mixed 129/Sv 3 C57BL/6 back-

ground. The mice and embryos were analyzed in comparison to their

own littermates. The p53 null mice (p53�/�) were purchased from

The Jackson Laboratory. p53ERTAM knockin mice and genotyping of

the p53ERTAM alleles were described previously (Christophorou

et al., 2005). Mice were bred and maintained strictly under protocols

(#07-056.0-A) approved by the Institutional Animal Care and Use Com-

mittee in the UNC Animal Care Facility. The Mdm2C462A mutant allele

was identified by Eag1 digestion of PCR product using primers 50-

GCTTCTTGGTTGAAGGGTTGAATTGATGC-30 and 50-GTTCTTCTGT

AGCCCTTGATGAGGAAG-30; or 50-GCAGCCAAGAAAGCGTGAAAG

AGTTG-30 and 50-ACAGAGCAGGTCAGCTAGTTGAAG-30 for Mdm2.

The Mdm2C462A mutation was further confirmed by DNA sequencing

of PCR-amplified tail DNA. PCR primers for wild-type (p53-X7, 50-GG

ATGGTGGTATACTCAGAGCC-30; p53-X6, 50-ACAGCGTGGTGGTA

CCTTAT-30) and mutant (p53-X7; NEO18.5, 50-TCCTCGTGCTTTA

CGGTATC-30) p53 alleles were described by The Jackson Laboratory.

Southern Blotting and RT-PCR Analysis

Southern blotting analysis was performed using NEN Life Science

GeneScreen kit with a 1 Kb probe that recognizes intron 9 of Mdm2

as indicated in Figure 1A. For RT-PCR, total RNA was extracted using

the Total RNA Isolation kit (Promega). The primers were as follows:

Mdm2, 50-CTAGTTGAAGTAAGTTAGCAC-30 and 50-AGGAGAGTGAC

GACTATTC-30; p53, 50-TACCATCATCACACTGGAAGAC-30 and 50-TT

TATGGCGGGAAGTAGAC-30; b-actin, 50-CACGGCATTGTAACCAAC

TG-30 and 50-CTGGGTCATCTTTTCACGGT-30.

Histological and Histochemical Analysis of Mouse Embryos

Embryos were fixed overnight in 10% formalin (buffered to neutral).

The formalin-fixed embryos were paraffin embedded at the Histo-

pathology Core Facility. Sections (5 mm) were cut and stained with

hematoxylin and eosin (H&E).

Cell Culture

Primary MEF cells were cultured in a 37�C incubator with 5% CO2 in

DMEM supplied with 10% FBS and penicillin (100 IU/ml)/streptomycin

(100 mg/ml). Cells were maintained by 3T3 protocol, and cell number

was counted with a hematocytometer. pBabe retrovirus vector encod-

ing murine p53 was a gift from Dr. Peiqing Sun (Scripps, CA), and the

temperature-sensitive p53 (tsp53) mutant p53A135V was made by PCR-

based site-directed mutagenesis. p53 null MEFs expressing Mdm2+/+

and Mdm2C462A/C462A were infected with retroviruses carrying tsp53 at

37�C, selected with puromycin (2.5 mg/ml) for 3 days at 39.0�C, and

maintained at 39.0�C until shifting temperature to 32�C for p53 activa-

tion. Procedures for production and infection of retroviruses and ade-

noviruses were described previously (Itahana et al., 2003). For activa-

tion of p53ERTAM, 100 nM 4-hydroxytamoxifen (Sigma) dissolved in

100% ethanol was added to the culture medium.

Protein Analysis

Mouse monoclonal Mdm2 (2A-10 and 4B11, Calbiochem), p53 (NCL-

505, Novocastra; DO-1,Lab Vision/Neomarkers), actin (MAB1501,

Chemicon International), goat polyclonal p53 (FL-393; Santa Cruz),

and rabbit polyclonal p53 (CM5, Novocastra) antibodies were pur-

chased commercially. Rabbit polyclonal antibodies to p21 were gifts

from Dr. Yue Xiong (UNC-Chapel Hill). Rabbit polyclonal antibodies

to L5 and L11 were previously described (Lindstrom et al., 2007). Cells
.
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were lysed in 0.1% NP-40 buffer for immunoprecipitation and 0.5%

NP-40 buffer for straight western blotting. Procedures and conditions

for immunoprecipitation and immunoblotting were described previ-

ously (Itahana et al., 2003). The half-life of Mdm2 protein was mea-

sured by treating cells with cycloheximide (50 mg/ml) for indicated

length of time. The Mdm2 level was analyzed by western blotting,

and the intensity of the bands in the linear range of exposure was quan-

tified by densitometry.

In Vivo Ubiquitination Assay

MEF cells were lysed in 1% SDS lysis buffer (1% SDS and 1% NP-40 in

PBS). The cell lysates were diluted ten times with 0.1% NP-40-PBS

containing 1 mM phenylmethylsulfonyl fluoride (PMSF). The diluted ly-

sates were precleared with Sepharose CL4B beads (Sigma) for 30 min

and then immunoprecipitated with anti-Mdm2 antibody (2A10) over-

night at 4�C, followed by incubation with protein A beads (Pierce) for

2 hr at 4�C. The beads were washed four times with cold 0.1%

NP-40-PBS containing 1 mM PMSF. The beads were then incubated

in 13 SDS loading buffer.
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